We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Cancer stem cells as a target population for drug discovery

    Claire Bouvard

    California Research Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA

    ,
    Colleen Barefield

    California Research Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA

    &
    Shoutian Zhu

    California Research Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA

    Published Online:https://doi.org/10.4155/fmc.14.106

    Cancer stem cells (CSCs) have been identified in a growing list of malignancies and are believed to be responsible for cancer initiation, metastasis and relapse following certain therapies, even though they may only represent a small fraction of the cells in a given cancer. Like somatic stem cells and embryonic stem cells, CSCs are capable of self-renewal and differentiation into more mature, less tumorigenic cells that make up the bulk populations of cancer cells. Elimination of CSCs promises intriguing therapeutic potential and this concept has been adopted in preclinical drug discovery programs. Herein we will discuss the progress of these efforts, general considerations in practice, major challenges and possible solutions.

    References

    • 1 Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108(3), 479–485 (2013).
    • 2 Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature 501(7467), 328–337 (2013).
    • 3 Greaves M, Maley CC. Clonal evolution in cancer. Nature 481(7381), 306–313 (2012).
    • 4 Nowell PC. The clonal evolution of tumor cell populations. Science 194(4260), 23–28 (1976).
    • 5 Burrell RA, Mcgranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467), 338–345 (2013).
    • 6 Valent P, Bonnet D, De Maria R et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer 12(11), 767–775 (2012).
    • 7 Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10(6), 717–728 (2012).
    • 8 Vermeulen L, De Sousa E Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 13(2), e83–e89 (2012).
    • 9 Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 14(3), 275–291 (2014).
    • 10 Greaves M. Cancer stem cells as ‘units of selection’. Evol. Appl. 6(1), 102–108 (2013).
    • 11 Clevers H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17(3), 313–319 (2011).
    • 12 Tirino V, Desiderio V, Paino F et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J. 27(1), 13–24 (2013).
    • 13 Bomken S, Fiser K, Heidenreich O, Vormoor J. Understanding the cancer stem cell. Br. J. Cancer 103(4), 439–445 (2010).
    • 14 Baccelli I, Trumpp A. The evolving concept of cancer and metastasis stem cells. J. Cell Biol. 198(3), 281–293 (2012).
    • 15 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3(7), 730–737 (1997).
    • 16 Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 432(7015), 396–401 (2004).
    • 17 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100(7), 3983–3988 (2003).
    • 18 Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65(23), 10946–10951 (2005).
    • 19 Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res. 67(3), 1030–1037 (2007).
    • 20 Prince ME, Sivanandan R, Kaczorowski A et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104(3), 973–978 (2007).
    • 21 Schatton T, Murphy GF, Frank NY et al. Identification of cells initiating human melanomas. Nature 451(7176), 345–349 (2008).
    • 22 Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123), 111–115 (2007).
    • 23 Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120(1), 41–50 (2010).
    • 24 Kitambi SS, Chandrasekar G. Stem cells: a model for screening, discovery and development of drugs. Stem Cells Cloning 4, 51–59 (2011).
    • 25 Zhu S, Wurdak H, Schultz PG. Directed embryonic stem cell differentiation with small molecules. Future Med. Chem. 2(6), 965–973 (2010).
    • 26 Lyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG. Chemical control of stem cell fate and developmental potential. Angew. Chem. Int. Ed. Engl. 50(1), 200–242 (2011).
    • 27 Verga Falzacappa MV, Ronchini C, Reavie LB, Pelicci PG. Regulation of self-renewal in normal and cancer stem cells. FEBS J. 279(19), 3559–3572 (2012).
    • 28 Keysar SB, Jimeno A. More than markers: biological significance of cancer stem cell-defining molecules. Mol. Cancer Ther. 9(9), 2450–2457 (2010).
    • 29 Merlos-Suarez A, Barriga FM, Jung P et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5), 511–524 (2011).
    • 30 O'brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123), 106–110 (2007).
    • 31 Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev. 7(2), 292–306 (2011).
