Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T22:01:03.342Z Has data issue: false hasContentIssue false

THE ANALYSIS OF INTRAGENERATION CHANGE IN EASTERN ONTARIO POPULATIONS OF THE ALFALFA WEEVIL, HYPERA POSTICA (COLEOPTERA: CURCULIONIDAE)1

Published online by Cambridge University Press:  31 May 2012

D. G. Harcourt
Affiliation:
Ottawa Research Station, Agriculture Canada, Ottawa K1A 0C6
J. C. Guppy
Affiliation:
Ottawa Research Station, Agriculture Canada, Ottawa K1A 0C6
M. R. Binns
Affiliation:
Statistical Research Service, Agriculture Canada, Ottawa K1A 0C5

Abstract

Fifteen life tables were compiled from population and mortality data collected in the Quinte area of eastern Ontario during the 5-year period, 1972–76, that spanned the rise and fall of an outbreak of the alfalfa weevil, Hypera postica (Gyll.).

Components analysis of the data showed that a disease of the feeding larvae caused by Entomophthora phytonomi Arthur, a fungus new to the insect in North America, was the principal determinant of intrageneration survival. Multivariate analysis of the separate mortalities, expressed as k-values, confirmed that this agent was the key factor governing population trends of the weevil and was mainly responsible for its population decline.

