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Introduction
It is commonly known that statistical designs where the sample size 

is random pose challenges beyond the fixed sample-size case and that 
many findings are counter-intuitive. While this has been documented 
for situations where the sample size depends on the data, such as in 
sequential trials [1,2] or incomplete data [3], it is less widespread 
that such counterintuitive results apply even when the sample size 
is completely random, Barndorff-Nielsen and Cox, in the sense that 
both the collected and uncollected data have no relationship to the 
stochastic mechanism governing the sample size. Liu and Hall [4] 
provided a general theory for sequential studies, where the decision 
to either stop or continue the study at every interim look depends 
deterministically on the data collected up to that point. Molenberghs 
et al. [5] generalized their results to the setting where the sample 
size may depend stochastically rather than deterministically on the 
observed data, a general setting that contains both sequential trials and 
completely random sample sizes (CRSS) as special cases. This means 
that the probability to stop is a function of the observed data. In other 
words, a coin is tossed to either stop or continue, but the probability 
to ‘land on heads’ of the coin is determined by the data observed thus 
far. We refer to these three settings together as a stochastic stopping 
rule. In practice, the deterministic stopping rule may be of highest 
relevance (e.g., in group sequential clinical trials). Also the CRSS may 
occur in practice, for example, in settings where a fixed time for the 
experiment is available, rather than a fixed sample size. Nevertheless, 
the stochastic stopping rule is technically convenient, because it allows 
to derive results for the deterministic case as a limit. Derivations for 
the stochastic rule are mathematically convenient. Molenberghs et 
al. [5] also discussed the related cases of incomplete longitudinal 
data, censored time-to-event data, joint modeling of survival and 
longitudinal data, and clustered data with random cluster sizes. 

An important finding of Liu and Hall [4] was that the commonly used 
sufficient statistics in deterministic stopping designs are incomplete, 
a property that will be defined in the next section. Molenberghs et 
al. [5] generalized this to stochastic stopping rules and explore the 
implications of this for linear estimators based on the sample sum as 
well as on so-called marginal and conditional estimators. They found 
for stochastic stopping rules that the counterintuitive implications of 
a random sample size follows from two properties: (a) excluding the 
CRSS case, the sample size is non-ancillary given the sample sum; (b) 
the pair consisting of the accumulating sample sum and the sample 
size is an incomplete minimal sufficient statistic. These properties are 
defined in Section 2. 

The work of Liu and Hall [4] and Molenberghs et al. [5] was 
confined to the special case of normally distributed outcomes. 
Further, Molenberghs et al. [5] illustrated their developments with a 
random stopping rule of probit form. These specific choices allow for 
insightful expressions. The latter choice is not, however, necessary for 
deterministic stopping rules that can be cast in the form of continuation 
and stopping regions or, equivalently, the boundaries between them. 

While the restriction to normally distributed outcomes was a 
natural choice, in practice, various data types occur as well (binary, 
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Abstract
Often, sample size is not fixed by design. A key example is a sequential trial with a stopping rule, where stopping 

is based on what has been observed at an interim look. While such designs are used for time and cost efficiency, 
and hypothesis testing theory has been well developed, estimation following a sequential trial is a challenging, still 
controversial problem. Progress has been made in the literature, predominantly for normal outcomes and/or for a 
deterministic stopping rule. Here, we place these settings in a broader context of outcomes following an exponential 
family distribution and, with a stochastic stopping rule that includes a deterministic rule and completely random sample 
size as special cases. It is shown that the estimation problem is usually simpler than often thought. In particular, it is 
established that the ordinary sample average is a very sensible choice, contrary to commonly encountered statements. 
We study (1) The so-called incompleteness property of the sufficient statistics, (2) A general class of linear estimators, 
and (3) Joint and conditional likelihood estimation. Apart from the general exponential family setting, normal and binary 
outcomes are considered as key examples. While our results hold for a general number of looks, for ease of exposition, 
we focus on the simple yet generic setting of two possible sample sizes, N=n or N=2n. 
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and N be the realized sample size, that is, N=n or N=2n. A joint model 
for the stochastic outcomes is 

( , | , ) = ( | ) ( | , )f y N f y f N yθ ψ θ ψ⋅ 		                (1)

= ( | , , ) ( | , ).f y N f Nθ ψ θ ψ⋅ 			                 (2)

 The sample sum is denoted by κ . If necessary, a subscript will 
indicate over which batch the sample is calculated. Molenberghs et 
al.[5] noted the similarity with missing-data concepts, where (1) is a 
selection model factorization and (2) is a pattern-mixture factorization 
[3]. In all cases, it is assumed that f (N| y, ψ)=f (N| y°, ψ)depends on 
observed outcomes only, and hence the sample size is determined by 
the first batch of observations. Y1, …, Yn We may then write f (N| κn, ψ). 
This corresponds to the frequentist concept of missingness at random 
[Little and Rubin(2002)]. In the limiting case of a deterministic stopping 
rule, f (N| y, ψ). is degenerate and f (N=n| y, ψ)equals 1 when Kn ∈ S ⊂ 
IR and 0 over its complement C, with the reverse holding for f (N=2n| 
y, ψ). The CRSS case follows by assuming Y and N to be independent, 
meaning that both factorizations (1) and (2) trivially reduce to f (y| θ) 
⋅f (N| ψ). 

In the stopping-rule case ψ is not estimable from the data and will 
be assumed to be specified by design. This is different for the other 
settings that can also be cast in terms of (1)–(2), such as incomplete 
longitudinal data, clusters of random size, censored time-to-event data, 
joint models for longitudinal and time-to-event data, and random 
measurement times settings, as noted by Molenberghs et al.[5]. In these 
cases, a subject-specific index i  needs to be introduced into (1)–(2) 
and N needs to be replaced by the missing data indicators, censoring 
indicators, and so on. 

Basic concepts

In line with Molenberghs et al. [5], we will review several 
fundamental concepts that are essential in what follows. 

In line with [Rubin(1976)], we consider ignorability. For pure 
likelihood or Bayesian inferences, under missingness at random 
(MAR), inferences about θ can be made using ( | )o

if y θ  only, without 
the need for an explicit missing-data mechanism or, in our case, 
without the need for an explicit sample-size model. This is, provided 
the regularity condition of separability holds true, i. e., that the 
parameter space of (θ′, ψ′)′ is the Cartesian product of their individual 
product spaces. In other words, this means that the sample size model 
does not contain information about the outcome model parameter. It 
implies that N could then be considered ancillary in the sense of Cox 
and Hinkley[6]. We will see that this is true for CRSS, but not for the 
other situations. Excluding MNAR, ignorability can be violated in 
three ways. First, even in the likelihood and Bayesian frameworks and 
under MAR, ignorability does not apply in a non-separable situation. 
Second, frequentist inferences are not necessarily ignorable under 
MAR. Third, assuming MAR and separability hold and we are in a 
likelihood or Bayesian framework, ignorability in the selection model 
decomposition (1) does not translate to the pattern-mixture model (2), 
as is clear from the presence of both θ and ψ in both factors of (2). 
The latter statement is symmetric and could be made starting from a 
pattern-mixture view as well. The bottom line is that ignorability holds 
in at most one of these, except in the trivial MCAR setting, such as for 
CRSS. 

