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Chronic airway inflammatory diseases are life-threatening 
conditions, including bronchial asthma, chronic obstruc-

tive pulmonary disease (COPD), etc., which impact on the 
quality of life and healthcare expenditure. Asthma is a complex 
disease involving multiple interactions of genetic and environ-
mental factors. Patients suffering from asthma range widely in 
age, from teenage children to elderly people. Over 300 million 
individuals are affected by asthma worldwide, of which there 
are at least 35 million patients in the United States alone.[1] 
COPD is highly prevalent and a significant cause of morbid-

ity and mortality, which affects more than 200 million people 
globally.[2] It is expected to be the third leading cause of death 
worldwide in 2020.[3] However, as the disease etiology remains 
largely unclear, current treatments that target chronic airway 
inflammatory diseases are still not satisfactory.

Human genomic DNA is constantly exposed to various 
endogenous and exogenous stress factors, where genome 
integrity has continuously been threatened. DNA damage 
constantly takes place under these conditions by free radicals 
and other reactive compounds produced during metabolism, 
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errors happening in DNA replication and recombination, 
ultraviolet (UV) and ionizing irradiation from the envi-
ronment, some harmful chemicals, and so on. Therefore, 
cells are often under constant assault by endogenous and 
environmental DNA damaging agents. It is estimated that 
approximately 10 DNA double-strand breaks (DSBs) are 
formed daily in one individual mammalian cell.[4] DNA 
damage response (DDR), regarded as one of the many causes 
of apoptosis and cell senescence, as well as a factor of carci-
nogenesis, has recently begun to attract attention as a source 
of chronic inflammation.[5-11] Frequent DNA damage may 
increase the mutation rate and genomic instability, which is 
in most cases fixed by a variety of DNA repair mechanisms. 
An essential and first step to initiate DNA repair is to block 
the cell cycle progression and prevent the cycle events that 
might aggravate the adverse effects of DNA damage and 
allow repairing.

Inflammation is a protective response to cellular and 
tissue damage or injury, and also the main feature of COPD 
and asthma, the two typical chronic airway inflammatory 
diseases. However, when this beneficial response occurs in 
an uncontrolled manner, it causes excessive cellular and tis-
sue damage that results in chronic inflammation and destruc-
tion of normal tissue.[12,13] Since human airway is an open 
system, once exposed to cigarette smoke, gases, or other 
noxious particles, the epithelial cells are activated to produce 
inflammatory mediators. Reactive oxygen species (ROS) are 
one of the most important mediators. Excessive production 
of ROS is commonly thought to be responsible for a range 
of respiratory inflammatory diseases, including COPD and 
asthma. It has been suggested that ROS induces DNA dam-
age in airway inflammation.[14,15]

In this review, we highlight the role of DDR in chronic 
airway inflammatory diseases, and try to have a better 
understanding of these diseases at a molecular level. We 
also discuss the possibilities of targeting DDR signaling to 
develop potential novel treatments against these conditions.

Types of DNA damage and repair defects in 
COPD

DNA DSBs

Smoking is known to be highly associated with COPD, 
which has been reported to be one of the most important 
environmental factors that cause DNA damage.[16-18] Also, 
DSBs are among the most dangerous forms of DNA damage 
caused by smoking.[19] DSBs had been detected in periph-
eral blood mononuclear leukocytes of COPD patients, and 
it had been proved that elevated levels of DNA damage 
are strongly associated with smoking COPD patients than 
with random COPD patients.[20] When DSBs are induced, 
the histone H2AX becomes rapidly phosphorylated at 

serine 139, the so-called γ-H2AX. Following activation by 
phosphorylation, γ-H2AX serves as a reliable and sensitive 
indicator for DSBs because it is activated and recruited 
to the damage loci at a very early stage and can be eas-
ily visualized by staining with antibodies.[21-24] Following 
phosphorylation and recruitment at DSBs, γ-H2AX further 
recruits other DNA repair proteins, including p53-binding 
protein (53BP) 1 and BRCA1, resulting in activation of 
distinctive downstream repair pathways. By immunofluo-
rescence staining of these particular proteins, researchers 
found that alveolar type I, type II cells, and endothelial 
cells in patients with COPD showed higher levels of DDR 
at DSBs than those found in asymptomatic smokers and 
non-smokers.[25]

