Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T14:27:17.969Z Has data issue: false hasContentIssue false

Immature stages of the galler Diplolepis triforma (Hymenoptera: Cynipidae) with comments on the role of its prepupa

Published online by Cambridge University Press:  31 May 2012

Joseph D. Shorthouse*
Affiliation:
Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
Jonathan J. Leggo
Affiliation:
Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
*
1 Corresponding author (e-mail: jshortho@nickel.laurentian.ca).

Abstract

Sections of stem galls induced by Diplolepis triforma Shorthouse and Ritchie obtained by plant histological techniques were used to examine anatomical features of immature stages of the insect found in situ. First-instar larvae feed over the entire surface of larval chambers, whereas maturing larvae feed only at one end of the chambers. Last-instar larvae undergo two phases of development: feeding occurs in the first phase, whereas in the second, or prepupal phase, feeding has ceased, the mid- and hind-guts become joined, contents of the gut are voided, and compound eyes, gonads, and internal ovipositional apparatus begin to differentiate. The prepupal phase also consists of two phases: the first occurs in the fall and winter, and the second occurs in the spring prior to pupation. The spring phase exhibits external adult features within the integument of the last-instar and moults to the pupa. Sections of some maturing larvae contained endoparasitoid larvae of the genus Orthopelma Taschenberg (Hymenoptera: Ichneumonidae).

Résumé

Des coupes de galles provoquées par la présence de Diplolepis triforma Shorthouse et Ritchie sur des tiges ont été obtenues par des techniques d’histologie botanique et utilisées pour examiner les caractéristiques anatomiques des stades immatures de l’insecte in situ. Les larves de premier stade se nourrissent sur toute la surface des chambres larvaires, alors que les larves en voie de maturation ne se nourrissent qu’à une extrémité des chambres. Les larves de dernier stade subissent deux phases de développement; elles se nourrissent au cours de la première phase; cependant, au cours de la deuxième phase, dite prénymphale, toute activité alimentaire cesse, les intestins moyen et postérieur se fusionnent et leur contenu est expulsé; les yeux composés, les gonades et l’organe interne de la ponte commencent à se différencier. La phase prénymphale se fait aussi en deux temps; le premier se produit en automne et en hiver, le second, au printemps, avant la nymphose. Au cours de la phase de printemps, les caractères externes de l’adulte sont visibles à l’intérieur du tégument de la larve de dernier stade; viennent ensuite la mue et l’apparation de la nymphe. Des coupes de larves en voie de maturation contiennent parfois des larves d’endoparasitoïdes du genre Orthopelma Taschenberg (Hymenoptera : Ichneumonidae).