There is a connection between ignorability and ancillarity [6]. They 
define an ancillary statistic T to be one that complements a minimally 
sufficient statistic s such that, given s, Tdoes not contain information 

categorical, count, time-to-event), but one cannot simply assume 
that the normal-distribution-based properties simply will carry over. 
Extending the results in [4] presented a general deterministic stopping 
rule theory where the outcome follows a one-parameter exponential 
family, and also established incompleteness for this case. This implies, 
in particular, that there are infinitely many unbiased estimators, none 
with uniformly minimum variance. Here, we show incompleteness 
in the exponential family case, for a stochastic stopping rule, and 
derive explicit results for linear estimators as well as for marginal 
and conditional likelihood estimators. These general findings are 
then further illustrated in the normal case, making the connection to 
Molenberghs et al. [5], and in the case where the outcomes are binary, 
and hence the sample sum is binomial. In doing so, we extend the work 
by Molenberghs et al. [5] to most commonly encountered data types. 

Our findings are essentially as follows. The classical sample average 
is biased in finite samples, though asymptotically unbiased for a broad 
classes of stopping rules. An unbiased estimator follows from the 
conditional likelihood, where the conditioning is on the (non-ancillary) 
sample size. Contrary to intuition, the conditional estimator has larger 
mean squared error than the ordinary sample average for sufficiently 
large sample size, the latter resulting from the joint likelihood, where 
‘joint’ means a simultaneous model for the outcomes and the sample 
size. In some cases, the result holds for all sample sizes, large and small. 
Thus, the sample average is a valid and sensible estimator, contrary 
to some claims in the sequential-trial literature, for stochastic and 
deterministic stopping rules. The literature on sequential trials is 
indeed very large, with a relatively early review given by Whitehead. 
[Tsiatis, Rosner, and Mehta(1984)] and [Rosner and Tsiatis(1988)] 
address precision estimation after group sequential trials. Emerson and 
Fleming [2] propose estimators within an ordering paradigm. Much 
of this work is placed in a unifying framework by Liu and Hall [4]. A 
review can be found in Molenberghs et al. [5]. 

The finite-sample bias in the sample average disappears only in the 
CRSS case. Even then, it is not unique in that a whole class of so-called 
generalized sample average estimators can be defined, all of which are 
unbiased. This enables us to show that the ordinary sample average 
is only asymptotically optimal. Indeed there is no uniformly optimal 
unbiased estimator in finite samples for most exponential-family 
members; the exponential distribution is a noteworthy exception. 

The case of two possible sample sizes, N=n and N=2n is simple yet 
generic, and will be adopted here, essentially without loss of generality. 
All developments can be generalized with ease to the setting with L  
possible sample sizes and accrual numbers n1, …, nL. 

The remainder of this paper is organized as follows. In Section 2, 
the problem under investigation is formally introduced, along with key 
concepts. The incompleteness of the sufficient statistics is established 
in Section 3. Section 4 is devoted to generalized sample averages, while 
joint and conditional likelihood estimation is the topic of Section 
5. In each of Sections 3–5, the general exponential family case is 
supplemented with the particular case of the normal and Bernoulli 
distributions. 

Notation, Basic Concepts and Problem Formulation
As stated in the introduction, we consider a simple sequential 

trial, where n measurements Yi are observed, after which a stochastic 
stopping rule is applied and, depending on the outcome, another set 
of n measurements is or is not observed. Let Y be the (2n ×1) vector of 
outcomes that could be collected, with the sample sum denoted by  , 



Citation: Milanzi E, Molenberghs G, Alonso A, Michael GK, Verbeke G, et al. (2016) Properties of Estimators in Exponential Family Settings with 
Observation-based Stopping Rules. J Biom Biostat 7: 272. doi:10.4172/2155-6180.1000272

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 3 of 11

Volume 7 • Issue 1 • 1000272

about the parameter of interest. Arguably the best known example is 
the sample size T=n when estimating a mean, provided the sample size 
is fixed by design or the law governing it does not depend on the mean 
parameter to be estimated, as with CRSS. Counterexamples are the 
stochastic and deterministic stopping rules. 

The crucial property for Liu and Hall [4], Molenberghs et al.[5], 
as well as for us here is that of completeness [7]. A statistic s (y) of a 
random variable Y, with Y belonging to a family Pθ, is complete if, for 
every measurable function g(.), E[g{s (Y)}]=0 for all θ, implies that Pθ 
[g{s (Y)}=0]=1 for all θ . The relevance of completeness for us surfaces 
in two ways. First, from the Lehman-Scheffé theorem [7], if a statistic 
is unbiased, complete, and sufficient for some parameter θ, then it is 
the best mean-unbiased estimator for θ. The lack of this property in 
the stopping-rule case will manifest itself when studying generalized 
sample averages in Section 4. Second, completeness and ancillarity are 
connected through Basu’s theorem [7, 8]: a statistic both complete and 
sufficient is independent of any ancillary statistic. 

General model formulation

Assume that we collect n i. i. d. observations Y1, . ., Yn, with 
exponential family density 

{ }( ) = ( )exp ( ) ,f y h y y aθ θ θ− 			                  (3)

where θ is the natural parameter, α (θ)the mean generating function, 
and h(y) a normalizing constant. Assume a stochastic stopping rule 

( )( = | ) = ( | ) = ,n n nN n k F k F kπ ψ 			                 (4)

with =1
=∑ n

n ii
K Y . The form for (4) is left unspecified at this time. The 

CRSS setting follows as F(kn) ≡ F, a constant. Likewise, when F(.) is 
degenerate, a deterministic stopping rule ensues. When the trial is not 
stopped, a further n observations Yn+1, …., Y2n

 are collected, also with 
density (3). The inferential goal is to estimate θ or a function of this, 
such as the population mean µ . From the exponential-family structure, 
the density of Kn can be expressed 

{ }, ( ) = ( ) exp ( ) .n nf k h k k naθ θ θ− 			                  (5)

When no ambiguity can arise, the subscript n may be dropped 
from Kn . Because the density integrates to 1, it trivially follows that 

{ }( ) = ( ) = ( ) .na k
n ne h k e dk L h kθ θ∫ 			                  (6)

While expression (6) is well known to be a Laplace transformation, 
it is useful to state it explicitly in preparation of the derivations in 
Section 3. Because the stopping rule depends on Kn, and because (4) 
combined with the outcome model is a pattern-mixture factorization 
(2), N is not ancillary to K. 

