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Introduction
Genome-wide association studies (GWAS) provide an 

unprecedented opportunity for identifying disease-associated 
genetic variants. Although disease associated SNPs at genome-wide 

-8

is referred to as “missing heritability”. Rather than only using genome-

human height can be explained by using all of the genotyped common 

missing but remains hidden in the genome: due to the limited sample 

remain undiscovered. So far, people have found similar genetic 
architectures for many other complex diseases [4], such as psychiatric 

GWAS with larger sample sizes, in which more associated common 

34,840 patients and 114,981 healthy people are analyzed to understand 
the genetic architecture of type 2 diabetes [8]). However, large sample 
recruitment may be expensive and time-consuming.

For single GWAS analysis, many existing statistical methods have 
been proposed [9,10]. Among them, penalized regression methods 
[11-14] have drawn particular attention in GWAS. However, due to 
limited sample size of a single GWAS and polygenicity of a complex 
trait, many existing methods do not have enough power to uncover the 

remaining risk genetic variants. Recently, increasing evidence suggests 
that complex traits may share common genetic bases, which is known 
as “pleiotropy” [15-17]. A systematic investigation of pleiotropy [18] 
suggests that 16.9% of genes and 4.6% of SNPs have been reported to 

statistical power in GWAS data analysis by integrating multiple 

from two aspects. First, a direct pool of samples from multiple GWAS 

existing methods (e.g. [19]) require the availability of all genotype data 

privacy restrictions on sharing individual-level data.

In this work, we aim at improving statistical power of identifying 
associated markers for the given GWAS data by integrating information 
from other GWAS, where only the summary statistics rather than the 
geneotype data of some GWAS are needed. We propose a penalized 

proposed approach is that genetically related traits can share common 
genetic bases [18,20], which enables us to borrow information from 
some related GWAS when analyzing the trait of primary interest. 
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Abstract
Over one thousand genome-wide association studies (GWAS) have been conducted in the past decade. Increasing 

biological evidence suggests the polygenic genetic architecture of complex traits: a complex trait is affected by many risk 
variants with small or moderate effects jointly. Meanwhile, recent progress in GWAS suggests that complex human traits 
may share common genetic bases, which is known as “pleiotropy”. To further improve statistical power of detecting risk 
genetic variants in GWAS, we propose a penalized regression method to analyze the GWAS dataset of primary interest 
by incorporating information from other related GWAS. The proposed method does not require the individual-level of 
genotype and phenotype data from other related GWAS, making it useful when only summary statistics are available. 

method. Simulation studies showed that the proposed approach had satisfactory performance. We applied the proposed 
method to analyze a body mass index (BMI) GWAS dataset from a European American (EA) population and achieved 
improvement over single GWAS analysis.
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Algorithm

Now we present our algorithm for parameter estimation in the 
above model. Noticing that objective function (1) is jointly convex in 
(B, σ1, . . . , σk), it is very convenient for us to use an alternating strategy 

k, k=1, . . . , q, we optimize (1) with 
k 

Fixing ˆ ( 1, , )k k k q , the optimization problem becomes

               (2)

Since 
1=

p

j
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gradient method [22]. 

Let
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gradient algorithm solves optimization problem (2) iteratively using 
the proximal operator of g(B):
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where the superscript m indicates the mth iteration, τ is the Lipschitz 
constant of f (B) and
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Is the gradient of f (B) evaluated at B(m-1). Note that
( 1) ( 1)1 )(B

τ
− −m mB f is q × p matrix which does not involve the 

optimization variable B. Let its ( )m
jG  denote the j-th column of

( 1) ( 1)1 )(B
τ

− −m mB f

into p separate optimization problems and be solved analytically:

              (4)

To further accelerate the convergence of the above proximal 
gradient algorithm, we use the accelerated proximal gradient algorithm 
(APG) [22], where two points {B(m-1), B(m-2)

of the APG algorithm is given in Algorithm 1.