Examination of the properties of the various mortality factors showed that E. phytonomi was density dependent but overcompensating. Other agents, including the parasitoids Bathyplectes curculionis (Thom.) and Tetrastichus incertus (Ratz.) acted in a density independent manner and contributed little to population trend.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cothran, W. R. 1968. A bibliography of the alfalfa weevil, Hypera postica (Gyllenhal) Supplement I. Bull. ent. Soc. Am. 14: 285288.Google Scholar
Cothran, W. R. 1972. A bibliography of the alfalfa weevil, Hypera postica (Gyllenhal) and the Egyptian alfalfa weevil, H. brunneipennis (Boheman) Supplement II. Bull. ent. Soc. Am. 18: 102108.Google Scholar
Eberhardt, L. L. 1970. Correlation, regression, and density dependence. Ecology 51: 306310.CrossRefGoogle Scholar
Evans, W. G. 1959. The biology and control of the alfalfa weevil in Virginia. Bull. Virginia agric. Exp. Stn 502. 28 pp.Google Scholar
Guppy, J. C., Harcourt, D. G., and Mukerji, M. K.. 1975. Population assessment during the larval stage of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Can. Ent. 107: 785792.CrossRefGoogle Scholar
Harcourt, D. G. 1969. The development and use of life tables in the study of natural insect populations. A. Rev. Ent. 14: 175196.CrossRefGoogle Scholar
Harcourt, D. G. and Guppy, J. C.. 1975. Population and mortality assessment during the cocoon stage of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Can. Ent. 107: 12751280.CrossRefGoogle Scholar
Harcourt, D. G. and Guppy, J. C.. 1976. A sequential decision plan for management of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Can. Ent. 108: 551555.CrossRefGoogle Scholar
Harcourt, D. G., Guppy, J. C., MacLeod, D. M., and Tyrrell, D.. 1974 a. The fungus Entomophthora phytonomi pathogenic to the alfalfa weevil, Hypera postica. Can. Ent. 106: 12951300.CrossRefGoogle Scholar
Harcourt, D. G., Mukerji, M. K., and Guppy, J. C.. 1974 b. Estimation of egg populations of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Can. Ent. 106: 337347.CrossRefGoogle Scholar
Itô, Y. 1972. On the methods for determining density dependence by means of regression. Ocealogia 10: 347372.CrossRefGoogle ScholarPubMed
Ives, W. G. H. 1976. The dynamics of larch sawfly (Hymenoptera: Tenthredinidae) populations in southeastern Manitoba. Can. Ent. 108: 701730.CrossRefGoogle Scholar
Klomp, H. 1966. The analysis of density dependence in studies of insect population regulation. Proc. FAO Symp. Integ. Cont., Vol. 2, pp. 2531.Google Scholar
MacLachlan, D. S. 1967. [First report of the alfalfa weevil in eastern Canada: Ontario.] U.S. Dep. Agric. Coop. Econ. Insect Rep. 17: 524.Google Scholar
Maelzer, D. A. 1970. The regression of log Nn+1 on log Nn as a test of density dependence: an exercise with computer-constructed density-independent-populations. Ecology 51: 810822.CrossRefGoogle Scholar
Morris, R. F. (Ed.). 1963 a. The dynamics of epidemic spruce budworm populations. Mem. ent. Soc. Can. 31. 332 pp.Google Scholar
Morris, R. F. 1963 b. Predictive population equations based on key factors, pp. 1621. Mem. ent. Soc. Can. 32.Google Scholar
Pass, B. C. and VanMeter, C. L.. 1966. A method for extracting eggs of the alfalfa weevil from stems of alfalfa. J. econ. Ent. 59: 1294.CrossRefGoogle Scholar
Perron, J. P. 1969. Premieres observations sur le charaçon postiche de la luzerne, H. postica (Gyll.) (Coléoptères: Curculionidae) au Quebec. Ann. ent. Soc. Queb. 14: 1821.Google Scholar
Podoler, H. and Rogers, D.. 1975. A new method for the identification of key factors from life-table data. J. Anim. Ecol. 44: 85114.CrossRefGoogle Scholar
St. Amant, J. L. S. 1970. The detection of regulation in animal populations. Ecology 51: 823828.CrossRefGoogle Scholar
Seal, H. 1964. Multivariate statistical analysis for biologists. Methuen, London.Google Scholar
Smith, R. H. 1973. The analysis of intra-generation change in animal populations. J. Anim. Ecol. 42: 611622.CrossRefGoogle Scholar
Solomon, M. E. 1964. Analysis of processes involved in the natural control of insects. Adv. ecol. Res. 2: 158.CrossRefGoogle Scholar
Southwood, T. R. E. 1966. Ecological methods. Methuen, London.Google Scholar
Southwood, T. R. E. 1967. The interpretation of population change. J. Anim. Ecol. 36: 519529.CrossRefGoogle Scholar
Southwood, T. R. E. and Jepson, W. F.. 1962. Studies on the populations of Oscinella frit L. in the oat crop. J. Anim. Ecol. 31: 481495.CrossRefGoogle Scholar
Varley, G. C. and Gradwell, G. R.. 1963. Predatory insects as density dependent mortality factors. Proc. XVI int. Congr. Zool., Vol. 1, p. 240.Google Scholar
Varley, G. C. and Gradwell, G. R.. 1965. Interpreting winter moth population changes, pp. 377378. Proc. XII int. Cong. Ent. (London).Google Scholar
Varley, G. C. and Gradwell, G. R.. 1968. Population models for the winter moth, pp. 132142. In Southwood, T. R. E. (Ed.), Insect abundance (Symp. Roy. Ent. Soc. Lond.).Google Scholar
Varley, G. C. and Gradwell, G. R.. 1970. Recent advances in insect population dynamics. A. Rev. Ent. 15: 124.CrossRefGoogle Scholar
Varley, G. C., Gradwell, G. R., and Hassell, M. P.. 1974. Interpretation of winter moth life tables. In Insect population ecology and analytical approach. Chap. 2, pp. 1032.Google Scholar
Watt, K. E. F. 1963. Mathematical population models for five agricultural crop pests, pp. 8391. Mem. ent. Soc. Can. 32.Google Scholar
Woodside, A. M., Bishop, J. L., and Pienkowski, R. L.. 1968. Winter oviposition by the alfalfa weevil in Virginia. J. econ. Ent. 61: 12301232.CrossRefGoogle Scholar