When, in addition, the conditional probability of stopping is 
chosen to have an exponential family form, e.g., 



= ( )

1=
( ) = ( ) = ( ) ,

z A k

n z
F k F k f z dz

−∞∫ 			                   (7)

 then an appealing form for the marginal stopping probability can 
be derived. Here 1( )f z  can be seen as an exponential family member, 
underlying the stopping process. When the outcomes Y and hence K 
do not range over the entire real line, the lower integration limit in 
(7) should be adjusted accordingly, and the function A(K) should be 
chosen so as to obey the range restrictions. It is convenient to assume 
that 1( )f z  has no free parameters; should there be the need for such, 
then they can be absorbed into A(K) . Hence, we can write 

  { }11( ) = ( )exp (0) .f z h z a− 				                 (8)

Using (5) and (8), the marginal stopping probability becomes: 



= = ( )

, 1= =
( = ) = ( ) ( )

k z A k

nk z
P N n f k f z dzdkθ

+∞

−∞ −∞∫ ∫
{ } 

= = ( )
1

= =
= exp ( ) (0) ( ) ( )

k z A k k
nk z

na a h k h z dz e dkθθ
+∞

−∞ −∞

 − −   ∫ ∫
{ } { }1= exp ( ) (0) ( ( )) ( ) ,nna a L H A k h kθ− − ⋅ 		                (9)

where 


=
11 =

( ) = ( ) .
z t

z
H t h z dz

−∞∫
In the special case of a CRSS, ( )A k A≡  and (9) reduces to 

{ } { }1( = ) = exp ( ) (0) ( ) ( )nf N n na a H A L h kθ− −

{ } 

( )
1 1=

= exp ( ) (0) ( ) = ( ) .
Ana

k
na a H A e f k dkθθ

−∞
− − ∫

In our two special cases, (3) will be chosen as standard normal 
and Bernoulli, respectively. In the first of these, in concordance with 
Molenberghs et al. [5], (4) will be assumed to be of probit form: 

( ) = .kF k
n

α β Φ + 
 

				                 (10)

In the binary case, we will generally leave (4) unspecified, but for 
some developments it is useful to consider an explicit example, for 
which we will resort to the beta distribution, i. e., 



1 1

1
(1 )( ) = ,
( , )

z zf z
B

α β

α β

− −− 				                  (11)

with B(⋅, ⋅) the beta function. It is convenient to choose integer values, 
for illustrative purposes: α=P + 1, β=q + 1 with P and q integers, 
changing (11) to: 



1( ) = ( 1) (1 ) .p qp q
f z p q z z

p
+ 

+ + − 
 

			                (12)

Choosing (12) leads to the conditional stopping probability: 

1

=0

( 1)( ) = ( 1) ( ) .
1

q
pp q q

F k p q A k
p p

+ ++   −
+ +    + +   

∑








	             (13)

It is instructive to consider some special cases of this. When 
p=q=1, (12) reduces to the uniform distribution on the unit interval, 
and it immediately follows that F(k)=A(k). When p=1 and q=0, we find 
F(k)=A(k)2. As a third and last instance, when p=q=1, F(k)=3A(k)2-
2A(k)3. 

A useful function is A(k)=k/n, implying that stopping is certain 
when K=n and continuation is certain when K=0, while for 0<K<n 
stopping is probabilistic. The actual probability in these cases depends 
on the choice for p and q. 

These choices are made to illustrate our general developments and 
our emphasis is not on, say, designing a particular trial. However, the 
class of beta-based stopping rules, for example, potentially leads to rich 
families of stopping rules and spending functions [9]. 

Incomplete Sufficient Statistics
The general case

We now consider the role of completeness in this setting, building 
upon the work of Liu and Hall [4], Liu et al. and Molenberghs et al. 
[5]. A sufficient statistic for this setting is (K, N). In line with the 
developments in the above papers, the joint distribution for (K, N) is: 

( , ) = ( ) ( ),np k n f k F k⋅ 				                  (14)

2( , 2 ) = ( ) ( ) ( ) ( ) .n n np k n f k f z f k z F z dz− −∫ 		               (15)
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When the stopping rule leads to range restrictions in the sense 
of Lehman and Stein [10], it is known that the sufficient statistic is 
complete. Hence, for the rest of this section, we assume their necessary 
and sufficient conditions do not hold. It is known that these conditions 
do not hold for the normal distribution, in contrast to classes of 
stopping rules for the Poisson and binomial distributions, for example. 

Assume now that a function g(K, N) exists such that its expectation 
is zero for all values of the parameter and further that integrands 
are not zero almost everywhere over their integration ranges. Such a 
function must satisfy: 

2( , ) ( ) ( ) ( , 2 ) ( )n ng k n f k F k dk g k n f k dk+∫ ∫
( , 2 ) ( ) ( ) ( ) = 0.n ng k n f z f k z F z dk dz− −∫∫ 		                 (16)

Substituting the general exponential form (5) into (16), and using 
(6), leads to 

( ) ( , ) ( ) ( )k k
n nh k e dk g k n h k F k e dkθ θ⋅∫ ∫

2= ( , 2 ) ( ) ( , 2 ) ( ) ( ) ( ) .k k
n n ng k n h k e dk g k n h z h k z F z dz e dkθ θ − − ∫ ∫ ∫          (17)

 Because the left hand side of (17) is a convolution, and using the 
uniqueness of the Laplace transform, we find: 

2

( , ) ( ) ( ) ( )
( , 2 ) = .

( ) ( ) ( ) ( )
n n

n n n

g z n h z h k z F z dz
g k n

h k h z h k z F z dz

−
−

− −
∫

∫
		                (18)

Hence, when g(k, n) is chosen arbitrarily, (18) prescribes the choice 
for g(k, 2n) which leads to a counterexample to completeness, hence 
establishing incompleteness. 

For the CRSS case, when F(k)=F, a constant, and also choosing g(k, 
n)=c, a constant, it follows that 

( , 2 ) = .
1

Fg k n c
F

−
⋅

−

In the limiting case of a deterministic stopping rule, F(Z)=1 over 
the stopping region S and 0 over its set complement C. It then follows 
that (14)–(15) reduce to: 

( , ) = ( ) ( ),np k n f k I k S⋅ ∈ 				                (19)

( , 2 ) = ( ) ( ) .n nC
p k n f z f k z dz−∫ 			               (20)

For the deterministic case, (18) becomes: 

2

( , ) ( ) ( ) ( , ) ( ) ( )
( , 2 ) = = .

( ) ( ) ( ) ( ) ( )
n n n nS S

n n n n nS C

g z n h z h k z dz g z n h z h k z dz
g k n

h k h z h k z dz h z h k z dz

− −
− −

− − −
∫ ∫

∫ ∫
(21)

Expression (21) follows from the fact that, in the deterministic 
case, F(k)=1 over the stopping region S and 0 elsewhere. The transition 
from one denominator to the other follows from observing that the 
convolution of fn(k) with itself produces f2n(k), and then replacing all 
of these by their explicit exponential-family form (5). Alternatively, it 
is easy to show that (21) follows immediately from the definition of a 
function G(K, N) and (19)–(20). 

Evidently, these results agree with Liu et al. for the limiting case of a 
deterministic stopping rule. These authors establish incompleteness for 
the exponential-family setting, under a regularity condition regarding 
the support spaces, which is sufficient but not necessary. Hence, when 
this condition is not satisfied, there may be exceptions to this result 
[11]. This issue falls outside the scope of this paper. 

