We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Emerging new strategies for successful metabolite identification in metabolomics

    Kerem Bingol

    Pacific Northwest National Laboratory, Richland, WA 99352, USA

    ,
    Lei Bruschweiler-Li

    Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA

    ,
    Dawei Li

    Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA

    ,
    Bo Zhang

    Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA

    ,
    Mouzhe Xie

    Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA

    &
    Rafael Brüschweiler

    *Author for correspondence:

    E-mail Address: bruschweiler.1@osu.edu

    Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA

    Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA

    Department of Biological Chemistry & Pharmacology, The Ohio State University, Columbus, OH 43210, USA

    Published Online:https://doi.org/10.4155/bio-2015-0004

    This review discusses strategies for the identification of metabolites in complex biological mixtures, as encountered in metabolomics, which have emerged in the recent past. These include NMR database-assisted approaches for the identification of commonly known metabolites as well as novel combinations of NMR and MS analysis methods for the identification of unknown metabolites. The use of certain chemical additives to the NMR tube can permit identification of metabolites with specific physical chemical properties.

    Papers of special note have been highlighted as: • of interest

    References

    • 1 Nicholson JK, Wilson ID. Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2, 668–676 (2003).
    • 2 Nicholson JK, Holmes E, Lindon JC, Wilson ID. The challenges of modeling mammalian biocomplexity. Nat. Biotechnol. 22, 1268–1274 (2004).
    • 3 Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics 2, 155–168 (2001).
    • 4 Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).
    • 5 Fan TW, Lane AN. NMR-based stable isotope resolved metabolomics in systems biochemistry. J. Biomol. NMR 49, 267–280 (2011).
    • 6 Raamsdonk LM, Teusink B, Broadhurst D et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).
    • 7 Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell 134, 714–717 (2008).
    • 8 Powers R. The current state of drug discovery and a potential role for NMR metabolomics. J. Med. Chem. 57, 5860–5870 (2014).
    • 9 Scalbert A, Brennan L, Manach C et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).
    • 10 Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).
    • 11 Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 40, 387–426 (2011).
    • 12 Palmnas MS, Vogel HJ. The future of NMR metabolomics in cancer therapy: towards personalizing treatment and developing targeted drugs? Metabolites 3, 373–396 (2013).
    • 13 Emwas AH, Luchinat C, Turano P et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics 11, 872–894 (2015).
    • 14 Beckonert O, Keun HC, Ebbels TM et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007).
    • 15 Kim HK, Choi YH, Verpoorte R. NMR-based metabolomic analysis of plants. Nat. Protoc. 5, 536–549 (2010).
    • 16 Dona AC, Jimenez B, Schafer H et al. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal. Chem. 86, 9887–9894 (2014).
    • 17 Brindle JT, Antti H, Holmes E et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 8, 1439–1444 (2002).
    • 18 Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 8, 617–633 (2008).
    • 19 Duarte IF, Diaz SO, Gil AM. NMR metabolomics of human blood and urine in disease research. J. Pharm. Biomed. Anal. 93, 17–26 (2014).
    • 20 Clayton TA, Lindon JC, Cloarec O et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440, 1073–1077 (2006).
    • 21 Ramautar R, Berger R, Van Der Greef J, Hankemeier T. Human metabolomics: strategies to understand biology. Curr. Opin. Chem. Biol. 17, 841–846 (2013).