Somatic DNA alterations

Microsatellite DNA instability (MSI) has been cor-
related with a high somatic mutation rate and is associated 
with deficiency of DNA mismatch repair.[26,27] It was reported 
in 1999 that MSI was found exclusively in the sputum cells 
of smokers with COPD, which indicated that genetic al-
teration might increase susceptibility to COPD.[28] Another 
study revealed that MSI was found in 38% COPD patients 
(14 out of 36), while none was found in bronchiectasis or 
control subjects (non-COPD smokers, healthy subjects).[29] 
Loss of heterozygosity (LOH) was also observed in epi-
thelial barrier cells of COPD patients. LOH was found in 
D5S207, D6S344, G29802, and D17s250 microsatellite 
markers, while MSI was found in D13S71, D5S207, and 
D6S344.[30] A study aimed to investigate the relationship 
between MSI in sputum cells and exacerbation frequency, 
and found that 18 out of 36 patients exhibited MSI in their 
sputum cells, and patients who exhibited MSI showed sig-
nificantly increased frequency of COPD exacerbations. In 
addition, a significantly higher frequency of purulent and 
severe exacerbation was found in patients exhibiting MSI. 
These results suggested that somatic mutations could be 
involved in the pathogenesis of the disease.[31]

Mitochondrial DNA damage

Mitochondrial DNA (mtDNA) contributes to oxidation 
resistance, which is an important determinant that affects 
COPD susceptibility. It was reported that mtDNA is about 
30-fold more sensitive to exogenous oxidants than nuclear 
DNA.[32-34] In order to investigate whether mtDNA damage is 
involved in COPD susceptibility, the frequencies of mtDNA 
haplogroups and an 822-bp mtDNA deletion in 671 COPD 
patients and 724 control individuals were analyzed and com-
pared. The results revealed that mtDNA haplogroups A and 
M7 might be risk factors for COPD, whereas haplogroups D, 
F, and M9 might decrease risk of COPD. Other evidence 
revealed that skeletal muscle mtDNA and nuclear DNA 
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fell significantly after exercise, and the changes were much 
more obvious in patients with COPD.[35] Investigators had 
detected a basic site and strand breaks in mtDNA in lung 
tissue from patients with severe COPD.[36]

Loss of telomeres

It seems that COPD is a disease of accelerated aging, 
and occurs mostly in elderly people.[37] Oxidative stress, an 
important factor of COPD, has a significant impact on the rate 
of telomere loss. Telomere shortening is dramatically acceler-
ated (or slowed) in cells with increased (or reduced) levels of 
oxidative stress.[38] Shortness of telomere length was indicated 
to be associated with a 28-fold increased risk of COPD.[39] 
Telomere dysfunction is one of the major processes perpetu-
ating pulmonary inflammation in COPD.[40] COPD patients 
were reported to have shorter telomeres in leukocytes, out of 
46,396 individuals from the Danish general population. Rode 
et al. found that shortened telomere length was associated with 
higher risk of COPD, though the association was markedly 
attenuated after age and multivariable adjustment.[39]

