Bioinert Ceramics: State-of-the-Art

Article Preview

Abstract:

Bioinert ceramics in use today are the result of more than 60 years of continuous development. Early studies were concentrated on alumina that in the late 1960s was the most advanced ceramic, and on pyrolytic carbon. After tests in orthopedic bearings, pyrolytic carbon found clinical applications in artificial heart valves, where it is in clinical use so far. After 1970 zirconia-toughened ceramics (YTZP, ZTA, ATZ) were investigated in view of their use as biomaterials in orthopedics. Especially the introduction of YTZP in clinics in the 1990s gave a new momentum to the use of inert bioceramics. So far, zirconia-toughened ceramics are replacing alumina because of their outstanding mechanical properties leading to high reliability in ceramic components. The behavior of ZTAs and ATZs are exploited in several innovative devices. Especially metal-free devices are of interest, because of the increasing number of patients sensitized to metals. Using zirconia-toughened ceramics were achieved remarkable development in ceramic knee replacements, a field pioneered by Japanese researchers, because the behavior of these materials allow the production of devices similar in size to the metallic ones. In dentistry, a number of manufacturers are marketing metal-free dental implants, as well as machinable zirconia blanks for the production of crowns, bridges, copings by CAD/CAM. Besides oxides, that in todays’ orthopedics and dentistry are the state-of-the-art bioinert ceramics, silicon nitride has found application in spinal surgery, and investigations in view of its use in joint replacement bearings are in progress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-13

Citation:

Online since:

November 2017

Authors:

Export:

Price:

* - Corresponding Author

[1] L.L. Hench, E.C. Etheridge, Biomaterials: an Interfacial Approach, Academic, New York, (1982).

Google Scholar

[2] Rock, German Patent DRP 583, 589. (1933).

Google Scholar

[3] S. Sandhaus, Noveaux aspects de l'implantologie, Sandhaus, , Lausanne, (1969).

Google Scholar

[4] L.W. Smith, Ceramic-plastic material as a bone substitute, Clin Orthop 282 (1992) 4-9.

Google Scholar

[5] J.C. Bokros, Carbon in medical devices, in: P. Vincenzini (Ed. ) Ceramics in Surgery, Elsevier, Amsterdam, 1983, pp.199-214.

Google Scholar

[6] V.L. Gott, D.E. Alejo, D.E. Cameron, Mechanical heart valves: 50 years of evolution, Ann Thorac Surg 76(2003)S2230-39.

DOI: 10.1016/j.athoracsur.2003.09.002

Google Scholar

[7] M. Vila, Carbon-based Materials in Biomedicine, in: M. Vallet-Regi (Ed. ) Bio-Ceramics with Clinical Applications, Wiley, Chichester, 2014, pp.175-192.

DOI: 10.1002/9781118406748.ch7

Google Scholar

[8] P. Boutin, Arthroplastie totale de la hanche par prostheses en alumine fritté, Rev Chir Orthop 58 (1972) 230-246.

Google Scholar

[9] W. Shulte, The FRIALIT Tübingen implant system, in: G. Heimke (Ed. ) Osseo-integrated Implants, Vol 1, CRC Press, Boca Raton, 1990, pp.1-35.

Google Scholar

[10] J.T. Chess, C.A. Babbush, Restoration of lost dentition using aluminum oxide endosteal implants, Dent Clin North Am 24 (1980) 521-533.

DOI: 10.1016/s0011-8532(22)02412-0

Google Scholar

[11] T. Takahashi, T. Sato, R. Hisanaga, et al., Long-term observation of porous sapphire dental implants, Bull Tokyo Dent Coll 49 (2008) 23-27.

DOI: 10.2209/tdcpublication.49.23

Google Scholar

[12] G. Langer, S. Blumentritt, Our ceramic endoprostheses programme – investigations and results, in: P. Vincenzini (Ed. ) Ceramics in clinical applications, Elsevier, Amsterdam, 1987, pp.313-319.

Google Scholar

[13] G. Langer, Ceramic tibial plateau of the 70s, in: J.P. Garino, G. Willmann (Eds), Bioceramics in joint arthroplasty, Thieme, Stuttgart, 2002, pp.128-130.

Google Scholar

[14] C. Piconi, Alumina, in: P. Ducheyne, K.E. Healey, D.W. Hutmacher, D.W. Grainger, C.J. Kirkpatrick (Eds. ) Comprehensive Biomaterials, vol 1, Elsevier, New York, 2011, pp.73-94.