    • 22 Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature 491, 384–392 (2012).
    • 23 Lindon JC, Nicholson JK. The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opin. Drug Metab. Toxicol. 10, 915–919 (2014).
    • 24 Bingol K, Brüschweiler R. Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr. Opin. Clin. Nutr. Metab. Care 18, 471–477 (2015).
    • 25 Gowda GA, Raftery D. Can NMR solve some significant challenges in metabolomics. J. Magn. Reson. 260, 144–160 (2015).
    • 26 Bingol K, Salinas RK, Brüschweiler R. Higher-rank correlation NMR spectra with spectral moment filtering. J. Phys. Chem. Lett. 1, 1086–1089 (2010).
    • 27 Bingol K, Brüschweiler R. Deconvolution of chemical mixtures with high complexity by NMR consensus trace clustering. Anal. Chem. 83, 7412–7417 (2011).
    • 28 Hubert J, Nuzillard JM, Purson S et al. Identification of natural metabolites in mixture: a pattern recognition strategy based on 13C NMR. Anal. Chem. 86, 2955–2962 (2014).
    • 29 Wishart DS. Advances in metabolite identification. Bioanalysis 3, 1769–1782 (2011).
    • 30 Halabalaki M, Vougogiannopoulou K, Mikros E, Skaltsounis AL. Recent advances and new strategies in the NMR-based identification of natural products. Curr. Opin. Biotechnol. 25, 1–7 (2014).
    • 31 Bingol K, Zhang F, Bruschweiler-Li L, Brüschweiler R. TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database. Anal. Chem. 84, 9395–9401 (2012).
    • 32 Bingol K, Bruschweiler-Li L, Li DW, Brüschweiler R. Customized metabolomics database for the analysis of NMR 1H-1H TOCSY and 13C-1H HSQC-TOCSY spectra of complex mixtures. Anal. Chem. 86, 5494–5501 (2014). • Presents the first customized 2D 1H-1H TOCSY and 2D 13C-1H HSQC-TOCSY metabolomics database and query, which significantly improved the accuracy of metabolite identification. The web server is open to the public at [61].
    • 33 Bingol K, Li DW, Bruschweiler-Li L et al. Unified and isomer-specific NMR metabolomics database for the accurate analysis of 13C-1H HSQC spectra. ACS Chem. Biol. 10, 452–459 (2015). • Presents the first unified and customized 2D 13C-1H HSQC metabolomics database and query, which significantly improved the accuracy of metabolite identification. The web server is open to the public at [62].
    • 34 Ellinger JJ, Chylla RA, Ulrich EL, Markley JL. Databases and software for NMR-based metabolomics. Curr. Metabol. 1, 28–40 (2013).
    • 35 Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 3, 23 (2015).
    • 36 Qiu F, Mcalpine JB, Lankin DC et al. 2D NMR barcoding and differential analysis of complex mixtures for chemical identification: the Actaea triterpenes. Anal. Chem. 86, 3964–3972 (2014).
    • 37 Clendinen CS, Pasquel C, Ajredini R, Edison AS. 13C NMR metabolomics: INADEQUATE network analysis. Anal. Chem. 87, 5698–5706 (2015).
    • 38 Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem. 387, 525–527 (2007).
    • 39 Crockford DJ, Holmes E, Lindon JC et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem. 78, 363–371 (2006).
    • 40 Pan Z, Gu H, Talaty N et al. Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism. Anal. Bioanal. Chem. 387, 539–549 (2007).
    • 41 Crockford DJ, Maher AD, Ahmadi KR et al. 1H NMR and UPLC-MS(E) statistical heterospectroscopy: characterization of drug metabolites (xenometabolome) in epidemiological studies. Anal. Chem. 80, 6835–6844 (2008).
    • 42 Fan TW, Lorkiewicz PK, Sellers K, Moseley HN, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol. Ther. 133, 366–391 (2012).
    • 43 Clendinen CS, Stupp GS, Ajredini R, Lee-Mcmullen B, Beecher C, Edison AS. An overview of methods using 13C for improved compound identification in metabolomics and natural products. Front. Plant Sci. 6, 611 (2015).
