CC BY-NC-ND 4.0 · South Asian J Cancer 2018; 07(02): 127-131
DOI: 10.4103/sajc.sajc_118_18
Original Article

Practical consensus recommendations on management of triple-negative metastatic breast cancer

R. Rangarao
Department of Medical Oncology, Max Hospital, New Delhi
,
B. K. Smruti
Dept of Medical Oncology, Bombay Hospital, Mumbai, Maharashtra
,
K. Singh
Department of Radiation Oncology, MAMC, New Delhi
,
A. Gupta
Department of Radiation Oncology, Safdarjung Hospital, New Delhi
,
S. Batra
Department of Medical Oncology, Max Hospital, New Delhi
,
R. K. Choudhary
Department of Medical Oncology, Metro Cancer Center, New Delhi
,
A. Gupta
Department of Radiation Oncology, GMC, Jammu and Kashmir
,
S. Sahani
Department of Surgical Oncology, Indraprastha Apollo Hospital, New Delhi
,
Vedant Kabra
Department of Surgical Oncology, Manipal Super Specialty Hospital, Gurugram, Haryana
,
Purvish M. Parikh
Department of Oncology, Shalby Cancer and Research Institute, Mumbai, Maharashtra
,
S. Aggarwal
Department of Medical Oncology, Sir Ganga Ram Hospital, New Delhi
› Author Affiliations
Financial support and sponsorship: Nil.

Abstract

Patients with breast cancer along with metastatic estrogen and progesterone receptor (ER/PR)- and human epidermal growth factor receptor 2 (HER2)-negative tumors are referred to as having metastatic triple-negative breast cancer (mTNBC) disease. Resistance to current standard therapies such as anthracyclines or taxanes limits the available options for previously treated patients with metastatic TNBC to a small number of non-cross-resistant regimens, and there is currently no preferred standard chemotherapy. Clinical experience suggests that many women with triple-negative metastatic breast cancer (MBC) relapse quickly. Expert oncologist discussed about new chemotherapeutic strategies and agents used in treatment of mTNBC and the expert group used data from published literature, practical experience and opinion of a large group of academic oncologists to arrive at this practical consensus recommendations for the benefit of community oncologists.