Google Scholar

[15] C. Piconi, A.A. Porporati, Bioinert Ceramics: Zirconia and Alumina, in: I. Antoniac (Ed. ) Handbook of Bioceramics and Biocomposites, Vol. 1, Springer, Berlin, 2016, pp.59-90.

DOI: 10.1007/978-3-319-12460-5_4

Google Scholar

[16] Blaise L, Webb J, Calés B, Mechanical analysis of a knee prosthesis with a zirconia femoral component. Orthop Proc 84-B(2002)14.

Google Scholar

[17] C. Piconi, G. Maccauro, M. Angeloni, B. Rossi, I.D. Learmonth, Zirconia heads in perspective: a survey of zirconia outcomes in total hip replacement, Hip Int 17 (2007) 119-130.

DOI: 10.5301/hip.2008.2496

Google Scholar

[18] R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia containing ceramics, J Am Ceram Soc 83(2000)461-87.

DOI: 10.1111/j.1151-2916.2000.tb01221.x

Google Scholar

[19] M. Hirano, Inhibition of Low Temperature Degradation of tetragonal zirconia ceramics, Br Ceram Trans 91(1992)139-147.

Google Scholar

[20] T. Sato, M. Shimada, Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water. J Mater Sci 20(1985)3899-992.

DOI: 10.1007/bf00552389

Google Scholar

[21] M. Yoshimura, T. Noma, K. Kawabata, S. Somiya, Role of H2O on the degradation process of Y-TZP, J Mater Sci Lett 6(1987)465-7.

DOI: 10.1007/bf01756800

Google Scholar

[22] J. Chevalier, B. Cales, J.M. Drouin, Low-temperature ageing of Y-TZP ceramics, J Am Ceram Soc 82(1999)2150-4.

Google Scholar

[23] S. Lawson, Environmental degradation of zirconia ceramics. J Eur Ceram Soc 15(1995)485-502.

Google Scholar

[24] J. Chevalier, L. Gremillard, S. Deville. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annu Rev Mater Res 37(2007)1–32.

DOI: 10.1146/annurev.matsci.37.052506.084250

Google Scholar

[25] V. Lughi, V. Sergo, Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 26(2010)807–20.

DOI: 10.1016/j.dental.2010.04.006

Google Scholar

[26] F. Zhang, M. Batuk, J. Hadermann, et al. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation. Acta Materialia 106(2016)48-58.

DOI: 10.1016/j.actamat.2015.12.051

Google Scholar

[27] C. Piconi, G. Maccauro, L. Pilloni, W. Burger, F. Muratori, H.G. Richter, On the fracture of a zirconia ball head, J Mater Sci Mater Med 17 (2006) 289-300.

DOI: 10.1007/s10856-006-7316-0

Google Scholar

[28] K. Kawata, T. Ohmura, I. Kawahara, K. Tamai, T. Ueha, K. Takemura . Differences in highly cross-linked wear between zirconia and cobalt-chromium femoral heads in Japanese patients. J Arthroplasty 24(2009) 1121-24.

DOI: 10.1016/j.arth.2009.05.023

Google Scholar

[29] M. Hasegawa, A. Sudo. In vivo performance of highly cross-linked polyethylene vs. yttria stabilized zirconia and alumina stabilized zirconia at a mean seven-years follow-up. BMC Muscoloskeletal Disorders 14(2013) 154.

DOI: 10.1186/1471-2474-14-154

Google Scholar

[30] M. Sonohata, M. Kitajima, S. Kawaro, M. Mawatari. Wear of XLPE liner against zirconium heads in cementless total hip arthroplasty for patients under 40 years of age. Hip Int 2017, in press. DOI: 10. 5301/hipint. 5000513.

DOI: 10.5301/hipint.5000513

Google Scholar

[31] W. Burger, H.G. Richter, High strength and toughness alumina matrix composites by transformation toughening and in situ platelet reinforcement (ZPTA) – the new generation of bioceramics, Key Eng Mater 192-195(2001)545-548.

DOI: 10.4028/www.scientific.net/kem.192-195.545

Google Scholar

[32] C. Piconi, G. Maccauro, Oxide Ceramics for Biomedical Applications, in: S. Hashmi (Editor-in-chief), Reference Module in Materials Science and Materials Engineering, Elsevier, Oxford, 2016, pp.1-8.

DOI: 10.1016/b978-0-12-803581-8.02151-2

Google Scholar

[33] S. Begand, T. Oberbach, W. Glien, ATZ - a new material with high potential in joint replacement, Key Eng Mater 284-286 (2005) 983-986.

