We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy

    Jenny YY Ooi

    Baker IDI Heart & Diabetes Institute, PO Box 6429, St Kilda Road Central, Melbourne 8008, Australia

    Authors contributed equally

    Search for more papers by this author

    ,
    Bianca C Bernardo

    Baker IDI Heart & Diabetes Institute, PO Box 6429, St Kilda Road Central, Melbourne 8008, Australia

    &
    Julie R McMullen

    * Author for correspondence

    Department of Medicine, Monash University, Clayton, Victoria, Australia.

    Published Online:https://doi.org/10.4155/fmc.13.196

    Cardiac hypertrophy is broadly defined as an increase in heart mass. Heart enlargement in a setting of cardiac disease is referred to as pathological hypertrophy and often progresses to heart failure. Physiological hypertrophy refers to heart growth in response to postnatal development, exercise training and pregnancy, and is an adaptive response associated with the activation of cardioprotective signaling cascades. miRNAs have emerged as novel therapeutic targets for numerous pathologies, and miRNA-based therapies have already entered clinical trials. The identification of miRNAs differentially regulated during physiological growth may open up new therapeutic approaches for heart failure. In this review, we present information on miRNAs regulated in models of physiological hypertrophy, describe preclinical cardiac disease studies that have successfully targeted miRNAs regulated in settings of physiological growth (miR-34, miR-15, miR-199b, miR-208a and miR-378), and discuss challenges to overcome for the safe entry of miRNA-based therapies into the clinic for heart failure patients.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther.128(1),191–227 (2010).
    • Bernardo BC, Charchar FJ, Lin RC, McMullen JR. A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ.21(3),131–142 (2012).
    • Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol.28(8),1737–1746 (1996).
    • Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol.271(5 Pt 2),H2183–H2189 (1996).
    • Walsh S, Ponten A, Fleischmann BK, Jovinge S. Cardiomyocyte cell cycle control and growth estimation in vivo – analysis based on cardiomyocyte nuclei. Cardiovasc. Res.86(3),365–373 (2010).
    • Weeks KL, McMullen JR. The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes?. Physiology (Bethesda)26(2),97–105 (2011).
    • Shioi T, Kang PM, Douglas PS et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J.19(11),2537–2548 (2000).
    • McMullen JR, Shioi T, Zhang L et al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA100(21),12355–12360 (2003).▪ Shows that PI3K is a critical regulator of exercise-mediated physiological cardiac hypertrophy.
    • Weeks KL, Gao X, Du XJ et al. Phosphoinositide 3-kinase p110alpha is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ. Heart Fail.5(4),523–534 (2012).
    • 10  DeBosch B, Treskov I, Lupu TS et al. Akt1 is required for physiological cardiac growth. Circulation113(17),2097–2104 (2006).
    • 11  Chung E, Yeung F, Leinwand LA. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation. J. Appl. Physiol.112(9),1564–1575 (2012).
    • 12  Chung E, Yeung F, Leinwand LA. Calcineurin activity is required for cardiac remodelling in pregnancy. Cardiovasc. Res.100(3),402–410 (2013).
    • 13  Gonzalez AM, Osorio JC, Manlhiot C, Gruber D, Homma S, Mital S. Hypertrophy signaling during peripartum cardiac remodeling. Am. J. Physiol. Heart Circ. Physiol.293(5),H3008–H3013 (2007).
    • 14  Hilfiker-Kleiner D, Kaminski K, Podewski E et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell128(3),589–600 (2007).
    • 15  Lemmens K, Doggen K, De Keulenaer GW. Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy. Am. J. Physiol. Heart Circ. Physiol.300(3),H931–H942 (2011).
    • 16  Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2),281–297 (2004).
    • 17  Papoutsidakis N, Deftereos S, Kaoukis A et al. MicroRNAs and the heart: small things do matter. Curr. Top. Med .Chem.13(2),216–230 (2013).
    • 18  Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5),843–854 (1993).
    • 19  Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75(5),855–862 (1993).
    • 20  Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol. Rev.91(3),827–887 (2011).
    • 21  Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120(1),15–20 (2005).
    • 22  Chen JF, Murchison EP, Tang R et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA105(6),2111–2116 (2008).
    • 23  da Costa Martins PA, Bourajjaj M, Gladka M et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation118(15),1567–1576 (2008).
    • 24  Da Costa Martins PA, De Windt LJ. MicroRNAs in control of cardiac hypertrophy. Cardiovasc. Res.93(4),563–572 (2012).
    • 25  Orenes-Pinero E, Montoro-Garcia S, Patel JV, Valdes M, Marin F, Lip GY. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int. J. Cardiol.167(5),1651–1659 (2012).