The implication of these findings is that whenever they hold, the 
Lehmann-Scheffé theorem cannot be applied (Section 2). It follows 

that a best mean-unbiased estimator does not necessarily exist for the 
average. In the next section, it will be shown that this is indeed the case 
for many, but not all outcome distributions and stopping rules, given 
that, for example, the exponential distribution does admit a uniform 
optimum. It will be shown that no optimum exists for the normal case, 
in line with Molenberghs et al. [5], and neither for the Bernoulli and 
Poisson cases, for a wide class of stopping rules. 

The normal case

In this section, we summarize the arguments in Molenberghs et al. 
[5]. The same is true for Sections 4. 2 and 5. 2. Consider the outcome 
to be standard normal with mean  and let stopping be governed by 
(10). They derived from first principles that the marginal probability 
of stopping is: 

2
( = ) = .

1 /
P N n

n
α βµ

β

 + Φ
 + 

			              (22)

This expression also follows as a special case of (9) by choosing 
(10) as the stopping rule, i. e., 1( )f z  as the standard normal density 
and A(k) =α + βk/n, and further , = ,= ( )n nf kθ µ µϕ , where , ( )s kµϕ  is the 
normal density with mean µ and variance s. Details of this derivation 
are provided in Appendix 1. 

Clearly, (22) depends on µ, implying that this pattern-mixture 
formulation is non-separable. In contrast, although the observed data 
are present in the conditional stopping probability, µ is not, implying 
separability in the selection model formulation. 

In this case (14)–(15) takes the form 

2
0

1( , ) = ( , ) exp
2

p N k p N k k nµ µ µ ⋅ − 
 

			               (23)

with 

0 ( , ) = ( ) ,np n k k k
n
βφ α ⋅Φ + 

 
			                (24)

0 2 2
2(2 , ) = ( ) 1 , .

2
2

n

k
np n k k

n
n

βα
φ

β

  
  +
  ⋅ −Φ
  +  
   

		               (25)

Here, φs(k) is the normal density with mean 0 and variance s. 
Expression (25) is more explicit than (15), making use of the fact 
that the outcome densities are normal and the stopping probability is 
written as a normal cumulative distribution function. The derivation 
can be found in Molenberghs et al. [5]. Based on the fact that integrating 
the joint densities specified by (23)–(25) over k and summing over N 
should be equal to one, leads to the identity: 

, ,2 2
2( ) = ( ) , .

2
2

n n

k
nk k dk k dk

n n
n

µ µ

βαβϕ α ϕ
β

 
 +

   ⋅Φ + ⋅Φ     + 
 

∫ ∫ 	            (26)

In Section 4. 1, (26) will be derived in general. 

The specific form of condition (18) is: 

0( , 2 ) (2 , ) = ( ) ( , ) ( ) .n ng k n p n k k z g z n z z dz
n
βφ φ α ⋅ − − ⋅ ⋅ ⋅Φ + 

 ∫           (27)

In the CRSS case, (24)–(25) reduce to: 

0 ( , ) = ( ) ,np n k kφ ⋅Φ 				                 (28)
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0 2(2 , ) = ( ) (1 ),np n k kφ ⋅ −Φ 				               (29)

where Φ ≡ Φ(α). Then here, as in the general case, (27) simplifies and 
leads to an explicit solution for a number of cases, especially when g(k, 
n) is chosen to be a constant. 

In addition, for this case, other explicit examples can be constructed, 
even when β ≠ 0 We reproduce the two examples of Molenberghs et al. 
[5] (Appendix 2). 

The binary case

While the binary case follows from the general considerations 
given in Section 3.1, it is insightful to examine this outcome type 
in some detail; here, integration is replaced by summation. Let the 
Bernoulli probability be π. The sample sum k then follows a Bin (π,N) 
distribution and 

, ( ) = (1 ) .k N k
N

N
f k

kπ π π − 
− 

 
				               (30)

For now, as in the general case, we leave F(k) unspecified. The joint 
distribution of (K, N) now takes the form 

( , ) = (1 ) ( ),k n kn
p k n F k

k
π π − 

− 
 

			               (31)



2 22
( , 2 ) = (1 ) ( ) = (1 ) ( ),k n k k n kn

p k n H k H k
k

π π π π− −  
− − −  

  
	            (32)

where 

=0 ( )
( ) = ( ),

k n

z k n

n n
H k F z

z k z

∧

∨ −

  
  −  

∑ 			                 (33)

the meaning of ( )H k  is obvious, a ∨ b=max(a, b), and a ∧ b=max(a, b). 

When stopping rule (13) is chosen, (31) becomes: 

1

=0

( 1)( , ) = (1 ) ( 1) ( ) .
1

q
k n k pn p q q

p k n p q A k
k p p
π π − + ++     −

− + +     + +     
∑









(34)

The marginal stopping probability can be derived by summing (34) 
over k but is generally unwieldy. In the particular case that p=q=0 and 
A(k)=k/n, we find 

( , ) = (1 ) ,k n knkp k n
kn
π π − 

− 
 

				               (35)

222( , 2 ) = (1 ) .
2

k n knn kp k n
kn

π π − −
− 

 
			              (36)

While the derivation of (35) is obvious, that of (36) is less 
straightforward and details are given in Appendix 3-5. From (35), we 
deduce immediately that 

=0

1( = ) = (1 ) = .
n

k n k

k

n
P N n k

kn
π π π− 

− 
 

∑
In other words, this particular choice of conditional stopping rule 

produces essentially the simplest possible marginal stopping probability 
that depends on the parameter π that governs the outcomes. 

The condition for the existence of a non-trivial function g(K, N) 
with expectation zero for all π is a discrete version of (16) and reads: 



2
2

=0 =0
( , ) ( ) (1 ) ( , 2 ) ( ) (1 ) = 0.

n n
k n k k n k

k k

n
g k n F k g k n H k

k
π π π π− − 

− + − 
 

∑ ∑     (37)

Writing γ=π/(1 - π), (37) becomes 



2

=0 =0
( , ) ( ) ( , 2 ) ( )(1 ) = 0.

n n
k n k

k k

n
g k n F k g k n H k

k
γ π γ

 
+ − 

 
∑ ∑ 	               (38)

Using the discrete-data version of (6), i. e., 

=0
(1 ) = ,

n
n k

k

n
k

π γ−  
−  

 
∑

it follows that 



2 2

=0 =0 ( ) =0
( , ) ( ) = ( , 2 ) ( ) .

n k n n
k k

k z k n k

n n
g z n F z g k n H k

z k z
θ θ

∧

∨ −

   
−    −   
∑ ∑ ∑

Owing to equality of polynomial coefficients, we find: 



=0 ( )
( , ) ( )

( , 2 ) = ,
( )

k n

z k n

n n
g z n F z

z k z
g k n

H k

∧

∨ −

  
  −  −

∑

the discrete-data version of (18). In other words, an example has been 
constructed that establishes incompleteness. 