DOI: 10.4028/www.scientific.net/kem.284-286.983

Google Scholar

[34] E. Meier, K. Gelse, K. Trieb, et al., First clinical study of a novel complete metal-free ceramic total knee replacement system, J Orthop Surg Res 11(2016)21(7pp).

DOI: 10.1186/s13018-016-0352-7

Google Scholar

[35] P. Bergschmidt, R. Bader R, Ganzer, et al., Prospective multi-centre study on a composite ceramic femoral component in total knee arthroplasty: Five-year clinical and radiological outcomes, Knee 22(2015)186-191.

DOI: 10.1016/j.knee.2015.02.003

Google Scholar

[36] U. Schreiner, A. Schulze, G. Scheller, C. Apruzzese, M.L. Schwarz, Osteointegration zementfreier Hüftpfannen aus Keramik. Z Othop Unf 150(2012)32-39.

DOI: 10.1055/s-0031-1280030

Google Scholar

[37] C. Witt, Ceramic implant with titanium coating, In: ICC6 – 6th Intl. Congress on Ceramics, Abstracts Book, Deutsche Keramische Gesellshaft, Koeln, 2016, p.130.

Google Scholar

[38] A.S. Dickinson, M. Browne, K.C. Wilson, J.R.T. Jeffers, A.C. Taylor, Pre-clinical evaluation of ceramic femoral head resurfacing prostheses using computational models and mechanical testing, Proc IMechE Part H: J Engineering in Medicine 225(2011).

DOI: 10.1177/0954411911411605

Google Scholar

[39] C. Piconi, T. Kosmac, S.G. Condò. Alumina- and Zirconia-Based Ceramics for Load Bearing Applications, in: J.Z. Shen, T. Kosmac (Eds. ) Advanced Ceramics for Dentistry, Butterworth-Heinemann, Waltham, 2014, pp.220-253.

DOI: 10.1016/b978-0-12-394619-5.00011-0

Google Scholar

[40] P. Palmero, M. Fornabaio, L. Montanaro, H. Reveron, C. Esnouf, J. Chevalier, Towards long lasting zirconia-based composites for dental implants, Biomaterials 50(2015)38-46.

DOI: 10.1016/j.biomaterials.2015.01.018

Google Scholar

[41] C. Piconi, M. Sandri, New materials for dental implantology, Key Eng Mater 750(2017)189-194.

DOI: 10.4028/www.scientific.net/kem.750.189

Google Scholar

[42] C. Piconi, G. Maccauro, E. Muratori, E. Brach del Prever, Alumina and zirconia ceramics in joint replacements: a review, J Appl Biomat Biomech 1(2003)19-32.

Google Scholar

[43] C. Piconi, Alumina. In: P. Ducheyne, D.W. Grainger, E. Healy, D.W. Hutmacher, C.J. Kirkpatrick (eds. ) Comprehensive Biomaterials II, vol. 1. Oxford, Elsevier, 2017, p.92–121.

Google Scholar

[44] C. Piconi, A.A. Porporati. Bioinert Ceramics: Zirconia and Alumina. in: Antoniac I (Ed. ) Handbook of Bioceramics and Biocomposites, Vol. 1 Ch 4, Springer, Berlin, 2016, pp.59-90.

DOI: 10.1007/978-3-319-12460-5_4

Google Scholar

[45] P. Prokopovich. Interaction between mammalian cells and nano- or micro-sized wear particles: physico-chemicalviews against biological approaches. Adv Colloid Interfac 213(2014)36-47.

DOI: 10.1016/j.cis.2014.09.001

Google Scholar

[46] J. Fisher, Z. Jin, J. Tipper, et al., Tribology of alternative bearings, Clin Orthop 453(2006)25-34.

Google Scholar

[47] G. Maccauro, C. Piconi, F. Muratori, V. De Santis, W. Burger, Tissue reactions to wear debris: clinical cases Vs. animal model, in: Zippel M and Dietrich M (eds) Bioceramics in joint arthroplasty, Steinkoppf. Darmstadt, 2003, pp.81-88.

DOI: 10.1007/978-3-642-85763-8_10

Google Scholar

[48] S. Lerouge, L'H. Yahia, O. Huk, et al., Wear debris and inflammatory response in tissues around failed alumina ceramic-on-ceramic hip prostheses, in: J. Wilson, L.L. Hench, D. Greenspan (Eds), Bioceramics 8, Elsevier, New York, 1995, pp.145-150.