Gene polymorphisms

HOGG1 Ser326Cys and XRCC1 Arg399Gln polymor-
phisms have been shown to contribute to the susceptibility 
of COPD, where HOGG1 and XRCC1 genotypes of 201 
COPD patients and 309 controls were determined. The 
results showed that the risk of COPD is significantly el-
evated among smokers with HOGG1 326Cys and XRCC1 
Arg399Gln.[41] In another study on COPD and gene poly-
morphisms, which was conducted to find the link between 
genetic polymorphisms in genes XRCC1 (Arg399Gln), 
OGG1 (Ser326Cys), XRCC3 (Thr241Met), and XRCC4 (lle-
401Thr) and the level of DNA damage and repair, 51 COPD 
patients and 51 controls were assessed by comet and mi-
cronucleus test, and the results showed that COPD patients 
with the risk alleles XRCC1 and XRCC3 had higher levels of 
DNA damage.[42] Micronucleus represents a severe form of 
genomic instability as a result of disrupted faithful segrega-
tion of chromosomes during mitosis. ADAM33, a disintegrin 
and metalloprotease domain 33 gene, has been found to 
be associated with asthma, and declined lung function in 
COPD, within which seven single-nucleotide polymor-
phisms (SNPs) had been demonstrated to be associated with 
COPD in the Mongolian population of China.[43] However, 
this was not found to be consistent in certain populations 
such as Caucasians, where no correlation between ADAM33 
polymorphism and COPD was identified.[44] Iron-responsive 
element-binding protein 2 (IREB2) and mRNA were found 
to be increased in the lung tissues from COPD patients 
compared with controls,[45] and evidence suggests that the 
IREB2 SNPs in association with COPD are SNP rs2568494, 
rs2656069, and rs12593229.[46] Though COPD is mainly 

caused by smoking, another investigation found that IREB2 
may affect COPD independent of smoking.[47]

DNA damage repair response

DNA repair mechanisms are versatile tools for cells to 
correct damaged DNA, which include base excision repair, 
nucleotide excision repair, DSB repair, and cross-link re-
pair.[48] Efficient repair of damaged DNA, particularly DSBs, 
is essential for the maintenance of chromosomal integrity,[49] 
as DSBs are among the most serious forms of DNA damage 
caused by smoking. Impaired DNA repair efficiency is com-
mon in COPD. This may be due to the lack of DNA damage 
repair in both bronchial epithelium and connective tissue 
induced by heritable genetic polymorphisms.[50,51] Generally, 
DSBs are repaired either by homologous recombination or 
by non-homologous end-joining (NHEJ) pathway; in the 
latter pathway, six distinct proteins (Ku70, Ku80, XRCC4, 
DNA ligase IV, Artemis, and DNA-dependent protein kinase 
catalytic subunit (DNA-PKcs) play a major role.[52,53] The 
damage sites are initially recognized by γ-H2AX, which will 
extend up to several thousand nucleosomes from the actual 
loci of the DSB and may mark the surrounding chromatin for 
recruitment of the proteins that are required for the follow-
ing downstream DDR signaling transduction and repair.[54] 
XRCC5, also known as Ku80, is an ATP-dependent DNA 
helicase mapped to chromosome 2q35 and contains 21 exons 
spanning about 97 kb. XRCC5 is identified as a potential 
COPD susceptibility gene, by combining data from COPD 
genetic association studies conducted in four independent 
patient samples.[55-57]

Poly (ADP-ribose) polymerase-1 (PARP-1) is a mo-
nomeric nuclear enzyme present in eukaryotes, and its 
primarily role is to act as a sensor of DNA damage.[58-60] 
To facilitate DNA repair on damaged DNA loci, PARP-1 
becomes highly activated.[61,62] The activated PARP-1 trans-
fers ADP-ribose units from NAD+ to a protein acceptor 
to produce AD-ribose polymers, which will lead to rapid 
decline of cellular NAD+ concentrations and pose a large 
demand on cellular ATP stores for re-synthesis of NAD+.[63] 
The level of NAD+ in cells is considered to play a key role 
in the control of many fundamental cellular processes.[64] 
Under conditions of energy crisis, cells undergo necrotic 
death, further amplifying the inflammatory response.[65] In 
a patient–control study, 37 stable COPD patients and 21 
age-matched healthy volunteers were enrolled. PARP-1 
activation was tested by immunofluorescent detection of 
PAR polymers in peripheral blood lymphocytes. The level 
of PAR polymer-positive lymphocytes was found to be 
higher in COPD patients than in healthy controls, and trolox 
equivalent antioxidant capacity of deproteinized plasma, 
plasma uric acid, as well as blood NAD+ of stable COPD 
patients were significantly reduced compared to controls. In 
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addition, the levels of pro-inflammatory cytokines, such as 
interleukin (IL)-6, IL-8, and soluble intercellular adhesion 
molecule-1 (sICAM-1), were found to be increased in COPD 
patients. Collectively, these data indicated involvement of 
PARP-1 activation in the pathophysiology of COPD.[66]