    • 32 Luo Y, Dallaglio K, Chen Y et al. ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30(10), 2100–2113 (2012).
    • 33 Mao P, Joshi K, Li J et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl Acad. Sci. USA 110(21), 8644–8649 (2013).
    • 34 Kryczek I, Liu S, Roh M et al. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int. J. Cancer 130(1), 29–39 (2012).
    • 35 Fleischman AG. ALDH marks leukemia stem cell. Blood 119(15), 3376–3377 (2012).
    • 36 Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco. Targets Ther. 6, 1347–1361 (2013).
    • 37 Grimm M, Krimmel M, Polligkeit J et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. Eur. J. Cancer 48(17), 3186–3197 (2012).
    • 38 Ma J, Frank MH. Tumor initiation in human malignant melanoma and potential cancer therapies. Anticancer Agents Med. Chem. 10(2), 131–136 (2010).
    • 39 Shmelkov SV, Butler JM, Hooper AT et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118(6), 2111–2120 (2008).
    • 40 Grosse-Gehling P, Fargeas CA, Dittfeld C et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J. Pathol. 229(3), 355–378 (2013).
    • 41 Sengupta A, Ficker AM, Dunn SK, Madhu M, Cancelas JA. Bmi1 reprograms CML B-lymphoid progenitors to become B-ALL-initiating cells. Blood 119(2), 494–502 (2012).
    • 42 Williams BA, Wang XH, Keating A. Clonogenic assays measure leukemia stem cell killing not detectable by chromium release and flow cytometric cytotoxicity assays. Cytotherapy 12(7), 951–960 (2010).
    • 43 Dey D, Saxena M, Paranjape AN et al. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS ONE 4(4), e5329 (2009).
    • 44 Dong Q, Wang D, Bandyopadhyay A et al. Mammospheres from murine mammary stem cell-enriched basal cells: clonal characteristics and repopulating potential. Stem Cell Res. 10(3), 396–404 (2013).
    • 45 Deleyrolle LP, Reynolds BA. Isolation, expansion, and differentiation of adult mammalian neural stem and progenitor cells using the neurosphere assay. Methods Mol. Biol. 549, 91–101 (2009).
    • 46 Baiocchi M, Biffoni M, Ricci-Vitiani L, Pilozzi E, De Maria R. New models for cancer research: human cancer stem cell xenografts. Curr. Opin. Pharmacol. 10(4), 380–384 (2010).
    • 47 Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat. Rev. Cancer 5(11), 899–904 (2005).
    • 48 Sell S. On the stem cell origin of cancer. Am. J. Pathol. 176(6), 2584–2494 (2010).
    • 49 Shlush LI, Zandi S, Mitchell A et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506(7488), 328–333 (2014).
    • 50 Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 22(3), 457–472 (2012).
    • 51 Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 116(5), 639–648 (2004).
    • 52 Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol. 22(5–6), 396–403 (2012).
    • 53 Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. 341(1), 63–72 (2013).
    • 54 Munoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol. Oncol. 6(6), 620–636 (2012).
    • 55 Lu X, Kang Y. Cell fusion hypothesis of the cancer stem cell. Adv. Exp. Med. Biol. 714, 129–140 (2011).
    • 56 Sanges D, Lluis F, Cosma MP. Cell-fusion-mediated reprogramming: pluripotency or transdifferentiation? Implications for regenerative medicine. Adv. Exp. Med. Biol. 713, 137–159 (2011).
    • 57 Lluis F, Cosma MP. Cell-fusion-mediated somatic-cell reprogramming: a mechanism for tissue regeneration. J. Cell. Physiol. 223(1), 6–13 (2010).
    • 58 Pawelek JM, Chakraborty AK. The cancer cell–leukocyte fusion theory of metastasis. Adv. Cancer Res. 101, 397–444 (2008).
    • 59 Houghton J, Stoicov C, Nomura S et al. Gastric cancer originating from bone marrow-derived cells. Science 306(5701), 1568–1571 (2004).
    • 60 Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat. Rev. Cancer 8(5), 377–386 (2008).