    • 44 Marshall DD, Lei S, Worley B et al. Combining DI-ESI-MS and NMR datasets for metabolic profiling. Metabolomics 11, 391–402 (2015).
    • 45 Dame ZT, Aziat F, Mandal R et al. The human saliva metabolome. Metabolomics 11, 1864–1883 (2015).
    • 46 Holmes E, Loo RL, Stamler J et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400 (2008).
    • 47 Suhre K, Wallaschofski H, Raffler J et al. A genome-wide association study of metabolic traits in human urine. Nat. Genet. 43, 565–569 (2011).
    • 48 Clendinen CS, Lee-Mcmullen B, Williams CM et al. 13C NMR metabolomics: applications at natural abundance. Anal. Chem. 86, 9242–9250 (2014).
    • 49 Bingol K, Brüschweiler R. Multidimensional approaches to NMR-based metabolomics. Anal. Chem. 86, 47–57 (2014).
    • 50 Bingol K, Zhang F, Bruschweiler-Li L, Brüschweiler R. Quantitative analysis of metabolic mixtures by two-dimensional 13C constant-time TOCSY NMR spectroscopy. Anal. Chem. 85, 6414–6420 (2013).
    • 51 Bodenhausen G, Ruben DJ. Natural abundance N-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).
    • 52 Braunschweiler L, Ernst RR. Coherence transfer by isotropic mixing - application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528 (1983).
    • 53 Saric J, Wang Y, Li J et al. Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J. Proteome Res. 7, 352–360 (2008).
    • 54 Misawa T, Date Y, Kikuchi J. Human metabolic, mineral, and microbiota fluctuations across daily nutritional intake visualized by a data-driven approach. J. Proteome Res. 14, 1526–1534 (2015).
    • 55 Gronwald W, Klein MS, Zeltner R et al. Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine. Kidney Int. 79, 1244–1253 (2011).
    • 56 Guennec AL, Giraudeau P, Caldarelli S. Evaluation of fast 2D NMR for metabolomics. Anal. Chem. 86, 5946–5954 (2014).
    • 57 Wen H, An YJ, Xu WJ, Kang KW, Park S. Real-time monitoring of cancer cell metabolism and effects of an anticancer agent using 2D in-cell NMR spectroscopy. Angew. Chem. Int. Ed. 54, 5374–5377 (2015).
    • 58 Motta A, Paris D, Melck D. Monitoring real-time metabolism of living cells by fast two-dimensional NMR spectroscopy. Anal. Chem. 82, 2405–2411 (2010).
    • 59 Martineau E, Giraudeau P, Tea I, Akoka S. Fast and precise quantitative analysis of metabolic mixtures by 2D 1H INADEQUATE NMR. J. Pharm. Biomed. Anal. 54, 252–257 (2011).
    • 60 COLMAR 13C-TOCCATA: a Carbon TOCSY NMR Metabolomics Database. http://spin.ccic.ohio-state.edu/index.php/toccata/index.
    • 61 COLMAR 1H(13C)-TOCCATA: Customized Metabolomics Database for the Analysis of NMR 1H-1H TOCSY and 13C-1H HSQC-TOCSY Spectra of Complex Mixtures. http://spin.ccic.ohio-state.edu/index.php/toccata2/index.
    • 62 COLMAR 13C-1H HSQC Query. http://spin.ccic.ohio-state.edu/index.php/hsqc/index.
    • 63 Ulrich EL, Akutsu H, Doreleijers JF et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).
    • 64 Biological Magnetic Resonance Data Bank. www.bmrb.wisc.edu.
    • 65 Wishart DS, Jewison T, Guo AC et al. HMDB 3.0-The Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801–D807 (2013).
    • 66 The Human Metabolome Database. www.hmdb.ca.
    • 67 Kikuchi J, Tsuboi Y, Komatsu K, Gomi M, Chikayama E, Date Y. SpinCouple: development of a web tool for analyzing metabolite mixtures via two-dimensional J-resolved NMR database. Anal. Chem. 88, 659–665 (2016).
    • 68 SpinCouple. http://emar.riken.jp/spincpl.
    • 69 Aue WP, Karhan J, Ernst RR. Homonuclear broad-band decoupling and 2-dimensional J-resolved NMR-spectroscopy. J. Chem. Phys. 64, 4226–4227 (1976).
    • 70 Birmingham Metabolite Library. www.bml-nmr.org.
    • 71 Ludwig C, Easton JM, Lodi A et al. Birmingham Metabolite Library: a publicly accessible database of 1D 1H and 2D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics 8, 8–18 (2012).
    • 72 Fonville JM, Maher AD, Coen M, Holmes E, Lindon JC, Nicholson JK. Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal. Chem. 82, 1811–1821 (2010).