DDR in asthma

Asthma, a truly complex disease, is currently consid-
ered as a chronic respiratory disorder associated with airway 
inflammation. Allergic asthma is characterized by increased 
levels of eosinophils, immunoglobulin (Ig) E, and multiple 
cytokines [including IL-4, IL-5, IL-9, and tumor necrosis fac-
tor (TNF)-α].[67,68] From the perspective of its pathogenesis, 
asthma is a result of complicated interactions between genetic 
and environmental factors, which induce airway inflammation 
and remodeling.[69] Surprisingly, damages in nuclear DNA are 
correlated with asthmatic inflammation; for example, it was 
reported that the frequency of spontaneous sister chromatid 
exchanges (SCEs) was increased in asthmatic patients (AP) 
compared with control subjects, indicating elevated levels of 
homologous recombination repair in damaged chromatids.[70] 
In addition, DNA damage levels in lymphocytes increased 
significantly in children with asthma.[71] This damage might 
be related to increased oxidative stress. A study of DNA dam-
age in children with asthma demonstrated that DNA damage 
parameters and glutathione (GSH) levels were decreased after 
treatment, which implicated anti-asthmatic therapy could 
control asthmatic syndrome and, at the meantime, reduce 
mutation risks in pediatric patients.[72]

Abnormality of cell cycle regulation in asthma

Faithful DNA replication and repair need precisely 
regulated cell cycle control. Since the asthmatic bronchial 
epithelium is characterized by widespread damage, research-
ers postulated that this is associated with deregulation of 
cell cycle profiles. Expression of p21waf, a cyclin-dependent 
kinase inhibitor, was shown to be increased in asthmatic 
bronchial epithelium.[73,74] Analysis of bronchial biopsies 
from 6 normal subjects without asthma, 14 subjects with 
mild asthma, and 10 subjects with severe asthma by im-
munohistochemical staining showed that P21waf expression 
was significantly higher in asthmatic versus non-asthmatic 
epithelium.[74] Increased levels of P21waf were found not 
only in adult asthma patients but also in pediatric asthma 
patients. Immunostaining of intact bronchial epithelium 
from 23 asthmatic children (7 controls, 7 moderate asthma 
patients, and 9 severe asthma patients) showed that p21waf 
expression was significantly higher in asthmatic children 
than in healthy controls.[75] P21waf over-expression was 
reported to influence cell cycle checkpoint activation, cell 
proliferation, and survival. Following p53 activation, p21 
induction might, in turn, affect DNA repair response that 

contributes to airway inflammation and remodeling.[73,76]

Defects of DNA repair in asthma

Increased levels of DNA damage in asthma patients 
are not only a result of high intensity of allergic stress, but 
also due to reduced ability to fix damaging problems. PARP, 
a poly-ADP ribose polymerase, is involved in a number 
of essential cellular processes, including DNA repair and 
programmed cell death.[77] The widely studied PARP-1 has 
been implicated in the regulation of distinct biological ac-
tivities including base excision DNA repair. PARP-1 plays 
truly a determining role in cell survival in response to DNA 
damage,[78] and may include damages induced in asthma. 
Furthermore, increased activation of PARP-1 depletes the 
cellular stores of NAD and ATP in conditions involving 
massive DNA damage, which directly induces irreversible 
cytotoxicity and potential cell death.[79] It was reported that 
over-activation of PARP by oxidative stress-induced mas-
sive DNA damage may exacerbate inflammation.[80] The 
polymerase chain reaction (PCR)-based restriction analysis 
of 112 stable asthma patients and 180 normal controls re-
vealed that PARP-1 762 V allele had 5 times higher risk of 
susceptibility to asthma than those without the allele, and 
PARP-1 762AA genotype conferred only a 3.4-fold reduc-
tion in risk while VA genotype conferred an even greater 
level of protection.[81]