    • 61 Aractingi S, Kanitakis J, Euvrard S et al. Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res. 65(5), 1755–1760 (2005).
    • 62 Lazova R, Laberge GS, Duvall E et al. A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer. PLoS ONE 8(6), e66731 (2013).
    • 63 Maund SL, Cramer SD. The tissue-specific stem cell as a target for chemoprevention. Stem Cell Rev. 7(2), 307–314 (2011).
    • 64 Lairson LL, Lyssiotis CA, Zhu S, Schultz PG. Small molecule-based approaches to adult stem cell therapies. Annu. Rev. Pharmacol. Toxicol. 53, 107–125 (2013).
    • 65 Chen J, Li Y, Yu TS et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412), 522–526 (2012).
    • 66 Abubaker K, Latifi A, Luwor R et al. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Mol. Cancer 12, 24 (2013).
    • 67 Ghiaur G, Gerber J, Jones RJ. Concise review: Cancer stem cells and minimal residual disease. Stem Cells 30(1), 89–93 (2012).
    • 68 Lin WC, Rajbhandari N, Liu C et al. Dormant cancer cells contribute to residual disease in a model of reversible pancreatic cancer. Cancer Res. 73(6), 1821–1830 (2013).
    • 69 Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer stem cells as a predictive factor in radiotherapy. Semin. Radiat. Oncol. 22(2), 151–174 (2012).
    • 70 Emmink BL, Van Houdt WJ, Vries RG et al. Differentiated human colorectal cancer cells protect tumor-initiating cells from irinotecan. Gastroenterology 141(1), 269–278 (2011).
    • 71 Oskarsson T, Batlle E, Massague J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3), 306–321 (2014).
    • 72 Liu H, Patel MR, Prescher JA et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc. Natl Acad. Sci. USA 107(42), 18115–18120 (2010).
    • 73 Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 32(35), 4057–4063 (2013).
    • 74 Cheng L, Huang Z, Zhou W et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153(1), 139–152 (2013).
    • 75 Coni S, Infante P, Gulino A. Control of stem cells and cancer stem cells by Hedgehog signaling: pharmacologic clues from pathway dissection. Biochem. Pharmacol. 85(5), 623–628 (2013).
    • 76 Dodge ME, Lum L. Drugging the cancer stem cell compartment: lessons learned from the hedgehog and Wnt signal transduction pathways. Annu. Rev. Pharmacol. Toxicol. 51, 289–310 (2011).
    • 77 Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25(2), 254–264 (2013).
    • 78 Santini R, Vinci MC, Pandolfi S et al. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells 30(9), 1808–1818 (2012).
    • 79 Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8(2), 97–106 (2011).
    • 80 Van Den Hoogen C, Van Der Horst G, Cheung H, Buijs JT, Pelger RC, Van Der Pluijm G. Integrin alphav expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. Am. J. Pathol. 179(5), 2559–2568 (2011).
    • 81 Lu X, Mu E, Wei Y et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20(6), 701–714 (2011).
    • 82 Schober M, Fuchs E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc. Natl Acad. Sci. USA 108(26), 10544–10549 (2011).
    • 83 Hahn CK, Berchuck JE, Ross KN et al. Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell 16(4), 281–294 (2009).
    • 84 Stechishin OD, Luchman HA, Ruan Y et al. On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro. Oncol. 15(2), 198–207 (2013).
    • 85 Saito Y, Yuki H, Kuratani M et al. A pyrrolo-pyrimidine derivative targets human primary AML stem cells in vivo. Sci. Transl. Med. 5(181), 181ra152 (2013).
    • 86 Zhu S, Wurdak H, Wang J et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4(5), 416–426 (2009).
    • 87 Pabst C, Krosl J, Fares I et al. Identification of small molecules that support human leukemia stem cell activity ex vivo. Nat. Methods doi:10.1038/nmeth.2847 (2014) (Epub ahead of print). 
    • 88 Zhao S, Kanno Y, Nakayama M, Makimura M, Ohara S, Inouye Y. Activation of the aryl hydrocarbon receptor represses mammosphere formation in MCF-7 cells. Cancer Lett. 317(2), 192–198 (2012).