Publication History

Article published online:
22 December 2020

© 2018. MedIntel Services Pvt Ltd. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.
  • 2 Zeichner SB, Ambros T, Zaravinos J, Montero AJ, Mahtani RL, Ahn ER, et al. Defining the survival benchmark for breast cancer patients with systemic relapse. Breast Cancer (Auckl) 2015;9:9-17.
  • 3 Zeichner SB, Herna S, Mani A, Ambros T, Montero AJ, Mahtani RL, et al. Survival of patients with de-novo metastatic breast cancer: Analysis of data from a large breast cancer-specific private practice, a university-based cancer center and review of the literature. Breast Cancer Res Treat 2015;153:617-24.
  • 4 Mersin H, Yildirim E, Berberoglu U, Gülben K. The prognostic importance of triple negative breast carcinoma. Breast 2008;17:341-6.
  • 5 Dawood S, Lei X, Litton JK, Buchholz TA, Hortobagyi GN, Gonzalez-Angulo AM, et al. Incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer. Cancer 2012;118:4652-9.
  • 6 Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong YN, et al. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 2012;118:5463-72.
  • 7 National Cancer Registry Programme, Indian Council of Medical Research. Leading Sites of Cancer. In, Consolidated Report of Population Based Cancer Registries 2001-2004, Incidence and Distribution of Cancer. Bangalore: Coordinating Unit, National Cancer Registry Programme (ICMR); 2006. p. 8-30.
  • 8 Badwe RA, Gangawal S, Mittra I, Desai PB. Clinico-pathological features and prognosis of breast cancer in different religious communities in India. Indian J Cancer 1990;27:220-8.
  • 9 Altekruse SF, Kosary CL, Krapcho M, editors. SEER Cancer Statistics Review 1975-2007. SEER Cancer Statistics Review. National Cancer Institute.
  • 10 National Cancer Registry Program. Ten Year Consolidated Report of the Hospital Based Cancer Registries, 1984–1993, an Assessment of the Burden and Care of Cancer Patients. New Delhi: Indian Council of Medical Research; 2001.
  • 11 Agarwal G, Pradeep PV, Aggarwal V, Yip CH, Cheung PS. Spectrum of breast cancer in Asian women. World J Surg 2007;31:1031-40.
  • 12 Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA 2006;295:2492-502.
  • 13 Osborne CR, Kannan L, Ashfaq R, Ariyibi J, Frawley WH, Tripathy D. Clinical and Pathological Characterization of Basal-Like Breast Cancer. Presented at the San Antonio Breast Cancer Symposium, San Antonio, TX; December 8–11, 2005.
  • 14 Dent R, Hanna WM, Trudeau M, Rawlinson E, Sun P, Narod SA, et al. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat 2009;115:423-8.
  • 15 Rodríguez-Pinilla SM, Sarrió D, Honrado E, Hardisson D, Calero F, Benitez J, et al. Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 2006;12:1533-9.
  • 16 Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005;11:5678-85.
  • 17 Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009;27:1160-7.
  • 18 Kassam F, Enright K, Dent R, Dranitsaris G, Myers J, Flynn C, et al. Survival outcomes for patients with metastatic triple-negative breast cancer: Implications for clinical practice and trial design. Clin Breast Cancer 2009;9:29-33.
  • 19 Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003;100:8418-23.
  • 20 Swain SM. Triple-Negative Breast Cancer: Metastatic Risk and Role of Platinum Agents. Presented at the American Society of Clinical Oncology Annual Meeting, Chicago, May 30–June 03, 2008.
  • 21 Baldassarre G, Battista S, Belletti B, Thakur S, Pentimalli F, Trapasso F, et al. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol 2003;23:2225-38.
  • 22 Beger C, Pierce LN, Kruger M, Marcusson EG, Robbins JM, Welcsh P, et al. Identification of id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc Natl Acad Sci U S A 2001;98:130-5.
  • 23 Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 2000;92:564-9.
  • 24 Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 2007;26:2126-32.
  • 25 Alli E, Sharma VB, Sunderesakumar P, Ford JM. Defective repair of oxidative dna damage in triple-negative breast cancer confers sensitivity to inhibition of poly (ADP-ribose) polymerase. Cancer Res 2009;69:3589-96.
  • 26 Ossovskaya V, Li L, Broude EV. BSI-201 Enhances the Activity of Multiple Classes of Cytotoxic Agents and Irradiation in Triple Negative Breast Cancer. Abstract 5552. In: Program and Abstracts of the American Association for Cancer Research Annual Meeting Denver, April 18–22, 2009.
  • 27 Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001;98:10869-74.
  • 28 Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004;10:5367-74.
  • 29 Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006;19:264-71.
  • 30 Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P, et al. How basal are triple-negative breast cancers? Int J Cancer 2008;123:236-40.
  • 31 Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: Therapeutic options. Lancet Oncol 2007;8:235-44.
  • 32 Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 2007;9:R65.
  • 33 Narod SA. Modifiers of risk of hereditary breast and ovarian cancer. Nat Rev Cancer 2002;2:113-23.
  • 34 Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 2004;4:665-76.
  • 35 Arnes JB, Brunet JS, Stefansson I, Bégin LR, Wong N, Chappuis PO, et al. Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clin Cancer Res 2005;11:4003-11.
  • 36 Foulkes WD, Stefansson IM, Chappuis PO, Bégin LR, Goffin JR, Wong N, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 2003;95:1482-5.