Generalized Sample Averages

The general case
To underscore the impact of incompleteness of the statistics (K, N), 

Molenberghs et al. [5] generalized the sample average (3) to 

[ ] ( = ) ( = 2 )= ( = ) ( = 2 ) = ,
2

K c I N n d I N nc I N n d I N n K
N n n

µ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ +  
  (39)

for some constants c and d. We will refer to it as the generalized sample 
average (GSA). The ordinary sample average follows as c=d=1. In this 
section, (39) will be considered from a general exponential-family 
perspective. Sections 4. 2 and 4. 3 bring out some further specifics for 
the normal and Bernoulli cases, respectively. 

From (5), the mean follows as = ( ) /aµ θ θ∂ ∂ . The expectation is: 

2( ) = ( ) ( ) ( ) ( ) ( ) ( ) .
2 2n n n n

c d dE kf k F k dk kf k dk kf z f k z F z dk dz
n n n

µ + − −∫ ∫ ∫∫   (40)

This form can be simplified. We will derive two identities that are 
useful here and in what follows. Because integrating (14)-(15) over K 
and summing over N should lead to unity, it follows that 

( ) ( ) = ( ) ( ) ( ) .n n nf k F k dk f z f k z F z dk dz−∫ ∫∫ 		               (41)

This equation obviously also follows from first principles. Likewise, 
we have that 

( ) ( ) ( ) = ( ) ( ) ( )n n n nz k
kf z f k z F z dk dz f z F z kf k z dk dz − − ∫∫ ∫ ∫

[ ]= ( ) ( )nz
f z F z n z dzµ +∫

= ( ) ( ),n nn A Bµ µ µ+ 				                 (42)

where 

( ) = ( ) ( ) , ( ) = ( ) ( ) .n n n nA f k F k dk B kf k F k dkµ µ∫ ∫ 	              (43)

Using (42), we can rewrite (40) as 
2( ) = ( ) ( )

2 2n n
c d dE d B A

n
µµ µ µ µ− ⋅

⋅ + − 		              (44)

1= (2 ) = ( = ).
2

Kd c d E N n d P N n
N

µ µ
  

⋅ + − − ⋅ ⋅  
  

	              (45)

While obvious, it is useful to spell out (44)–(45) for the ordinary 
sample average: 

1( ) = ( ) ( )
2 2n nE B A

n
µµ µ µ µ+ − 			             (46)

1= = ( = ).
2

KE N n P N n
N

µ µ
  

+ − ⋅  
  

			               (47)
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It is very intuitive that the bias in the sample average is a simple 
function of the difference between conditional and marginal 
expectation of K/N on the one hand, and the probability of stopping 
on the other. 

The specific form of (40) will depend on both the exponential family 
member considered and the form of the stopping rule. In general, the 
expectation may be a non-linear function of  and hence there may 
be no constants c and d for which the expectation is µ. Hence, in 
many situations, all linear estimators of the form (39) may be biased. 
Examples are given in Sections 4. 2 and 4. 3. 

We now turn to the asymptotic behavior of the GSA, i. e., the 
case where n →+∞ . Because the sample sum K converges to a 

2( , )N n nµ σ  variable, and using a first-order Taylor series expansion 
( ) ( ) ( )( )F k F n F n k nµ µ µ′≈ + − , we find from first principles: 

( ) ( ),nA F nµ µ≈ 					                    (48)

2( ) ( ) ( ).nB n F n n F nµ µ µ σ µ′≈ + 			                (49)

Using (48) and (49), (44) converges to: 
22( ) ( ) ( ) ( ).lim lim2

n

n n

c dE d c d F n F nµ µ µ µ σ µ
→+∞

→+∞ →+∞

− ′→ ⋅ + − ⋅ + 	              (50)

In particular, for the ordinary sample average: 
21( ) ( ).lim2

n

n
E F nµ µ σ µ

→+∞

→+∞
′→ + 			                (51)

In Section 4. 2, we we will see that (50) is finite and, moreover, (51) 
equals µ. Sufficient conditions for this to hold in general can be given. 
Assume that F(.) is a continuously differentiable function that depends 
on k as a function of k/n. To emphasize this, write 

( ) = ( ( / )).F k F k nη 				                 (52)

Then ( ) = ( ( ))F n Fµ η µ , independent of n. and ( ) = ( ) ( ( )) /F n F nµ η µ η µ′ ′ ′ , 
which depends on n. only through the factor n. 

n-1 and hence converges to zero. More generally, a stopping rule that 
satisfies ( ) 0

n
F nµ

→+∞
′ →  ensures that the sample average is asymptotically 

unbiased. 

For a GSA to be asymptotically unbiased, (50) should equal 
µ. Assume that the third term on the right hand side of (50) is zero 
and ( ) = ( )F n Fµ µ  does not depend on n. The GSA is unbiased if 

( ) ( ) = 1d c d F µ+ −  for all values of µ (note that, when µ=0, the limit is 
trivially equal to zero). This equation can be satisfied if ( )F µ  is constant, 
i. e., in the CRSS case to be discussed next. Otherwise, the equation can 
be satisfied only for c=d=1, i. e., the ordinary sample average. 

For the GSA to be unbiased in the finite-sample case, (44) needs to 
equal µ, leading to the requirement: 





2 2 ( = )= ,
2 ( ) ( = )

c P N nd
P N n

µ µ
µ µ µ

−
− +

				                 (53)

with  = ( / | = )E K N N nµ . Evidently, this is a function of µ in the non-
CRSS case and hence no uniformly unbiased estimator exists. Further, 
unless in the CRSS case, the ordinary sample average never satisfies 
(53) because this would imply that  =µ µ  and hence the stopping 
probability would be independent of µ. 

In the specific case of a CRSS, the constant F is taken out of the 
integrals on the right hand side of (44) and we easily find: 

( ) = [ (1 )] ,CRSSE cF d Fµ µ+ − 			                 (54)

which is unbiased if and only if 

1= .
1

cFd
F

−
−

					                    (55)

An obvious solution is c=d=1, the sample average, next to an 
infinite number of unbiased linear estimators of the type (39). Note 
that (55) follows from (53) upon observing that in the CRSS case =µ µ  
and P(N=n)=F. 

In addition to studying the overall expectation of the GSA, it is of 
interest to consider the conditional expectations. These are: 

( )( | = ) = ,
( )

n

n

BcE N n
n A

µµ
µ

⋅ 				               (56)

2 ( ) ( )( | = 2 ) = .
2 1 ( )

n n

n

n n A BdE N n
n A

µ µ µ µµ
µ

− −
⋅

−
		              (57)

The ordinary sample average versions follow by setting c=d=1 in 
(56)–(57). 