    • 26  Thum T, Galuppo P, Wolf C et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation116(3),258–267 (2007).
    • 27  McMullen JR, Amirahmadi F, Woodcock EA et al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA104(2),612–617 (2007).
    • 28  Jankowski M, Wang D, Mukaddam-Daher S, Gutkowska J. Pregnancy alters nitric oxide synthase and natriuretic peptide systems in the rat left ventricle. J. Endocrinol.184(1),209–217 (2005).
    • 29  Care A, Catalucci D, Felicetti F et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med.13(5),613–618 (2007).
    • 30  Soci UP, Fernandes T, Hashimoto NY et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol. Genomics43(11),665–673 (2011).
    • 31  van Rooij E, Sutherland LB, Thatcher JE et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA105(35),13027–13032 (2008).
    • 32  Fernandes T, Hashimoto NY, Magalhaes FC et al. Aerobic exercise training-induced left ventricular hypertrophy involves regulatory microRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1–7). Hypertension58(2),182–189 (2011).
    • 33  Grobe JL, Mecca AP, Lingis M et al. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am. J. Physiol. Heart Circ. Physiol.292(2),H736–H742 (2007).
    • 34  Raizada MK, Ferreira AJ. ACE2: a new target for cardiovascular disease therapeutics. J. Cardiovasc. Pharmacol.50(2),112–119 (2007).
    • 35  Mercure C, Yogi A, Callera GE et al. Angiotensin(1–7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ. Res.103(11),1319–1326 (2008).
    • 36  Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD. Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod. Sci.17(3),227–238 (2010).
    • 37  Boettger T, Beetz N, Kostin S et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest.119(9),2634–2647 (2009).
    • 38  DA Silva ND Jr, Fernandes T, Soci UP, Monteiro AW, Phillips MI, DE Oliveira EM. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med. Sci. Sports Exerc.44(8),1453–1462 (2012).
    • 39  Kuhnert F, Mancuso MR, Hampton J et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development135(24),3989–3993 (2008).
    • 40  Wang S, Aurora AB, Johnson BA et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell15(2),261–271 (2008).
    • 41  Ma Z, Qi J, Meng S, Wen B, Zhang J. Swimming exercise training-induced left ventricular hypertrophy involves microRNAs and synergistic regulation of the PI3K/AKT/mTOR signaling pathway. Eur. J. Appl. Physiol.113(10),2473–2486 (2013).
    • 42  Lin RC, Weeks KL, Gao XM et al. PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler. Thromb. Vasc. Biol.30(4),724–732 (2010).▪ One of the few studies that identified miRNAs differentially regulated in settings of physiological and pathological cardiac growth.
    • 43  Bernardo BC, Gao XM, Winbanks CE et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl Acad. Sci. USA109(43),17615–17620 (2012).▪▪ Inhibition of miR-34 (a miR downregulated in a physiological model) improves cardiac function in mice with pre-existing pressure overload-induced hypertrophy and systolic dysfunction, and can attenuate pathological remodeling after myocardial infarction.
    • 44  Condorelli G, Drusco A, Stassi G et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl Acad. Sci. USA99(19),12333–12338 (2002).
    • 45  Porrello ER, Johnson BA, Aurora AB et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res.109(6),670–679 (2011).
    • 46  Chen J, Huang ZP, Seok HY et al. mir-17–92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res.112(12),1557–1566 (2013).
    • 47  Knezevic I, Patel A, Sundaresan NR et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. J. Biol.Chem.287(16),12913–12926 (2012).
    • 48  Ganesan J, Ramanujam D, Sassi Y et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation127(21),2097–2106 (2013).▪▪ Restoration of miR-378 (a miR upregulated during postnatal growth) attenuates pathological remodeling.
    • 49  Halkein J, Tabruyn SP, Ricke-Hoch M et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Invest.123(5),2143–2154 (2013).
    • 50  van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov.11(11),860–872 (2012).
    • 51  Elmen J, Lindow M, Silahtaroglu A et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res.36(4),1153–1162 (2008).
    • 52  Elmen J, Lindow M, Schutz S et al. LNA-mediated microRNA silencing in non-human primates. Nature452(7189),896–899 (2008).
    • 53  Janssen HL, Reesink HW, Lawitz EJ et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med.368(18),1685–1694 (2013).▪▪ First study to demonstrate the safety and efficacy of an inhibitor to miR-122 in clinical trials for treatment of hepatitis C virus.
    • 54  Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence3(1),1 (2012).
    • 55  Krutzfeldt J, Kuwajima S, Braich R et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res.35(9),2885–2892 (2007).