Google Scholar

[49] E. De Santis, G. Maccauro, L. Proietti, et al. Histologic and ultrastuctural analysis of alumina wear debris. Key Eng Mater 192-195(2001)995-98.

DOI: 10.4028/www.scientific.net/kem.192-195.995

Google Scholar

[50] P.A. Faye. O. Roualdes, F. Rossignol, D.J. Hartmann, A. Desmoulière, Engulfment of ceramic particles by fibroblasts do not alter cell behavior, Biomed Mater 12(2017)015023 (DOI: 10: 1088/1748-605X/aa5aa2).

DOI: 10.1088/1748-605x/aa5aa2

Google Scholar

[51] R. Sonntag, J. Reinders, J.P. Kretzer, What's next? Alternative materials for articulation in total joint replacements, Acta Biomaterialia 8(2012)2434-41.

DOI: 10.1016/j.actbio.2012.03.029

Google Scholar

[52] J.R.T. Jeffers, W.L. Walter, Ceramic-on-ceramic bearings in hip arthroplasty. J Bone Joint Surg Br 94(2012)735-45.

Google Scholar

[53] T. Tateiwa, I.C. Clarke, P.A. Williams, et al. Ceramic total hip arthroplasty in the United States: safety and risk issues revisited. Am J Orthop 37(2008) E26-31.

Google Scholar

[54] D. Hannouche, A. Zaoui, F. Zadegan, L. Sedel, R. Nizard, Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty. Int Orthop 35(2011)207-13.

DOI: 10.1007/s00264-010-1187-1

Google Scholar

[55] J.A. Epinette, M.T. Manley, No differences found in bearing related hip survivorship at 10-12 years follow-up between patients with ceramic on highly cross-linked polyethylene bearings compared to patients with ceramic on ceramic bearings. J Arthroplasty 29(2014).

DOI: 10.1016/j.arth.2014.02.025

Google Scholar

[56] W.G. Hamilton, J.P. McAuley, D.A. Dennis, J.A. Murphy, T.J. Blumenfeld, J. Politi. THA with Delta ceramic on ceramic. Clin Orthop 68(2010)358-66.

DOI: 10.1007/s11999-009-1091-4

Google Scholar

[57] Y.H. Kim, J.S. Kim, J.W. Park, J.H. Joo. Total hip replacement with short metsphyseal-fitting anatomical cementless femoral component in patients aged 70 years or older. Bone Joint J 93(2011) 587-92.

DOI: 10.1302/0301-620x.93b5.25994

Google Scholar

[58] P. Cai, Y. Hu, J. Xie. Large diameter Delta ceramic-on-ceramic vs. common-sized ceramic-on-polyethylene bearings. Orthopedics 35(2012) e1307-13.

DOI: 10.3928/01477447-20120822-14

Google Scholar

[59] S.M. McDonnell, G. Boyce, J . Baré, D. Young, A.J. Shimmin. The incidence of noise generation arising from the large-diameter Delta Motion ceramic total hip bearing. Bone Joint J 95(2013)160-165.

DOI: 10.1302/0301-620x.95b2.30450

Google Scholar

[60] K. Deep, C. Siramanakul, V. Mahajan. The incidence of noise in computer assisted total hip replacement with ceramic-on-ceramic bearing and risk factors analysis. Bone Joint J 96 Supp16 (2014)46.

Google Scholar

[61] S.H. Baek, W.K. Kim, J.Y. Kim, S.J. Kim. Do alumina matrix composite bearing decrease hip noises and bearing fracture at a minimum of 5 years after THA? Clin Orthop 473(2014)3796-802.

DOI: 10.1007/s11999-015-4428-1

Google Scholar

[62] A. Aoude, J. Antoniou, L.M. Epure, O.L. Huk, D.J. Zukor, M. Tanzer. Midterm Outcomes of the recently FDA approved ceramic on ceramic bearing in total hip arthroplasty patients under 65 years of age. J Arthroplasty 30(2015)1388-92.

DOI: 10.1016/j.arth.2015.03.028

Google Scholar

[63] W.G. Hamilton, J.P. McAuley, T.J. Blumenfeld, J.P. Lesko JP, S. Himden S, D.A. Dennis. Midterm results of delta ceramic-on-ceramic total hip arthroplasty, J Arthroplasty 30(2015)110-15.

DOI: 10.1016/j.arth.2015.02.047

Google Scholar

[64] Y.K. Lee, Y.C. Ha, W.L. Jo, T.Y. Kim, W.H. Jung, K.H. Koo. Could larger diameter of the 4th generation ceramic bearing decrease the rate of dislocation after THA? J Orthop Sci 21(2016)327-31.