    • 89 Prud'homme GJ, Glinka Y, Toulina A, Ace O, Subramaniam V, Jothy S. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS ONE 5(11), e13831 (2010).
    • 90 Bunaciu RP, Yen A. Activation of the aryl hydrocarbon receptor AhR Promotes retinoic acid-induced differentiation of myeloblastic leukemia cells by restricting expression of the stem cell transcription factor Oct4. Cancer Res. 71(6), 2371–2380 (2011).
    • 91 Dave B, Landis MD, Tweardy DJ et al. Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model. PLoS ONE 7(8), e30207 (2012).
    • 92 Hahn CK, Ross KN, Warrington IM et al. Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc. Natl Acad. Sci. USA 105(28), 9751–9756 (2008).
    • 93 Kreso A, Van Galen P, Pedley NM et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20(1), 29–36 (2014).
    • 94 Wurdak H, Zhu S, Romero A et al. An RNAi screen identifies TRRAP as a regulator of brain tumor-initiating cell differentiation. Cell Stem Cell 6(1), 37–47 (2010).
    • 95 Zuber J, Shi J, Wang E et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370), 524–528 (2011).
    • 96 Herrmann H, Blatt K, Shi J et al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget 3(12), 1588–1599 (2012).
    • 97 Filippakopoulos P, Qi J, Picaud S et al. Selective inhibition of BET bromodomains. Nature 468(7327), 1067–1073 (2010).
    • 98 Lamoureux F, Baud'huin M, Rodriguez Calleja L et al. Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle. Nat. Commun. 5, 3511 (2014).
    • 99 Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin. Cancer Res. 18(20), 5562–5571 (2012).
    • 100 Lu C, Ward PS, Kapoor GS et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390), 474–478 (2012).
    • 101 Figueroa ME, Abdel-Wahab O, Lu C et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6), 553–567 (2010).
    • 102 Lu C, Venneti S, Akalin A et al. Induction of sarcomas by mutant IDH2. Genes Dev. 27(18), 1986–1998 (2013).
    • 103 Li Z, Bao S, Wu Q et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6), 501–513 (2009).
    • 104 Soeda A, Park M, Lee D et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28(45), 3949–3959 (2009).
    • 105 Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8(4), 399–411 (2011).
    • 106 Xiang L, Gilkes DM, Chaturvedi P et al. Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer. J. Mol. Med. (Berlin) 92(2), 151–164 (2014).
    • 107 Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44(+) human breast cancer cells. Breast Cancer Res. Treat. 133(1), 75–87 (2012).
    • 108 Liu P, Kumar IS, Brown S et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br. J. Cancer 109(7), 1876–1885 (2013).
    • 109 Chaturvedi A, Araujo Cruz MM, Jyotsana N et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 122(16), 2877–2887 (2013).
    • 110 Kats LM, Reschke M, Taulli R et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14(3), 329–341 (2014).
    • 111 Kim RJ, Park JR, Roh KJ et al. High aldehyde dehydrogenase activity enhances stem cell features in breast cancer cells by activating hypoxia-inducible factor-2alpha. Cancer Lett. 333(1), 18–31 (2013).
    • 112 Wu X, Schultz PG. Synthesis at the interface of chemistry and biology. J. Am. Chem. Soc. 131(35), 12497–12515 (2009).
    • 113 Wurdak H. Exploring the cancer stem cell phenotype with high-throughput screening applications. Future Med. Chem. 4(10), 1229–1241 (2012).
    • 114 Gupta PB, Onder TT, Jiang G et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4), 645–659 (2009).
    • 115 Atkinson JM, Shelat AA, Carcaboso AM et al. An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. Cancer Cell 20(3), 384–399 (2011).
    • 116 Danovi D, Folarin A, Gogolok S et al. A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1. PLoS ONE 8(10), e77053 (2013).
    • 117 Grinshtein N, Datti A, Fujitani M et al. Small molecule kinase inhibitor screen identifies polo-like kinase 1 as a target for neuroblastoma tumor-initiating cells. Cancer Res. 71(4), 1385–1395 (2011).