The asymptotic behavior of (56)–(57), follows from applying (48) 
and (49): 

2 ( )( | = ) ,lim ( )

n

n

F nE N n c
F n

µµ µ σ
µ

→+∞

→+∞

′ 
→ + 

 
		              (58)

21 ( )( | = 2 ) . .lim2 1 ( )

n

n

F nE N n d
F n
µµ µ σ
µ

→+∞

→+∞

′ 
→ − − 

		              (59)

For the ordinary sample average, when ( )F nµ′  converges to 
zero, the conditional expectations converge to µ. In case the limits 
in (58) and (59) differ from zero, there is a choice for c and d that 
produces conditional expectations equal to µ: 2

1= / [ ( )]c Qµ µ σ µ+  and 
2

2= / [ 0.5 ( )]d Qµ µ σ µ− , with obvious notation. Evidently, these are not 
uniform and therefore not useful in practice. These values for c and d lie 
at different sides of unity. We will return to the implications of limiting 
expressions (51) and (58)–(59) in Section 4. 2. 

A natural follow-up question is whether there is a, perhaps a 
uniform, optimal estimator in the CRSS case. From straightforward 
algebra we find that 

2 2 2 2
2 2 1 2 2( ) = (1 ) ,

1 2(1 )
F Fc Fc F cvar c

F n F
σµ µ − + − − + − − 

	               (60)

which is minimal for 

2 2 2 2

2 2 2 2
2 2 2= , = .

2 (2 ) 2 (2 )opt
n nc d opt

n F n F
µ σ µ σ

µ σ µ σ
+ +

+ − + −
	                (61)

In (60) and (61), σ2 is the variance. It follows as either the first 
derivative of the mean function or, in the slightly more general case 
where there is an overdispersion parameter, as the first derivative of the 
mean multiplied with the overdispersion parameter. 

Whereas constraint (55) on the pair (c, d) does not depend on the 
particular exponential family considered, rather only on the constant 
probability of stopping, this is not true for the optimality condition 
(61). Because of its dependence on µ and σ2, (61) will not generally 
allow for a uniform optimum, except in specific examples. A few 
examples are given in Table 1. As Molenberghs et al. [5] observed 
for the normal case, most solutions indeed indicate that there is no 
uniform minimum, even though all coefficients converge to 1 if the 
sample size increases. A noteworthy exception is the exponential 
family distribution, for which there is a uniform solution common to 
all values of the mean parameter and different from 1, for every value 
of the sample size n (Table 1). 

 In all cases, when F=0 then d=1 and c is irrelevant, while for F=1, 
the reverse is true. 
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We have seen above that, even for CRSS, the sample average is not 
optimal, and that there is no uniform optimal solution, even though the 
sample average approximately is. The exponential case is an exception 
to this, as we saw above. However, the sample average is optimal in 
the restricted class of estimators that is invariant to future decisions. 
Indeed, if stopping occurs, then the choice of the coefficient c leads to 
an unbiased estimator, provided the appropriate d is chosen. However, 
this d will never be used as it pertains to ‘future’ observations. This can 
be avoided only by setting both coefficients to be equal, from which the 
conventional sample average emerges. 

The asymptotic behavior for a deterministic stopping rule is 
completely captured by the normal case, described in Section 4. 2, 
because the stopping rule F(k) has the effect of restricting the integrals 
over the stopping and continuation regions S and C, respectively. This, 
together with the fact that fn(k) approaches a normal density with mean 
nµ and variance nσ2 establishes this fact. As a result, we can restrict 
considerations regarding the deterministic case to the finite-sample 
situation. But also this one is very straightforward. Given that the joint 
distribution (14)–(15) becomes (19)–(20), the functions An(µ) and 
Bn(µ) in (43) take the form: 

( ) = ( ) , ( ) = ( ) .n n n nS S
A f k dk B kf k dkµ µ∫ ∫ 		                 (62)

and all results, such as marginal and conditional expectations of the 
GSA, carry over. 

The normal case

 Molenberghs et al. [5] showed that expectation (40) of generalized 
sample average (39) becomes, for the normal case with probit stopping 
probability: 

2

2( ) = ( ) ( ) ( )
2 1 /
c dE d c d

n n
βµ µ µ ν φ ν
β

−
+ − Φ + ⋅

+ 	            (63)

with 2= ( ) / 1 / nν α βµ β+ + . 

The specific case of a CRSS, here corresponding with β =0, has been 
considered in Section 4. 1. 

When β ≠ 0, expression (63) does not in general simplify. It is easy 
to see here that there cannot be a uniformly unbiased estimator, i. e., 
that there cannot exist c and d such that (63) reduces to µ, for all µ, and 
in particular for µ=0. For this special case 

02

20 = ( ),
2 1 /
c d

n n
β φ ν
β

−
⋅ ⋅

+

where 2
0 = ( ) / 1 / nν α β+ . Given that β ≠ 0, this expression leads to 

the condition 2c=d. Substituting this back into (63), which should be µ 
for every value of µ, and not just for µ=0, produces [ ]( ) = 2 ( )E cµ µ ν−Φ
, which equals µ only if c=[2 - Φ(v)]-2. Based on this, given that Φ(v) 

is not constant but rather depends on µ, unless β=0, we see that there 
can be no uniformly unbiased estimator for the generalized sample 
average type. In other words, a simple average estimator, that merely 
uses the observed measurements in a least-squares fashion, can never 
be unbiased unless β=0. 

Molenberghs et al. [5] quantified the asymptotic bias. In Section 
4. 1 this was done in general for CRSS. Turning to the case of β ≠ 0, 
Molenberghs et al. [5] began with the ordinary sample average c=d=1, 
which leads to expectation: 



2

1 1( ) = ( ) ( ) .
2 21 /

n n
E

n nn
βµ µ φ ν µ β φ α βµ µ
β

→+∞ →+∞

+ ⋅ → + ⋅ + →
+

          (64)

In particular, when β → + ∞, we see that 

 ( )1( ) = .
2

n
E n

n
µ µ φ µ µ

→+∞

+ ⋅ → 			                (65)

There exist other choices that also lead to asymptotically unbiased 
generalized sample averages. For β ≠ 0 but finite, the expectation 
becomes 

( ) ( ) ( ),
n

E d c dµ µ µ α βµ
→+∞

→ + − Φ + 			               (66)

which equals µ if and only if: 

1 ( )= .
1 ( )

cd α βµ
α βµ

− Φ +
−Φ +

				                (67)

While (67) and (55) are similar, there is a crucial difference between 
these: the latter is independent of µ, while the former is not, except 
when c=d=1. In other words, there is no uniformly asymptotically 
unbiased generalized sample average for finite, non-zero β, except for 
the ordinary sample average itself. 

The above limits also follow from (50) and (51), because 
now ( / ) = /k n k nη α β+  and the derivative therefore is 

( ) = ( ) /F n nµ φ α βµ β′ + ⋅ , which leads to (64). 

Molenberghs et al. [5] also studied the deterministic stopping rule 
case, following from β → ∞, because then (66) becomes 

> 0,
2( ) = ( ) ( ) ( ) < 0,
2 0 = 0.

n
c if

c dE d c d n n d if
n if

µ µ
µ µ µ µ φ µ µ µ

µ

→+∞


− + − Φ + → 



  (68)

This provides us with the interesting situation that, for positive µ, 
c=1 yields an asymptotically unbiased estimator, regardless of d, with 
the reverse holding for negative µ. In the special case that µ=0, both 
coefficients are immaterial. In addition, we see here as well that the only 
uniform solution is obtained by requiring that the bias asymptotically 
vanishes for all values of µ, that is c=d=1. 