Algorithm 1: Accelerated proximal gradient algorithm (APG)

Lipschitz constant 1 1

1 1 2

1 1max , , ,
ˆ

 =
ˆ ˆ
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and t1=1, where 
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is the maximum eigenvalue of matrix 1 1

1 1ˆ
X X
n

for m ≥ 1 do

GWAS together and use a group-Lasso penalty to integrate information 

study and real data analysis, we showed that the proposed method had 
advantage over single-GWAS analysis.

Material and Method
Model

Suppose we have q GWAS, in which we have complete data for 
GWAS 1, including its genotype data and phenotype data, and only 

1
1 

ny
and 1

1 

n pX  be the phenotype vector and genotype matrix of GWAS 
1, respectively, where n1 is the sample size of GWAS 1. Let 

p
kz be 

th GWAS, k=2, . . . , q.

Consider a linear model between the phenotype y1 and genotype 
X1 of GWAS 1,

y1 =X1b1+e1,

2
1 1 0,  ,e N I

Where 1
pb 

1
1 

ne is the error 
term 2

1  denotes the noise variance. For the rest of GWAS with only 
summary statistics, we assume that 

p
kz  is an estimate of the true 



p
kb  with noise 

p
ke , i.e.,

zk=bk+ek,

2
1 1 0,  ,e N I

where 2
k  denotes the noise variance for the k-th GWAS, k=2, . . . , q. 

Here we use a simple example to illustrate the key idea. Suppose the 

1  , '0. . . ,0 ,8.0 ,3.0 ,4.0 ,1.0   =b

2 ,0 , ' . . . ,0 ,6.0 ,5.0 ,2.0 ,3.0=b

3 '.0, . . . ,0 ,9.0 ,7.0 ,1.0 ,5.0   = −b

1, b2 and b3 can improve the statistical power 
of identifying risk variants as the same loci consistently produce 

this toy example, we have 1 '0.5 ,3.0 ,1.0 = −B as the vector of the true 

1 1.0 ',2.0 ,4.0  =B  for the second group, 
and Bj for the j-th group, j=1, .. . , p. For convenience, we denote 

1 2  ,  ,  . . . ,  '  = 

q p
qB b b b  q

jB is the 
j-th column.

To integrate information from multiple GWAS, we propose the 
following optimization problem

Where γ is the regularization parameter controlling the sparsity of 

closely related to the scaled Lasso problem [21]. Here we emphasize 
on integration of information from multiple GWAS and use the group 
penalty to achieve this goal.
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Let  1 2( , , , )′= …  

qB b b b  be the solution of Algorithm 1. Fixing B at B , 
we can take the derivative of (1) with respect to σk, k=1, . . . , q and set 
them to zeros, yielding the following updating equations:

11 1 1
1

1ˆ ,σ = − y X b
n                   (5)

1ˆ , 2, , .σ = − = …

kk kz b k q
p

                  (6)

 Based on the above alternative optimization strategy, we now 
summarize the overall working algorithm in Algorithm 2.

Algorithm 2: Working Algorithm to Solve (1)
(0)ˆ , 1, ,σ = …k k q  using the null model.

for l ≥ 1 do

1. Using Algorithm 1 with ( 1)ˆ , 2, ,σ − = …l
k k q  to optimize (2) that 

results 
( )

, 1, ,= …

l
kb k q .

2. With 
( )

, 1, ,= …

l
kb k q  we can update σk, k=1, . . . , q using (5).

end

For the tuning parameter γ, we searched for optimal settings using 
[ , ]γ γmax max , where 

E=0.05 in our experiment, and γmax is the minimum γ such that all the 
elements in B are estimated to be zero. A sequence of 100 γ values is 
generated equally in the log-space of [ , ]γ γmax max
chosen according to the criteria that the minimum prediction error in 
primary GWAS is selected.