DOI: 10.1016/j.jos.2016.01.002

Google Scholar

[65] S.J. Lim, S.M. Kim, D.W. Kim, Y.W. Moon, Y.S. Park. Cementless total hip arthroplasty using BioloxÒdelta ceramic-on-ceramic bearing in patients with osteonecrosis of the femoral head. Hip Intl 26(2016)144-48.

DOI: 10.5301/hipint.5000311

Google Scholar

[66] G. Willmann, Fiction and facts concerning the reliability of ceramics in THR, in: H. Zippel, M. Dietrich (Eds. ) Bioceramics in Joint Arthroplasty, Steinkopff, Darmstadt, 2003, pp.193-196.

DOI: 10.1007/978-3-642-85763-8_30

Google Scholar

[67] P. Massin, R. Lopes, B. Masson, D. Mainard and the French Hip & Knee Society (SFHG), Does Biolox®delta ceramic reduce the rate of component fractures in total hip replacement? Orthopaedics & Traumatology: Surgery & Research 100(2014)S317–21.

DOI: 10.1016/j.otsr.2014.05.010

Google Scholar

[68] U. Sentuerk, P. von Roth, C. Perka, Ceramic on ceramic arthroplasty of the hip, Bone Joint J 98-B (2016) 2 Suppl A, 14-17.

DOI: 10.1302/0301-620x.98b1.36347

Google Scholar

[69] J. p. McAuley, D.A. Dennis, J. Grostefon, W.G. Hamilton. Factors affecting modular acetabular ceramic liner insertion: a biomechanical analysis. Clin Orthop 470(2012)402-9.

DOI: 10.1007/s11999-011-2193-3

Google Scholar

[70] H. Oonishi, H. Oonishi, S.C. Kim, Ceramic knee arthroplasty: advanced clinical experiences of 26 years, Semin Arthoplasty 17(2006)134-140.

DOI: 10.1053/j.sart.2006.09.007

Google Scholar

[71] T. Nakamura, E. Oonishi, T. Yasuda, Y. Nakagawa, A new knee prosthesis with bisurface femoral component made of zirconia ceramic, Key Eng Mater 254/256(2004)607-609.

DOI: 10.4028/www.scientific.net/kem.254-256.607

Google Scholar

[72] G. Solarino, C. Piconi, V. De Santis, A. Piazzolla, B. Moretti, Ceramic total knee arthroplasty: ready to go? submitted to Joints (2017).

DOI: 10.1055/s-0037-1607428

Google Scholar

[73] C. Piconi, V. De Santis, G. Maccauro, Clinical outcomes of ceramicized ball heads in total hip replacement bearings: a literature review, J Appl Biomater Funct Mater 15 (2017) 1-9.

DOI: 10.5301/jabfm.5000330

Google Scholar

[74] F. Adam, D.S. Hammer, S. Pfausch, K. Westermann, Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface, J Arthroplasty 17(2002) 217-223.

DOI: 10.1054/arth.2002.30285

Google Scholar

[75] C. Piconi. Non-oxide ceramics: status quo and future options, in: Cobb J (Ed. ) Modern Trends in THA Bearings. Springer, Berlin, 2010, pp.37-44.

Google Scholar

[76] Bull Office Federal Santé Publique (Swissmedic). Retrait de Protése de genou Diamond Rota Gliding. 27. 8. (2001).

Google Scholar

[77] E. Alakoski, V. -M. Tiainen, A. Soininen, Y.T. Konttinen, Load-bearing biomedical applications of diamond-like carbon coatings - current status, The Open Orthopaedics Journal 2(2008)43-50.

DOI: 10.2174/1874325000802010043

Google Scholar

[78] B.S. Bal, M.N. Ramahan, Orthopedic applications of silicon nitride ceramics, Acta Biomater 8(2012)2889-2898.

DOI: 10.1016/j.actbio.2012.04.031

Google Scholar

[79] V. Medri, E. Landi, A. Bellosi, Non-Oxide Ceramics, in: R. Sonntag, J.P. Kretzer, Materials for Total Joint Arthroplasty, Imperial College, London, 2016, pp.183-222.

DOI: 10.1142/9781783267170_0007

Google Scholar

[80] Z. Badran, X. Struillou, F.J. Hughes, A. Soueidan, A. Hoornaert, M. Ide, Silicon Nitride (Si3N4) implants: the future of dental implantology? 43(2017)240-44.

DOI: 10.1563/aaid-joi-d-16-00146

Google Scholar