The pleasing asymptotic behavior of the sample average is 
connected to the choice of the stopping rule, in view of limiting 
expressions (51), (58), and (59). In this case, ( ) = ( )limn F nµ α βµ→+∞ Φ + , 
a constant in ]0, 1[, while ( ) = ( / ) ( ) = 0limn F n nµ β φ α βµ→+∞ ′ + . Hence, 
the limits of F′(nµ), F′(n)/ F(nµ), and F′(nµ)/[1 - F(nµ)] are zero. The 
essence is that the stopping rule is a cumulative density function based 
transformation of a linear predictor in k/n. It is therefore of interest to 
examine the consequences of switching to a different class of stopping 
rule. Therefore, we change the stopping rule to Φ(α + βk). Then 

( ) = ( )F n nµ βφ α β µ′ +  which again tends to zero. However, depending 
on the sign of β and µ, Φ(α + βnµ) tends to either zero or one. Applying 
de l’Hôpital’s rule to the case where F(nµ) tends to zero as well, produces 
- β(α + βnµ) which tends to infinity, and hence the regularity condition 
(58) appears not to be satisfied. This requires careful qualification, 

Exp. fam. member C D
Normal 2 2

2 2
2

2 (2 )
n

n F
µ σ

µ σ
+

+ −  
2 2

2 2
2 2

2 (2 )
n

n F
µ σ

µ σ
+

+ −  

Bernoulli 2 (1 )
2 (1 )(2 )

n
n F
π π

π π
+ −

+ − −  
2 2(1 )

2 (1 )(2 )
n

n F
π π

π π
+ −

+ − −  

Poisson 2 1
2 2

n
n F
λ

λ
+

+ −  
2 2

2 2
n

n F
λ

λ
+

+ −  

Exponential 2 1
2 2

n
n F

+
+ −

 2 2
2 2

n
n F

+
+ −  

Table 1: Coefficients for optimum unbiased generalized sample average 
estimators, in the case of a completely random sample size.
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because not only does F(nµ) appear in (58), it is also the probability 
with which N=n, which then equally well tends to zero. Thus, for this 
case, in the limit, ( | = 2 ) = ( )E N n Eµ µ  and unbiasedness still applies. 
Evidently, when 1 - F(nµ) tends to zero rather than F(nµ), we are in the 
mirror image of the above situation, and the result is the same. This 
result applies more generally. If ( ) = ( )mF k knα βΦ + , with m any real 
number, then F′(nµ) converges to zero whatever m is. Further, F(nµ) 
converges to Φ(α + βµ) for m=-1, Φ(α) for m<-1, and Φ(±∞) (i. e., 0 
or 1) for m > -1. This means that the sample average is asymptotically 
unbiased in all cases, and even conditionally asymptotically unbiased, 
based on the same logic as before. 

The binary case

 An explicit form for the expectation of the generalized sample 
average in the Bernoulli case is 

2
2

=0 =0
( ) = (1 ) ( ) (1 ) ( ),

2

n n
k n k k n k

k k

nc dE d k F k k H k
kn n

π π π π π π− − 
+ − − − 

 
∑ ∑   (69)

with H(k) as in (33). 

The CRSS has been covered in Section 4. 1, and the coefficients for 
optimal estimators listed in Table 1. As an example, when stopping rule 
(13) is chosen, with p=q=0 and A(k)=k/n, we have that F(k)=A(k)=k/n 
and 

2
( ) = / 2 .

n
H k k n

k
 
⋅  
 

Hence, (69) becomes 

2 2
22 2( ) = ( ) ( )

(2 )n n
c dE d E K E K
n n

π π + −

= (1 ) (1 2 ) .
2

c dd n n
n n

π π π π π + − + − − +  
		               (70)

Clearly, the estimator is unbiased if and only if 

1 (1 )
= .11 (1 2 )

2

c n
nd

n
n

π π

π π

− − +

− − +

Hence, there is no uniform solution, neither in π nor in n. When 
n → + ∞, 

1 .
1

n cd π
π

→+∞ −
→

−
					                    (71)

Note that the ordinary sample average, i. e., c=d=1, is a solution to 
(71), as it should. 

Turning to the case of a deterministic stopping rule, assume that 
the stopping region S is defined by (k ≤ k0), i. e., F(k)=1 if k ≤ k0 and 0 
otherwise. Functions An(π) and Bn(π) as in (62) are here: 

0

0
=0

( ) = (1 ) = ( , , ),
k

k n k
n

k
A n I k n

k
π π π π−−∑ 			             (72)

0

0
=0

( ) = (1 ) = ( 1, 1, ).
k

k n k
n

k
B kn n I k n

k
π π π π π−− − −∑ 		             (73)

I(k, n, π), the binomial cumulative distribution function, is actually 
defined by (72). Various alternative formulations exist, but none is of 
direct use to us here. The expectation of the GSA becomes: 

0 0
2( ) = ( 1, 1, ) ( , , ) .

2 2
c d dE d I k n I k nπ π π π− + − − −  

	              (74)

For the ordinary sample average, (74) reduces to 

[ ]0 0
1( ) = 1 ( 1, 1, ) ( , , ) .
2

E I k n I k nπ π π π + − − − 
 

Likelihood Estimators
The general case

For notational convenience, we introduce the indicator variable 
Z=I(N=n). 

The joint likelihood for the observed data and stopping occurrence is: 
1( ) = ( )exp{ ( )} ( ) [1 ( )] .z z

NL h k k Na F k F kµ θ θ −− ⋅ ⋅ − 	              (75)

Likelihood decomposition (75) is of a selection model type. The 
factors pertaining to stopping are free of the mean parameter µ. This 
simplifies the kernel of the log-likelihood l(µ), score function S(µ), and 
Hessian H(µ): 

( ) = ln ( ) ( ),Nh k k Naµ θ θ+ −

			               (76)

( ) = ( ) = ,S k Na k Nµ θ µ′− − 			              (77)

'( ) = ( ) = .H Na Nµ θ µ′ ′− − 				                   (78)

The simplicity of this estimator is a direct consequence of 
ignorability. Based on (14)–(15), the conditional probability for the 
sample sum K, given the sample size N, can be derived. For the case 
that N=n, the likelihood function is: 

( ) ( )( ) = ,
( ) ( )

k
n

n k
n

F k h k eL
F k h k e dk

θ

θ
µ

∫
				                  (79)

leading to the following expressions for the log-likelihood, score, and 
Hessian: 

( ) = ln ( ) ln ( ) ln ( ) ( ) ,k
n n nF k h k k F k h k e dkθµ θ+ + − ∫ 	               (80)

( )( ) = = ( | = ),
( )

n
n

n

BS k k E K N n
A

µµ
µ

− − 			                 (81)

2
( ) ( )( ) =
( ) ( )

n n
n

n n

C BH
A A

µ µµ
µ µ

  
 − −  
   

2 2= ( | = ) ( | = ) = ( | = ).E K N n E K N n var K N n − − −  	              (82)