Simulation Study
We conducted a simulation study to evaluate the performance of 

the proposed method. For comparison, we also considered scaled Lasso 
on one GWAS with genotype data. We simulated two sets of genotype 
data, one for GWAS with genotype and one for summary statistics of 
GWAS. In the simulation study, we set n1=500 with n2=500 or n2=2000 
for the sample sizes of two GWAS, while we set the number of SNPs to 
be p=5000 or p=10000. We considered the auto-regressive correlation 

ρ|j-k|. For block AR, we set block size to be 20 equally distributed 

a block is set to ρ|j-k| and 0 otherwise. We considered three scenarios 
with ρ=0.2, 0.5 and 0.8, corresponding to weak, moderate, and strong 
correlations, respectively. SNPs in the simulation study were generated 
with a two-stage procedure [11]. First, we drew the predictor vector xi 

0, 1, or 2 according to whether xij<-c,-c ≤ xij ≤ c, or xij

under normal distribution in the way that signal-to-noise ratio was 

we normalized the genotype such that 0=∑
n

ij
i

x  and std( ) 1 /=jx p . 

Finally, we generated the quantitative trait using the linear model,

yk=Xk bk+ek, k=1, . . . , q,

where ek was the error term under normal distribution with mean zero. 
In both correlation structures, there were ten trait-associated markers 
and in block AR, each of the ten blocks contained one trait-associated 
marker. For the second dataset, we applied the single-marker analysis 
and obtained the summary statistics for the integration, in which we 
only used this partial information without knowledge of genotype data.

combinations of correlation structures (AR and block AR), the 
sample size of the second GWAS n2 and the total number of SNPs p 
for comparing the proposed method with the scaled Lasso. We used 
area under the curve (AUC) to show the selection performance. We 

2) of observed values 

in Figure 1. As indicated by AUC and r2, the proposed method has 

selection and prediction performance of the proposed method can 
further improve as the sample size of the second GWAS n2 increase 
from 500 to 2000, which indicates the proposed pIGWAS method is 

Real Data Analysis
We applied our pIGWAS method to the quantitative trait-body 

mass index (BMI). We primarily used European American (EA) sam-
ples from two GWAS-Study of Addiction: Genetics and Environment 
(SAGE) and the Collaborative Study on the Genetics of Alco- holism 

web- site of Genetic Investigation of Anthropometric Traits (GIANT) 
consortium (http://www.broadinstitute.org/collaboration/giant/index.

were 656,848 SNPs with minor allele frequency (MAF) ≥ 0.01 and p-
value ≥ 0.001 for Hardy-Weinberg equilibrium test in both GWAS 
data. For summary statistics from GIANT, we used SNPs with no miss-
ing values in MAF. Overall, there were 619,651 SNPs used in all chro-
mosomes satisfying the pruning criteria in genotype data and existing 

plots for log10 p-value and β̂  using conventional marginal analysis for 
GWAS data are given in Figure 2. Obviously, there is not a rich set of 

upper panel of Figure 2) compared to the meta-analysis conducted in 
[25] (the lower panel of Figure 2).

First, we performed pIGWAS using combined GWAS data of SAGE 

the EA samples containing genotype data with corresponding summary 

conducted chromosome by chromosome. We also evaluated the 
relative stability of the selected SNPs using random sampling [26]. 

times. For each SNP, we were able to calculate the proportion of times 

|| ||

|| ||
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  Figure 1: Boxplots of areas under the curve (AUC) and r2 under different combinations of n2, p and correlation structure (AR, Block AR).
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Figure 2: Manhattan plots of SAGE-COGA and GIANT. Upper panel: Manhattan plots of the summary statistics (coefficient β and p-value) from SAGE-COGA. Lower 
panel: Man- hattan plots of the summary statistics (coefficient β and p-value) from GAINT.