    • 118 Mcdermott SP, Eppert K, Notta F et al. A small molecule screening strategy with validation on human leukemia stem cells uncovers the therapeutic efficacy of kinetin riboside. Blood 119(5), 1200–1207 (2012).
    • 119 O'Brien CA, Kreso A, Jamieson CH. Cancer stem cells and self-renewal. Clin. Cancer Res. 16(12), 3113–3120 (2010).
    • 120 Ablain J, Rice K, Soilihi H, De Reynies A, Minucci S, De The H. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat. Med. 20(2), 167–174 (2014).
    • 121 Sachlos E, Risueno RM, Laronde S et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 149(6), 1284–1297 (2012).
    • 122 Krause DS, Fulzele K, Catic A et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat. Med. 19(11), 1513–1517 (2013).
    • 123 Hjelmeland AB, Lathia JD, Sathornsumetee S, Rich JN. Twisted tango: brain tumor neurovascular interactions. Nat. Neurosci. 14(11), 1375–1381 (2011).
    • 124 Yang ZJ, Wechsler-Reya RJ. Hit ‘em where they live: targeting the cancer stem cell niche. Cancer Cell 11(1), 3–5 (2007).
    • 125 Koch U, Lehal R, Radtke F. Stem cells living with a Notch. Development 140(4), 689–704 (2013).
    • 126 Labarge MA. The difficulty of targeting cancer stem cell niches. Clin. Cancer Res. 16(12), 3121–3129 (2010).
    • 127 Fael Al-Mayhani TM, Ball SL, Zhao JW et al. An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. J. Neurosci. Methods 176(2), 192–199 (2009).
    • 128 Kawaguchi-Ihara N, Murohashi I, Nara N, Tohda S. Promotion of the self-renewal capacity of human acute leukemia cells by Wnt3A. Anticancer Res. 28(5A), 2701–2704 (2008).
    • 129 Ohata H, Ishiguro T, Aihara Y et al. Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer Res. 72(19), 5101–5110 (2012).
    • 130 Sims-Mourtada J, Niamat RA, Samuel S, Eskridge C, Kmiec EB. Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds. Int. J. Nanomedicine 9, 995–1003 (2014).
    • 131 Carmody LC, Germain AR, Verplank L et al. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells. J. Biomol. Screen 17(9), 1204–1210 (2012).
    • 132 Pollard SM, Yoshikawa K, Clarke ID et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6), 568–580 (2009).
    • 133 Cavnar SP, Salomonsson E, Luker KE, Luker GD, Takayama S. Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids. J. Lab. Autom. 19(2), 208–214 (2014).
    • 134 Mathews LA, Keller JM, Goodwin BL et al. A 1536-well quantitative high-throughput screen to identify compounds targeting cancer stem cells. J. Biomol. Screen 17(9), 1231–1242 (2012).
    • 135 Germain AR, Carmody LC, Morgan B et al. Identification of a selective small molecule inhibitor of breast cancer stem cells. Bioorg. Med. Chem. Lett. 22(10), 3571–3574 (2012).
    • 136 Yoo BH, Axlund SD, Kabos P et al. A high-content assay to identify small-molecule modulators of a cancer stem cell population in luminal breast cancer. J. Biomol. Screen. 17(9), 1211–1220 (2012).
    • 137 Barbaric I, Jones M, Harley DJ, Gokhale PJ, Andrews PW. High-content screening for chemical modulators of embryonal carcinoma cell differentiation and survival. J. Biomol. Screen. 16(6), 603–617 (2011).
    • 138 Visnyei K, Onodera H, Damoiseaux R et al. A molecular screening approach to identify and characterize inhibitors of glioblastoma stem cells. Mol. Cancer Ther. 10(10), 1818–1828 (2011).
    • 139 Johnson K, Zhu S, Tremblay MS et al. A stem cell-based approach to cartilage repair. Science 336(6082), 717–721 (2012).