  • 37 Laakso M, Loman N, Borg A, Isola J. Cytokeratin 5/14-positive breast cancer: True basal phenotype confined to BRCA1 tumors. Mod Pathol 2005;18:1321-8.
  • 38 Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 2005;11:5175-80.
  • 39 Stockler M, Wilcken NR, Ghersi D, Simes RJ. Systematic reviews of chemotherapy and endocrine therapy in metastatic breast cancer. Cancer Treat Rev 2000;26:151-68.
  • 40 Osoba D. Health-related quality of life as a treatment endpoint in metastatic breast cancer. Can J Oncol 1995;5 Suppl 1:47-53.
  • 41 Geels P, Eisenhauer E, Bezjak A, Zee B, Day A. Palliative effect of chemotherapy: Objective tumor response is associated with symptom improvement in patients with metastatic breast cancer. J Clin Oncol 2000;18:2395-405.
  • 42 Dear RF, McGeechan K, Jenkins MC, Barratt A, Tattersall MH, Wilcken N, et al. Combination versus sequential single agent chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev 2013;CD008792.
  • 43 Burzykowski T, Buyse M, Piccart-Gebhart MJ, Sledge G, Carmichael J, Lück HJ, et al. Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. J Clin Oncol 2008;26:1987-92.
  • 44 Robertson JF, Howell A, Buzdar A, von Euler M, Lee D. Static disease on anastrozole provides similar benefit as objective response in patients with advanced breast cancer. Breast Cancer Res Treat 1999;58:157-62.
  • 45 Carrick S, Parker S, Thornton CE, Ghersi D, Simes J, Wilcken N, et al. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev 2009;CD003372.
  • 46 O'Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 2004;15:440-9.
  • 47 Keller AM, Mennel RG, Georgoulias VA, Nabholtz JM, Erazo A, Lluch A, et al. Randomized phase III trial of pegylated liposomal doxorubicin versus vinorelbine or mitomycin C plus vinblastine in women with taxane-refractory advanced breast cancer. J Clin Oncol 2004;22:3893-901.
  • 48 Piccart-Gebhart MJ, Burzykowski T, Buyse M, Sledge G, Carmichael J, Lück HJ, et al. Taxanes alone or in combination with anthracyclines as first-line therapy of patients with metastatic breast cancer. J Clin Oncol 2008;26:1980-6.
  • 49 Fumoleau P, Largillier R, Clippe C, Dièras V, Orfeuvre H, Lesimple T, et al. Multicentre, phase II study evaluating capecitabine monotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer. Eur J Cancer 2004;40:536-42.
  • 50 Oshaughnessy JA, Blum J, Moiseyenko V, Jones SE, Miles D, Bell D, et al. Randomized, open-label, phase II trial of oral capecitabine (Xeloda) vs. a reference arm of intravenous CMF (cyclophosphamide, methotrexate and 5-fluorouracil) as first-line therapy for advanced/metastatic breast cancer. Ann Oncol 2001;12:1247-54.
  • 51 Ambros T, Zeichner SB, Zaravinos J, Montero AJ, Ahn E, Aruna M, et al. A retrospective study evaluating a fixed low dose capecitabine monotherapy in women with HER-2 negative metastatic breast cancer. Breast Cancer Res Treat 2014;146:7-14.
  • 52 Baselga J, Gomez P, Awada A. The Addition of Cetuximab to Cisplatin Increases Overall Response Rate and Progression-Free Survival ini Metastatic Triple Negative Breast Cancer: Results of a Randomized Phase II Study (abstract 2740). Data Presented at the 2010 Meeting of the European Society of Medical Oncology. Milan, Italy; 2010. Available from: http://www.annonc.oxfordjournals.org/content/21/suppl_8. [Last accessed on 2011 Sep 07].
  • 53 O'Shaughnessy J, Weckstein D, Vukelja S. Preliminary Results of a Randomized Phase II Study of Weekly Irinotecan/Carboplatin with or Without Cetuximab in Patients with Metastatic Breast Cancer. Abstract 308. San Antonio Breast Cancer Symposium; 2007.
  • 54 Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, et al. TBCRC 001: Randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 2012;30:2615-23.
  • 55 Tentori L, Graziani G. Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol Res 2005;52:25-33.
  • 56 Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 2005;434:913-7.
  • 57 Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005;434:917-21.
  • 58 ClinicalTrials.gov. Metastatic Triple Negative Breast Cancer. National Institutes of Health; 2015. Available from: https://www.clinicaltrials.gov. [Last accessed on 2015 Oct 20].
  • 59 Jones S, Winer E, Vogel C, Laufman L, Hutchins L, O'Rourke M, et al. Randomized comparison of vinorelbine and melphalan in anthracycline-refractory advanced breast cancer. J Clin Oncol 1995;13:2567-74.
  • 60 Nabholtz JM, Falkson C, Campos D. Docetaxel and doxorubicin compared with doxorubicin and cyclophosphamide as first-line chemotherapy for metastatic breast cancer: Results of a randomized, multicenter, phase III trial. J Clin Oncol 2003;21:968.
  • 61 Biganzoli L, Cufer T, Bruning P, Coleman R, Duchateau L, Calvert AH, et al. Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The European Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial. J Clin Oncol 2002;20:3114-21.
  • 62 Nabholtz JM, Mackey JR, Smylie M, Paterson A, Noël DR, Al-Tweigeri T, et al. Phase II study of docetaxel, doxorubicin, and cyclophosphamide as first-line chemotherapy for metastatic breast cancer. J Clin Oncol 2001;19:314-21.
  • 63 Cassier PA, Chabaud S, Trillet-Lenoir V, Peaud PY, Tigaud JD, Cure H, et al. A phase-III trial of doxorubicin and docetaxel versus doxorubicin and paclitaxel in metastatic breast cancer: Results of the ERASME 3 study. Breast Cancer Res Treat 2008;109:343-50.