SNP Chr Position Genea Band pIGWAS Scaled Lasso
rs11588887 1 157983786 CRP q23.2 1.39 0.99 3.49 0.99
rs1254207 1 234434850 GPR137B q42.3 -0.36 0.84 -0.78 0.75
rs2477586 1 234451564 ERO1LB q42.3 -0.32 0.81 -0.61 0.73
rs1860875 7 21078168 RPL23P8 p15.3 0.23 0.70

rs2390470 7 21088622 RPL23P8 p15.3 -0.06 0.34

rs2192300 7 121194239 PTPRZ1 q31.32 -0.14 0.81

rs1054611 12 10061428 CLEC12B p13.2 0.10 0.78 0.09 0.66
rs4565970 12 81715248 TMTC2 q21.31 0.03 0.56 0.01 0.52
rs12370680 12 83436479 MIR548T q21.31 0.25 0.87 0.35 0.83
rs4393415 12 102464392 STAB2 q23.3 0.10 0.72 0.13 0.60
rs4405407 12 102466587 STAB2 q23.3 0.04 0.60 0.03 0.40
rs1336850 13 22680577 SGCG q12.12 -1.19 0.86

rs622227 13 27937214 FLT1 q12.3 1.00 0.78

rs1058214 13 38885772 LHFP q13.3 1.32 0.80

rs7323630 13 39747343 LINC00548 q14.11 -0.16 0.59

rs4473069 13 43009971 ENOX1 q14.11 -0.03 0.40

rs2786712 13 44192569 LINC00330 q14.11 -0.18 0.56

rs1330476 13 81854308 SLITRK1 q31.1 -0.04 0.61

rs9531358 13 81964898 SLITRK1 q31.1 -0.14 0.89 -3.55 1.00
rs2777825 13 83099526 SLITRK1 q31.1 -1.20 0.83

rs9531489 13 83152986 SLITRK1 q31.1 -0.57 0.62

rs9546479 13 83154395 SLITRK1 q31.1 -0.03 0.33

rs9319013 13 83522913 MIR548F1 q31.1 -0.29 0.55

rs723576 13 95002092 CLDN10 q32.1 -0.11 0.47

rs1547166 13 95071328 DZIP1 q32.1 -0.37 0.46

rs7338545 13 95073552 DZIP1 q32.1 -0.16 0.39

rs8018440 14 32981820 NPAS3 q13.1 0.25 0.71 0.03 0.52



Citation: Liu J, Wang F, Gao X, Zhang H, Wan X, et al. (2015) A Penalized Regression Approach for Integrative Analysis in Genome-Wide Association 
Studies. J Biomet Biostat 6: 228. doi:10.4172/2155-6180.1000228

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 6 of 7

Volume 6 • Issue 2 • 1000228

rs4903707 14 39909619 FBXO33 q21.1 0.57 0.78 0.38 0.73
rs9944120 14 40082198 FBXO33 q21.1 0.04 0.51

rs7149526 14 80098349 CEP128 q31.1 0.00 0.47

rs1951980 14 95322780 TCL1A q32.13 -1.47 1.00 -1.54 0.97
rs1345300 16 8671929 ABAT p13.2 -0.10 0.68

rs2283557 16 24273067 CACNG3 p12.1 -0.01 0.63

rs4784651 16 54869275 GO1 q13 0.15 0.42

rs9922112 16 54872188 GO1 q13 0.10 0.39

rs2587878 16 54872860 GO1 q13 -0.16 0.46 -0.02 0.48
rs8047093 16 59619195 CDH8 q21 0.09 0.64

rs8044561 16 70108642 CHST4 q22.3 0.18 0.28

rs310334 16 70131048 CHST4 
0.11769305

q22.3 0.12 0.29

rs2432524 16 70141834 CHST4 q22.3 1.36 0.92 1.66 0.97
rs8056272 16 72267976 LOC100506172 q22.3 0.04 0.50

rs12928065 16 77094975 WWOX q23.1 -0.13 0.61 -0.02 0.52
rs933374 17 13742206 CDRT15P1 p12 0.04 0.69 0.16 0.65
rs9889937 17 18512091 FOXO3B p11.2 0.00 0.58 0.01 0.58
rs4792855 17 40815480 ARHGAP27 q21.31 -0.18 0.87 -0.48 0.87
rs17673185 17 48822712 MIR548AJ2 q22 -0.02 0.57 -0.12 0.55
rs7265169 20 312747 TRIB3 p13 0.09 0.63