    • 140 Leslie BJ, Hergenrother PJ. Identification of the cellular targets of bioactive small organic molecules using affinity reagents. Chem. Soc. Rev. 37(7), 1347–1360 (2008).
    • 141 Schenone M, Dancik V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9(4), 232–240 (2013).
    • 142 Burdine L, Kodadek T. Target identification in chemical genetics: the (often) missing link. Chem. Biol. 11(5), 593–597 (2004).
    • 143 Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew. Chem. Int. Ed. Engl. 52(10), 2744–2792 (2013).
    • 144 Chan JN, Nislow C, Emili A. Recent advances and method development for drug target identification. Trends Pharmacol. Sci. 31(2), 82–88 (2010).
    • 145 Kahsai AW, Zhu S, Wardrop DJ, Lane WS, Fenteany G. Quinocarmycin analog DX-52–51 inhibits cell migration and targets radixin, disrupting interactions of radixin with actin and CD44. Chem. Biol. 13(9), 973–983 (2006).
    • 146 Wurdak H, Zhu S, Min KH et al. A small molecule accelerates neuronal differentiation in the adult rat. Proc. Natl Acad. Sci. USA 107(38), 16542–16547 (2010).
    • 147 Denysenko T, Gennero L, Juenemann C et al. Heterogeneous phenotype of human glioblastoma: in vitro study. Cell Biochem. Funct. 32(2), 164–176 (2014).
    • 148 Verhaak RG, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010).
    • 149 Brennan CW, Verhaak RG, McKenna A et al. The somatic genomic landscape of glioblastoma. Cell 155(2), 462–477 (2013).
    • 150 Klco JM, Spencer DH, Miller CA et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25(3), 379–392 (2014).
    • 151 Topol EJ. Individualized medicine from prewomb to tomb. Cell 157(1), 241–253 (2014).
    • 152 Kretzschmar K, Watt FM. Lineage tracing. Cell 148(1–2), 33–45 (2012).
    • 153 Castellone MD, Laatikainen LE, Laurila JP et al. Brief report: mesenchymal stromal cell atrophy in coculture increases aggressiveness of transformed cells. Stem Cells 31(6), 1218–1223 (2013).
    • 154 Chaturvedi P, Gilkes DM, Wong CC et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J. Clin. Invest. 123(1), 189–205 (2013).
    • 155 Bengsch F, Buck A, Gunther SC et al. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 33(36), 4474–4484 (2014).
    • 156 Ranga A, Gjorevski N, Lutolf MP. Drug discovery through stem cell-based organoid models. Adv. Drug Deliv. Rev. doi:10.1016j.addr.02.006 (2014) (Epub ahead of print). 
    • 157 Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137), 1190–1194 (2013).
    • 158 Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 24C, 68–73 (2014).
    • 159 Chuang HN, Lohaus R, Hanisch UK, Binder C, Dehghani F, Pukrop T. Coculture system with an organotypic brain slice and 3D spheroid of carcinoma cells. J. Vis. Exp. doi:10.379150881 (2013) (Epub ahead of print). 
    • 160 Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172(5), 2731–2738 (2004).
    • 161 Seok J, Warren HS, Cuenca AG et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110(9), 3507–3512 (2013).
    • 162 Brehm MA, Wiles MV, Greiner DL, Shultz LD. Generation of improved humanized mouse models for human infectious diseases. J. Immunol. Methods doi:10.1016j.jim.02.011 (2014) (Epub ahead of print). 
    • 163 Soucek L, Whitfield JR, Sodir NM et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 27(5), 504–513 (2013).
    • 164 Herreros-Villanueva M, Hijona E, Cosme A, Bujanda L. Mouse models of pancreatic cancer. World J. Gastroenterol. 18(12), 1286–1294 (2012).
    • 165 Dhomen N, Reis-Filho JS, Da Rocha Dias S et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4), 294–303 (2009).
    • 166 Sloma I, Jiang X, Eaves AC, Eaves CJ. Insights into the stem cells of chronic myeloid leukemia. Leukemia 24(11), 1823–1833 (2010).