    • 56  Obad S, dos Santos CO, Petri A et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet.43(4),371–378 (2011).
    • 57  Esau C, Davis S, Murray SF et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.3(2),87–98 (2006).
    • 58  Boon RA, Iekushi K, Lechner S et al. MicroRNA-34a regulates cardiac ageing and function. Nature495(7439),107–110 (2013).
    • 59  Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature456(7224),980–984 (2008).
    • 60  Rayner KJ, Esau CC, Hussain FN et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature478(7369),404–407 (2011).
    • 61  Montgomery RL, Hullinger TG, Semus HM et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure/clinical perspective. Circulation124(14),1537–1547 (2011).▪▪ First study to demonstrate that inhibition of miR-208a (a miR differentially regulated by PI3K) prevents pathological cardiac remodeling.
    • 62  Lanford RE, Hildebrandt-Eriksen ES, Petri A et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science327(5962),198–201 (2010).
    • 63  Porrello ER, Mahmoud AI, Simpson E et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA110(1),187–192 (2013).
    • 64  Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438(7068),685–689 (2005).
    • 65  Patrick DM, Montgomery RL, Qi X et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest.120(11),3912–3916 (2010).
    • 66  Hullinger TG, Montgomery RL, Seto AG et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res.110(1),71–81 (2012).
    • 67  Editors T. Circulation research thematic synopsis: microRNAs. Circ. Res.113(4),e30–e41 (2013).
    • 68  van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res.103(9),919–928 (2008).
    • 69  Latronico MVG, Condorelli G: MicroRNAs and cardiac pathology. Nat. Rev. Cardiol.6(6),418–429 (2009).
    • 70  Greco S, Fasanaro P, Castelvecchio S et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes61(6),1633–1641 (2012).
    • 71  van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science316(5824),575–579 (2007).
    • 72  Callis TE, Pandya K, Seok HY et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest.119(9),2772–2786 (2009).
    • 73  White E. Mechanical modulation of cardiac microtubules. Pflugers Arch.462(1),177–184 (2011).
    • 74  da Costa Martins PA, Salic K, Gladka MM et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat. Cell Biol.12(12),1220–1227 (2010).▪▪ First study to show that inhibition of miR-199b (a miR differentially regulated by PI3K) prevents cardiac hypertrophy and fibrosis.
    • 75  van Rooij E, Purcell AL, Levin AA. Developing microRNA therapeutics. Circ. Res.110(3),496–507 (2012).
    • 76  Ebert MS, Sharp PA. MicroRNA sponges: Progress and possibilities. RNA16(11),2043–2050 (2010).
    • 77  Zhu H, Fan GC. Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am. J. Cardiovasc. Dis.1(2),138–149 (2011).
    • 78  Gidlof O, Smith JG, Miyazu K et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord.13,12 (2013).
    • 79  Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin. Chem.55(11),1944–1949 (2009).
    • 80  Matsumoto S, Sakata Y, Nakatani D et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ. Res.13(3),322–326 (2013).
    • 81  Baggish AL, Hale A, Weiner RB et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol.589(Pt 16),3983–3994 (2011).
    • 82  Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation121(8),1022–1032 (2010).
    • 83  Wang X, Zhu H, Zhang X et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc. Res.94(2),379–390 (2012).
    • 84  Zhang X, Wang X, Zhu H et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J. Mol. Cell. Cardiol.49(5),841–850 (2010).
    • 85  Li R, Yan G, Li Q et al. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H(2)O(2))-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS ONE7(9),e44907 (2012).
    • 86  Wang C, Wang S, Zhao P et al. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. J. Cell Biochem.113(6),2040–2046 (2012).
    • 87  Kumarswamy R, Lyon AR, Volkmann I et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur. Heart J.33(9),1067–1075 (2012).
    • 88  Elia L, Contu R, Quintavalle M et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation120(23),2377–2385 (2009).
    • 89  Duisters RF, Tijsen AJ, Schroen B et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res.104(2),170–178, 176p following 178 (2009).
    • 90  Roy S, Khanna S, Hussain SR et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res.82(1),21–29 (2009).
    • 91  Hu S, Huang M, Li Z et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation122(11 Suppl.),S124–S131 (2010).
    • 92  Wang J, Song Y, Zhang Y et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell. Res.22(3),516–527 (2012).
    • 93  Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc. Res.87(3),535–544 (2010).