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bronner, R. 1985. Anatomy of the ovipositor and oviposition behavior of the gall wasp Diplolepis rosae (Hymenoptera: Cynipidae). The Canadian Entomologist 117: 849–58CrossRefGoogle Scholar
Brooks, S.E., Shorthouse, J.D. 1998. Developmental morphology of stem galls of Diplolepis nodulosa (Hymenoptera: Cynipidae) and those modified by the inquiline Periclistus pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Canadian Journal of Botany 76: 365–81CrossRefGoogle Scholar
Chapman, R.F. 1982. The insects. 3rd edition. Cambridge: Harvard University PressGoogle Scholar
Daly, H.V., Doyen, J.T., Purcell, A.H. 1998. Introduction to insect biology and diversity. New York: Oxford University PressGoogle Scholar
DeClerck, R.A., Shorthouse, J.D. 1985. Tissue preference and damage by Fenusa pusilla and Messa nana (Hymenoptera: Tenthredinidae), leaf-mining sawflies on white birch (Betula papyrifera). The Canadian Entomologist 117: 351–62CrossRefGoogle Scholar
Eastham, L.E.S. 1929. The post-embryonic development of Phaenoserphus viator Hal. (Prototrypoidea), a parasite of the larva of Pterostichus niger (Carabidae), with notes on the anatomy of the larva. Parasitology 21: 121CrossRefGoogle Scholar
Evans, H.E., Eberhard, M.J.W. 1970. The wasps. Ann Arbor, Michigan: David and CharlesGoogle Scholar
Flanders, S.W. 1938. Cocoon formation in endoparasitic chalcidoids. Annals of the Entomological Society of America 31: 167–80CrossRefGoogle Scholar
Führer, E., Willers, D. 1986. The anal secretion of the endoparasitic larva Pimpla turionellae: sites of production and effects. Journal of Insect Physiology 32: 361–7CrossRefGoogle Scholar
Gilbert, L.I.R., Rybczynski, R., Tobe, S.S. 1996. Endocrine cascade in insect metamorphosis. pp 59107in Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds), Metamorphosis: postembryonic reprogramming of gene expression in amphibian and insect cells. San Diego: Academic PressCrossRefGoogle Scholar
Gillott, C. 1995. Entomology. 2nd edition. New York: Plenum PressCrossRefGoogle Scholar
Harris, P., Shorthouse, J.D. 1996. Effectiveness of gall inducers in weed biological control. The Canadian Entomologist 128: 1021–55CrossRefGoogle Scholar
Hussey, N.W. 1955. The life histories of Megastigmus spermatotrophus Wachtl (Hymenoptera: Chalcidoidea) and its principal parasite, with descriptions of the developmental stages. Transactions of the Royal Entomological Society 106: 133–51CrossRefGoogle Scholar
James, H.C. 1926. The anatomy of a British phytophagous chalcidoid of the genus Harmolita (Isosoma). Proceedings of the Zoological Society of London 1926: 75182Google Scholar
Jensen, W.A. 1962. Botanical histochemistry. San Francisco: WH Freeman and CoGoogle Scholar
King, P.E., Ratcliffe, N.A. 1969. The structure and possible mode of functioning of the female reproductive system in Nasonia vitripennis (Hymenoptera: Pteromalidae). Journal of Zoology (London) 157: 319–44CrossRefGoogle Scholar
Lee, R.E. Jr., Steigerwald, K.A., Wyman, J.A., Costanzo, J.P., Lee, M.R. 1996. Anatomic site of application of ice-nucleating active bacteria affects supercooling in the Colorado potato beetle (Coleoptera: Chrysomalidae). Environmental Entomology 25: 465–9CrossRefGoogle Scholar
Morris, K.R.S. 1937. The prepupal stage in Ichneumonidae, illustrated by the life history of Exenterus abruptorius, Thb. Bulletin of Entomological Research 28: 525–34CrossRefGoogle Scholar
Nijhout, H.F. 1994. Insect hormones. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
O'Brien, T.P., McCully, M.E. 1981. The study of plant structure: principles and selected methods. Melbourne: Termarcarphi Pty LtdGoogle Scholar
Quicke, D.L.J. 1997. Parasitic wasps. London: Chapman and HallGoogle Scholar
Rickards, J.C., Shorthouse, J.D. 1989. Overwintering strategy of the stem-gall inducer Diplolepis spinosa (Hymenoptera: Cynipidae) in central Ontario. Canadian Journal of Zoology 67: 2232–7CrossRefGoogle Scholar
Rohfritsch, O. 1992. Patterns in gall development. pp 6086in Shorthouse, J.D., Rohfritsch, O. (Eds.), Biology of insect induced galls. New York: Oxford University PressGoogle Scholar
Rojas-Rousse, D., Benoit, M. 1977. Morphology and biometry of larval instars of Pimpla instigator (F.) (Hymenoptera: Ichneumonidae). Bulletin of Entomological Research 67: 129–41CrossRefGoogle Scholar
Roth, P. 1949. Beiträge zur Biologie der Gallenwespen. Naturforschende Gesellschaft Basel 60: 104–78Google Scholar
Sehnal, F.P., Švácha, P., Zrzavý, J. 1996. Evolution of insect metamorphosis. pp 358in Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds), Metamorphosis: postembryonic reprogramming of gene expression in amphibian and insect cells. San Diego: Academic PressCrossRefGoogle Scholar
Short, J.R.T. 1952. The morphology of the head of larval Hymenoptera with special reference to the head of the Ichneumonoidea, including a classification of the final instar larvae of the Braconidae. Transactions of the Royal Entomological Society of London 103: 2784CrossRefGoogle Scholar
Shorthouse, J.D. 1993. Adaptations of gall wasps of the genus Diplolepis (Hymenoptera: Cynipidae) and the role of gall anatomy in cynipids systematics. Memoirs of the Entomological Society of Canada 165: 139–63CrossRefGoogle Scholar
Shorthouse, J.D., Ritchie, A.J. 1984. Description and biology of a new species of Diplolepis Fourcroy (Hymenoptera: Cynipidae) inducing galls on the stems of Rosa acicularis. The Canadian Entomologist 116: 1623–36CrossRefGoogle Scholar
Tiegs, O.W. 1922. Researches on the insect metamorphosis. Part I. On the structure and post embryonic development of a chalcid wasp, Nasonia. Part II. On the physiology and interpretation of insect metamorphosis. Transactions of the Royal Society of South Australia 46: 319527, plates XV–XXXGoogle Scholar
Triggerson, C.J. 1914. A study of Dryophanta erinacei (Mayr) and its gall. Annals of the Entomological Society of America 7: 134CrossRefGoogle Scholar
Truman, J.W. 1996. Metamorphosis of the insect nervous system. pp 283320in Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds), Metamorphosis: postembryonic reprogramming of gene expression in amphibian and insect cells. San Diego: Academic PressCrossRefGoogle Scholar
Williams, J., Shorthouse, J.D., Lee, R.E. 2002. Extreme resistance to desiccation and microclimate related differences in cold-hardiness of overwintering gall wasps (Hymenoptera: Cynipidae) on roses in southern Canada. Journal of Experimental Biology. In pressCrossRefGoogle ScholarPubMed
Yasumatsu, K. 1943. The prepupal stage in Cynipidae, demonstrated by Ibalia takachihoi Yasumatsu (Hymenoptera). Mushi 15: 8992Google Scholar
Zeh, D.W., Zeh, J.A., Smith, R.L. 1989. Ovipositors, amnions and eggshell architecture in the diversification of terrestrial arthropods. The Quarterly Review of Biology 64: 147–68CrossRefGoogle Scholar