Perpendicular Magnetic Anisotropy and Intralayer Interactions in a Single Layer of CoPt Nanoparticles

Article Preview

Abstract:

The multilayer films [Al2O3/tCo Co/tPt Pt]N, produced by sequential deposition of Co and Pt on alumina consist in layers of CoPt alloyed nanoparticles. They show perpendicular magnetic anisotropy (PMA) below a freezing temperature Tf, an asperomagnetic-like phase below that temperature, and hard ferromagnetic ordering below a transition temperature T1 < Tf. A single layer granular film (N = 1) with deposition thicknesses tCo=0.7 nm, tPt=1.5 nm and particle diameter of 3 nm is presently studied. SQUID magnetometry shows that a single layer presents the three phases as well. Para-, aspero-and ferromagnetic phases are observed upon lowering the temperature, with transition temperatures Tf ≈ 375 K and T1 ≈ 200 K, respectively. In addition, the PMA persists, proving that there is no interlayer coupling in the multilayer system. SQUID results also reveal a core-shell structure in the CoPt nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 257)

Pages:

60-63

Citation:

Online since:

October 2016

Export:

Price:

* - Corresponding Author

[1] F. Luis, F. Petroff, J. M. Torres, L. M. García, J. Bartolomé, J. Carrey, and A. Vaurès, Phys. Rev. Lett. 88 (2002) 217205.

DOI: 10.1103/physrevlett.88.217205

Google Scholar

[2] J. Bartolomé, F. Luis, F. Petroff, F. Bartolomé, L.M. García, V. Cross and H. Jaffres, Phys. Met. Metallogr. 99, (2005) S8.

Google Scholar

[3] J. Bartolomé, F . Bartolomé, L.M. García, F. Luis, F. Petroff, V. Cross, H. Jaffres, and A. Vaurès, in Smart Materials for Ranging Systems, edited by J. Franse, V. Eremenko, and V. Sirenko, Nato Science Series II Vol. 226 (Springer, Netherlands, 2006), p.1.

DOI: 10.1007/1-4020-4646-4_1

Google Scholar

[4] F. Luis, F. Bartolome, F. Petroff, J. Bartolomé, L.M. García, C. Deranlot, H. Jaffres, M. J. Martínez, P. Bencok, F. Wilhelm, A. Rogalev and N. Brookes, Europhys. Lett. 76 (2006) 142 (2006).

DOI: 10.1209/epl/i2006-10242-2

Google Scholar

[5] J. Bartolomé, L.M. García, F. Bartolomé , F. Luis, R. López-Ruiz, F. Petroff, C. Deranlot, F. Wilhelm, A. Rogalev, P. Bencok, N. B. Brookes, L. Ruiz, and J. M. González-Calbet, Phys. Rev. B 77 (2008) 184420.

DOI: 10.1103/physrevb.84.184423

Google Scholar

[6] A. I. Figueroa, J. Bartolomé, L. M. García, F. Bartolomé, C. Magén, A. Ibarra, L. Ruiz, J. M. González-Calbet, F. Petroff, C. Deranlot, S. Pascarelli, P. Bencok, N. B. Brookes, F. Wilhelm, and A. Rogalev, Phys. Rev. B 84 (2011) 184423.

DOI: 10.1103/physrevb.84.184423

Google Scholar

[7] J. Bartolomé, A. I. Figueroa, L. M. García, F. Bartolomé, L. Ruiz , J. M. González-Calbet , F. Petroff , C Deranlot , F. Wilhelm, A. Rogalev and N. Brookes, Low Temp. Phys. 38 (2012) 835 (2012).

DOI: 10.1063/1.4752096

Google Scholar

[8] A.I. Figueroa, J. Bartolomé, L.M. García, F. Bartolomé, O. Bunau, J. Stankiewicz, L Ruiz, J.M. González-Calbet, F. Petroff, C. Deranlot, S. Pascarelli, P. Bencok, N.B. Brookes, F. Wilhelm, A. Smekhova and A. Rogalev, Phys. Rev. B 90 (2014).

DOI: 10.1103/physrevb.90.174421

Google Scholar

[9] L.G. Vivas, A.I. Figueroa, F. Bartolomé, J. Rubín, L.M. García, C. Deranlot, F. Petroff, L Ruiz, J.M. González-Calbet, N.B. Brookes, F. Wilhelm, A. Rogalev, J. Bartolomé, J. Magn. Magn. Mat. 400 (2016) 248-252.

DOI: 10.1016/j.jmmm.2015.07.021

Google Scholar

[10] L.G. Vivas, J. Rubín, A.I. Figueroa, F. Bartolomé, L.M. García, C. Deranlot, F. Petroff, L Ruiz, J.M. González-Calbet, S. Pascarelli, N.B. Brookes, F. Wilhelm, A. Rogalev, J. Bartolomé, Phys. Rev. B 93 (2016) 174410(18).

DOI: 10.1103/physrevb.93.174410

Google Scholar