Future development of therapy

In conclusion, severity of DNA damage is a pivotal factor 
in the development of chronic airway inflammatory diseas-
es (COPD and asthma), which may serve as a molecular link in 
these diseases.[82] In certain conditions, DNA damage triggers 
airway inflammation, and therefore causes COPD or asthma, 
while on the other hand, chronic inflammation may also en-
hance the levels of DNA damage. Currently, anti-inflammatory 
treatment is still a major strategy to manage airway inflamma-
tory diseases. It does not seem to be sufficient. Measures related 
to DNA repair should be taken so as to minimize the injuries 
caused by these airway diseases. Small molecule inhibitors, 
especially against various DNA repair proteins, have been 
developed over the last decade to fight against chronic diseases 
like cancer. Some of them have shown promising results in kill-
ing tumor cells with minimum effects on normal tissues, as little 
damage occurred in healthy conditions. It remains to be seen 
if it would be plausible to extend this idea in the management 
of chronic inflammatory diseases.

PARP inhibitors, for example, have already shown 
their potential in COPD and asthma patients or animal 
models in blocking airway inflammation. For instance, it 
was shown that PARP inhibitor could attenuate lipopolysac-
charide (LPS)-induced cytokine (TNF-αand IL-6) release 
from leukocytes of patients with COPD.[83] An in vitro 
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study also found that flavone (a PARP-1 inhibitor) could 
reduce LPS-induced IL-8 production in pulmonary epi-
thelial cells, leading to a hypothesis that PARP-1 inhibitor 
could have beneficial effects in COPD by preservation of 
cellular NAD+ levels and attenuating inflammatory condi-
tions.[84] Studies based on PARP-1 knockout mice as well 
as specific PARP inhibitors have indicated that inhibition 
or genetic ablation of PARP-1 protects asthma mice model 
from oxidative stress-induced inflammation.[85] In murine 
models, PARP-1 plays a critical role in the pathogenesis 
of asthma-related lung inflammation. PARP-1 deficiency 
leads to increased production of the Th1 cytokines IL-2 
and IL-12, but prevents recruitment of eosinophils by 
modulating Th2 cytokines, particularly by regulating IL-5 
production.[86] Further investigation was carried out to 
investigate the action of PARP-1 inhibitor (HYDAMTIQ) 
in the process leading from asthma-like events to airway 
damage. In the ovalbumin (OVA)- induced asthma model, 
HYDAMTIQ treatment could reduce lung histological ab-
normalities, lung oxidative level, and also the lung content 
of pro-inflammatory cytokines (TNF-α, IL-1β, IL-5, IL-6, 
IL-18).[87] These findings support the idea that PARP inhibi-
tors could have a therapeutic potential to reduce chronic 
airway inflammation, airway damage and remodeling in 
asthmatic patients.

Another PARP family protein, PARP-14, was also 
shown to be correlated with asthma. PARP-14 was reported 
to act as a transcriptional switch for IL‑4–dependent signal 
transducer and activator of transcription 6 (STAT6).[88] 
IL‑4–activated STAT6 is involved in Th2 response and 
promoting the asthmatic condition,[89-93] thus STAT6 is an 
attractive therapeutic target for asthma. Further investiga-
tion revealed that PARP-14 and its enzyme activity aid in 
the differentiation of T cells toward a Th2 phenotype by 
regulating the binding of STAT6 to the Gata3 promoter.[94] 
So, it might be a potential new therapy for allergic asthma 
targeting PARP-14. Exact functions of PARP protein are 
still very much unknown. It is, therefore, very much needed 
to clarify whether it is the DNA repair roles of the PARP 
family proteins that play key functions in these conditions.

Although great progress has been made in the last de-
cades, it is still largely unclear how DDR impacts on chronic 
airway inflammatory diseases. To eventually improve 
treatments and alleviate the suffering of patients, more 
investigations would be required to further fully enhance 
our understanding of DNA damage response signaling and 
regulation in chronic airway inflammatory diseases.
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