Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-21T19:46:29.844Z Has data issue: false hasContentIssue false

Orthogonal Matrices with Zero Diagonal

Published online by Cambridge University Press:  20 November 2018

J. M. Goethals
Affiliation:
M.B.L.E. Research Laboratory, Brussels, Belgium, and Technological University, Eindhoven, Netherlands
J. J. Seidel
Affiliation:
M.B.L.E. Research Laboratory, Brussels, Belgium, and Technological University, Eindhoven, Netherlands
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The central problem in the present paper is the construction of symmetric and of skew-symmetric ( = skew) matrices C of order v, with diagonal elements 0 and other elements + 1 or — 1, satisfying

The following necessary conditions are known: v ≡ 2 (mod 4) and

a and b integers, for symmetric matrices C (Belevitch (1, 2), Raghavarao (14)), and v = 2 or v ≡ 0 (mod 4) for skew matrices C.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

References

1. Belevitch, V., Theory of 2n-terminal networks with application to conference telephony., Elect. Commun., 27 (1950), 231244.Google Scholar
2. Conference networks and Hadamard matrices, Proceedings of the Cranfield Symposium (1965), to be published.Google Scholar
3. Bose, R. C., Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math., 13 (1963), 389419.Google Scholar
4. Bruck, R. H., Finite nets, II, Uniqueness and imbedding, Pacific J. Math., 13 (1963), 421457.Google Scholar
5. Connor, W. S. and Clatworthy, W. H., Some theorems for partially balanced designs, Ann. Math. Statist., 25 (1954), 100112.Google Scholar
6. Coxeter, H. S. M., Regular compound polytopes in more than four dimensions, J. Math, and Phys., 12 (1933) 334345.Google Scholar
7. Ehlich, H., Neue Hadamard-Matrizen, Arch. Math., 16 (1965), 3436.Google Scholar
8. Erdös, P. and Rényi, A., Asymmetric graphs, Acta Math. Acad. Sci. Hungar., 14 (1963), 295315.Google Scholar
9. Higman, D. G., Finite permutation groups of rank 3, Math. Z., 86 (1964), 145156.Google Scholar
10. Jacobsthal, E., Anwendung einer Formel aus der Theorie der quadratischen Reste, Dissertation (Berlin, 1906).Google Scholar
11. van Lint, J. H. and Seidel, J. J., Equilateral point sets in elliptic geometry, Kon. Ned. Akad. Wetensch. Amst. Proc. A,69( = Indag. Math. 28) (1966), 335348.Google Scholar
12. Mesner, D. M., A note on the parameters of PBIB association schemes, Ann. Math. Statist., 36 (1965), 331336.Google Scholar
13. Paley, R. E. A. C., On orthogonal matrices, J. Math. Phys., 12 (1933), 311320.Google Scholar
14. Raghavarao, D., Some aspects of weighing designs, Ann. Math. Statist., 31 (1960), 878884.Google Scholar
15. Sachs, H., Über selbstkomplementäre Graphen, Publ. Math. Debrecen, 9 (1962), 270288.Google Scholar
16. Seidel, J. J., Strongly regular graphs of L2-type and of triangular type, Kon. Ned. Akad. Wetensch. Amst. Proc. A,70( = Indag. Math. 29) (1967), 188196.Google Scholar
17. Williamson, J., Hadamard's determinant theorem and the sum of four squares, Duke Math. J., 11 (1944), 6581.Google Scholar
18. Williamson, J., Note on Hadamard's determinant theorem, Bull. Amer. Math. Soc., 53 (1947), 608- 613.Google Scholar