    • 73 Psychogios N, Hau DD, Peng J et al. The human serum metabolome. PLoS ONE 6, e16957 (2011).
    • 74 Bouatra S, Aziat F, Mandal R et al. The human urine metabolome. PLoS ONE 8, e73076 (2013).
    • 75 Bingol K, Brüschweiler R. NMR/MS Translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine. J. Proteome Res. 14, 2642–2648 (2015). • Presents a combined NMR/MS approach that provides rapid and accurate identification of cataloged, in other words, known metabolites detected in both NMR and MS spectra of the same metabolomic sample.
    • 76 Bingol K, Bruschweiler-Li L, Yu C, Somogyi A, Zhang F, Brüschweiler R. Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal. Chem. 87, 3864–3870 (2015). • Introduces a combined NMR/MS approach that allows structure elucidation of unknown metabolites in complex metabolite mixtures. The approach does not require purifications of unknown compounds from the matrix, therefore it provides a platform with the potential for high-throughput discovery of new metabolites.
    • 77 Madison Metabolomics Consortium Database. http://mmcd.nmrfam.wisc.edu.
    • 78 Cui Q, Lewis IA, Hegeman AD et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 26, 162–164 (2008).
    • 79 COLMAR. http://spin.ccic.ohio-state.edu/index.php/colmar.
    • 80 Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005).
    • 81 Bingol K, Zhang F, Bruschweiler-Li L, Brüschweiler R. Carbon backbone topology of the metabolome of a cell. J. Am. Chem. Soc. 134, 9006–9011 (2012).
    • 82 ChemSpider. www.chemspider.com.
    • 83 Pence HE, Williams A. ChemSpider: an online chemical information resource. J. Chem. Educ. 87, 1123–1124 (2010).
    • 84 Scripps Center for Metabolomics. https://metlin.scripps.edu/index.php.
    • 85 Zhu ZJ, Schultz AW, Wang J et al. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protocols 8, 451–460 (2013).
    • 86 Willoughby PH, Jansma MJ, Hoye TR. A guide to small-molecule structure assignment through computation of 1H and 13C NMR chemical shifts. Nat. Protoc. 9, 643–660 (2014).
    • 87 Tayyari F, Gowda GA, Gu H, Raftery D. 15N-cholamine- a smart isotope tag for combining NMR- and MS-based metabolite profiling. Anal. Chem. 85, 8715–8721 (2013). • Introduces 15N-cholamine tag to facilitate detection of carboxyl group containing metabolites in NMR and MS spectra of human serum and urine.
    • 88 Lane AN, Arumugam S, Lorkiewicz PK et al. Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N nuclear magnetic resonance. Magn. Reson. Chem. 53, 337–343 (2015). • Introduces 15N-labeled aminooxy probes to facilitate detection of carbonyl group containing metabolites in NMR and MS spectra of lung adenocarcinoma cell line.
    • 89 Fernandez-Megia E, Correa J, Novoa-Carballal R, Riguera R. Paramagnetic NMR relaxation in polymeric matrixes: sensitivity enhancement and selective suppression of embedded species (1H and 13C PSR filter). J. Am. Chem. Soc. 129, 15164–15173 (2007).
    • 90 Correa J, Pinto LF, Riguera R, Fernandez-Megia E. Predicting PSR filters by transverse relaxation enhancements. Anal. Chem. 87, 760–767 (2015). • Combines paramagnetic relaxation agent, gadolinium, with CPMG NMR spectroscopy to selectively filter components in mixtures based on their complexing ability with gadolinium.
    • 91 Gowda GAN, Raftery D. Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Anal. Chem. 86, 5433–5440 (2014).
    • 92 Zhang B, Xie M, Bruschweiler-Li L, Bingol K, Brüschweiler R. Use of charged nanoparticles in NMR-based metabolomics for spectral simplification and improved metabolite identification. Anal. Chem. 87, 7211–7217 (2015). • Introduces electrically charged silica nanoparticles as chemical agents to differentiate mixture components in NMR spectra based on their electric charge.