rs459012 20 410008 CSNK2A1 p13 0.25 0.59

rs6053384 20 5354093 LINC00658 p12.3 0.83 0.82 0.75 0.80
rs1555669 20 12598312 SPTLC3 p12.1 0.01 0.41

rs6074541 20 12926517 SPTLC3 p12.1 -0.01 0.46

rs6081333 20 18660916 DTD1 p11.23 -0.38 0.72 -0.16 0.57
rs2067845 20 19446645 SLC24A3 p11.23 0.88 0.91 0.83 0.81
rs6035387 20 19524045 SLC24A3 p11.23 0.22 0.46 0.03 0.42
rs6515030 20 19529688 SLC24A3 p11.23 0.39 0.67 0.23 0.51
rs942990 20 19533661 SLC24A3 p11.23 0.07 0.32

rs199575 20 19902601 RIN2 p11.23 -0.11 0.73

rs56916 20 19936892 RIN2 p11.23 1.15 0.90 1.26 0.82
rs199572 20 19940313 RIN2 p11.23 0.17 0.42

rs200175 20 19949483 A20 p11.23 0.45 0.54 0.21 0.35
rs6050359 20 25070945 LOC284798 p11.21 0.33 0.50 0.10 0.41
rs6050372 20 25081225 LOC284798 p11.21 0.77 0.81 0.84 0.88
rs6050418 20 25118643 LOC284798 p11.21 0.48 0.62 0.36 0.63
rs3787076 20 25143018 ENTPD6 p11.21 0.37 0.68 0.07 0.57
rs2073077 20 25143913 ENTPD6 p11.21 0.13 0.54

rs6022419 20 36083479 TTI1 q11.23 -0.08 0.67

rs6030352 20 40658434 PTPRT q12 0.66 0.87 0.52 0.71
rs1010310 20 44268451 CDH22 q13.12 -0.02 0.48

rs846743 20 48768050 PARD6B q13.13 -0.13 0.59

rs6021702 20 50145309 ZFP64 q13.2 -0.13 0.64

rs7268780 20 56735571 STX16-NPEPL1 q13.32 0.03 0.65

rs2823209 21 15586648 NRIP1 q21.1 0.24 0.66 0.22 0.54
rs2823216 21 15591805 NRIP1 q21.1 0.34 0.74 0.30 0.60
rs463370 21 30177240 GRIK1 q21.3 1.40 0.95 1.51 1.00

a Gene names that SNPs belong to or are closest to.

Table 1: SNPs selected incorporating summary statistics from public available source by using pIGWAS and SNPs selected using scaled Lasso for GWAS with genotype.
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that the SNP was associated with the trait out of 100 samplings, i.e., 
the observed occurrence index (OOI). For comparison, we conducted 
single data analysis of GWAS with EA samples using scaled Lasso, 
and evaluated its relative stability of the selected markers using the 
OOI. The associated markers identified by integrative and single data 
analysis were listed in Table 1. The average OOI of SNPs selected by 
pIGWAS is 0.649 while that of SNPs selected by scaled Lasso is 0.648, 
suggesting a limited improvement of pIGWAS over scaled Lasso on 
the COGA-SAGE data set. There may be two reasons for this. First, 
the GWAS signals of BMI from the COGA-SAGE may be too weak 
to be distinguished from noise (Figure 1). Second, the pleiotropic 
effects between BMI and height may not be strong enough to boost 
the power of pIGWAS. It is expected that pIGWAS could achieve a 
better performance in presence of well-powered GWAS signals and 
pleiotropy information.

Conclusion
GWAS suffer from low statistical power due to the individual 

weak effects of genetic variants. In this study, we proposed a statistical 
approach to jointly analyzing primary GWAS data with summary 
statistics together from other source. The key idea of the proposed 
approach lies on the existence of pleiotropic effects of genetic variants, 
which allows us to borrow information from genetically related GWAS. 
Specifically, we proposed a novel penalized regression that combines 
multiple GWAS together. The computationally efficient algorithm is 
derived for optimizing the model parameters. Based on both simulation 
study and real data analysis, we demonstrated the advantages of the 
proposed method over single-GWAS analysis.
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