Evidence of Tunneling in n-4H-SiC/SiO2 Capacitors at Low Temperatures

Article Preview

Abstract:

In this work, anomalous discontinuities observed in Capacitance-Voltage (C-V) characteristics on non-nitridated n-4H-SiC/SiO2 capacitors at low temperature are addressed. The appearance of abrupt capacitance minima, always at the same gate voltages (4V and 8V) and independent on probe frequency, led us to consider a resonant electron tunneling process from neutral donor states present at the SiC/SiO2 interface into two well defined energy levels in the oxide layer. Results of numerical simulations based on this model describe quantitatively the experimentally observed discontinuities at 4V and 8V and provide strong evidence for the presence resonant tunneling.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

557-560

Citation:

Online since:

January 2013

Export:

Price:

[1] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, IEEE Electr Device L 22, (2001),176 -178.

DOI: 10.1109/55.915604

Google Scholar

[2] D. Peters, R. Schorner, K. H. Holzlein, P. Friedrichs, Appl Phys Lett 71, (1997), 2996-2998.

Google Scholar

[3] F. Moscatelli, A. Poggi, S. Solmi, and R. Nipoti, IEEE Transactions on Electron Devices 55, (2008), 961-967.

DOI: 10.1109/ted.2008.917107

Google Scholar

[4] G. Pensl, S. Beljakowa, T. Frank, K. Gao, F. Speck, T. Seyller, L. Ley, F. Ciobanu, V. V. Afanas'ev, A. Stesmans, T. Kimoto, A. Schöner, Phys Status Solidi B 245, (2008), 1378-1389

DOI: 10.1002/pssb.200844011

Google Scholar

[5] I. Pintilie, C. M. Teodorescu, F. Moscatelli, R. Nipoti, A. Poggi, S. Solmi, L. S. Løvlie, and B. G. Svensson, Journal of Applied Physics 108, (2010), 024503.

DOI: 10.1063/1.3457906

Google Scholar

[6] F. Allerstam, H. O. Olafsson, G. Gudjonsson, D. Dochev, E. O. Sveinbjörnsson, T. Rodle, and R. Jos, Journal of Applied Physics 101, (2007),124502.

Google Scholar

[7] T. E. Rudenko, I. N. Osiyuk, I. P. Tyagulski, H. O. Olafsson, and E. O. Sveinbjörnsson, Solid-State Electronics 49, (2005), 545 -.553

DOI: 10.1016/j.sse.2004.12.006

Google Scholar

[8] A. F. Basile and P. M. Mooney, J. Appl. Phys. 111, (2012), 094509

Google Scholar

[9] R. Singh and A. R. Hefner, Solid-State Electronics 48, (2004), 1717-1720.

Google Scholar

[10] V. V. Afanas'ev, M. Bassler, G. Pensl, M. J. Schulz, and E. S. von Kamienski, Journal of Applied Physics 79, (1996), 3108-3114.

DOI: 10.1063/1.361254

Google Scholar

[11] I. Pintilie, F. Moscatelli; R. Nipoti, A.Poggi, S. Solmi, L.S. Lovlie, B.G. Svensson, SILICON CARBIDE AND RELATED MATERIALS 2010  Book Series: Materials Science Forum, 679-680, (2011), 346-349

DOI: 10.4028/www.scientific.net/msf.679-680.346

Google Scholar

[12] B. H. Bransden and C. J. Joachain, Quantum mechanics, Prentice Hall, Harlow, England; New York, 2000.

Google Scholar

[13] L. D. Filip, I. Pintilie, L. C. Nistor and B. G. Svensson, submitted to Thin Solid Films (2012).

Google Scholar

[14] H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, New York; Chichester; Brisbane; Toronto; Singapore, 1982.

Google Scholar