Here An(µ) and Bn(µ) are as defined in (43), and 
2( ) = ( ) ( ) .n nC k f k F k dkµ ∫

When N=2n, the likelihood takes the form: 

2
( )( ) = ,

1 ( )
n

n
n

DL
A
µµ
µ−

				               (83)

with 

2( ) = exp{ 2 ( )} ( ) ( ) ( ) ( ) .n n n nD k na h k h z h k z F z dzµ θ θ  − − − ∫
Then, the counterparts to (80)–(82) are: 

2 2( ) = 2 ( ) ln ( ) ( ) ( ) ( )n n n nk na h k h z h k z F z dzµ θ θ  − + − − ∫

{ }ln 1 ( ) ,nA µ− − 					                  (84)

2
2 ( ) ( )( ) =

1 ( )
n n

n
n

n n A BS k
A

µ µ µ µµ
µ

− −
−

−

= ( | = 2 ),k E K N n− 				                  (85)

2 2 2

2
2 ( ) ( ) ( ) ( )( ) =

1 ( )
n n n

n
n

n n A n A CH
A

σ σ µ µ µ µµ
µ

− + −
−

−
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2

[ ( ) ( )][2 ( ) ( )]
[1 ( )]

n n n n

n

B n A n n A B
A

µ µ µ µ µ µ µ
µ

− − −
+

−

2 2= ( | = 2 ) ( | = 2 ) = ( | = 2 ).E K N n E K N n var K N n − − −  	              (86)

From the form of (81) and (85), it is immediately clear that the 
conditional expectations of the conditional scores are equal to zero and 
therefore also the marginal expectation. 

The expectation of the joint likelihood based estimator, which 
is the ordinary sample average, was presented in Section 4. 1. Even 
though there is small-sample bias in most cases different from CRSS, 
wide classes of stopping rules are asymptotically unbiased. The bias 
expressions in the conditional expectation of the sample average, 
which of course are also the bias expressions for the joint likelihood 
estimator, are of the form E(K/N|N) - µ. These expressions coincide 
with the correction in conditional score equations (81) and (85) 
relative to (77), which follows immediately upon rewriting the former 
as { }( ) = ( | )NS k N N E K Nµ µ µ− + − . 

Turning to precision and information, first note that for CRSS, 
Hn(µ)=- nσ2 and H2n(µ)=-2nσ2; hence the marginal and conditional 
information in this case reduces to I(µ)=Ic(µ)=nσ2(2 – F). 

In the general case, the marginal and conditional information are 
2( ) = [2 ( )],nI n Aµ σ µ− 				                (87)

2
2 [ ( ) ( )]( ) = [2 ( )] .

( )[1 ( )]
n n

c n
n n

n A BI n A
A A
µ µ µµ σ µ

µ µ
−

− −
−

	                                (88)

Using information expressions (87)–(88), the bias for the marginal 
likelihood estimator, and the fact that the conditional likelihood 
estimator is unbiased, the mean squared error expressions are: 

 [ ]2
2 2

1 1( ) = ( ) ( ) ,
[2 ( )] 4n n n

n

MSE n A B
n A n

µ µ µ µ
σ µ

+ −
−

	              (89)



2
1( ) =

[2 ( )]cn
n

MSE
n A

µ
σ µ−

			             (90)

2

2 2 2 2

[ ( ) ( )] .
( )[1 ( )]{ [2 ( )]} [2 ( )][ ( ) ( )]

n n

n n n n n n

n A B
A A n A n A n A B

µ µ µ
µ µ σ µ σ µ µ µ µ

−
+

− − − − −

Recall that for CRSS Bn(µ)=n µAn(µ) and both MSE expressions 
coincide. In the asymptotic case, (89)–(90) can be approximated, using 
(48)–(49), as: 



4
2

2
1( ) ( ) ,

[2 ( )] 4nMSE F n
n F n

σµ µ
σ µ→+∞ ′+

−


		               (91)



2
1( )

[2 ( )]
µ

σ µ→+∞ −cnMSE
n F n



{ }2 2

( )
[2 ( )] ( )[1 ( )][2 ( )] ( )

F n
F n F n F n F n n F nµ µ µ µ σ µ

′
′− − − −

	                (92)

Returning to the exact expressions (89)-(90), it is relatively 
straightforward to show that (89) is smaller than (90) if and only if σ2 
An(µ)[1 - An(µ)][2 - An(µ ]≥ 4. Requiring that this inequality is satisfied 
for all values of An(µ) in the unit interval comes down to requiring that 
σ2=2. 54. Hence, the MSE is smaller in the marginal case if the variance 
is sufficiently small. For binary data, for example this is always satisfied 
given that the variance takes the form π(1-π). Also, asymptotically, 
An(µ) typically tends to either 0 or 1, and the above requirement is then 
also satisfied. In case F′(n) tends to zero as n tends to infinity, both MSE 
expressions tend to the same limit. 

The normal case

Molenberghs et al. [5] studied this case in detail. Because of the 
relatively simple expressions for the normal density and the probit 
stopping rule (22), additional insight can be gained. We summarize 
their arguments in Appendix 2. 

The binary case

Joint-likelihood expressions for the binary case, in the probability 
parameter π are: 

1( ) = (1 ) ( ) [1 ( )] ,k N k z zN
L F k F k

k
π π π − − 

− ⋅ ⋅ − 
 

		               (93)

( ) ln ( ) ln(1 ),k N kπ π π∝ + − − 			              (94)

( ) = ,
1

k N kS π
π π

−
−

−
				               (95)

2

2 2
2( ) = .
(1 )

K K NH π ππ
π π

− + −
−

				               (96)

The expected Hessian, for fixed sample size, is well known to be 

–N/[π(1 - π)]. However, with our stopping rule F(k)=k/n, it can be 
shown to be 

(2 )[ ( )] = .
(1 )

nE H ππ
π π
−

−
−

				                (97)

Likewise, given that the solution to S(π) is the sample average, the 
bias is 



(1 )( ) = ,
2

Bias
n

π ππ − 				                  (98)

which implies that the bias must be less than 1/(8n). We will return to 
this in what follows. 

Turning to the conditional expressions, for N=n, (79)–(82) become: 

(1 ) ( )
( ) = ,

( )

k n k

n
n

n
F k

k
L

A

π π
π

π

− 
− 

  			               (99)

with 

=0
( ) = (1 ) ( ),

n
n

n

n
A Fπ π π − 

− 
 

∑  







leading to: 

( ) ln ( ) ln(1 ) ln ( ),n nk n k Aπ π π π∝ + − − −

		             (100)

( ) ( )( ) = .
1 ( )

n n
n

n

n A Bk n kS
A

π π µπ
π π π

−−
− −

−
			               (101)

For the case where N=2n we obtain: 

2

2

2
(1 ) [1 ( )]

( ) = ,
1 ( )

k n k

n
n

n
F k

k
L

A

π π
π

π

− 
− − 

 
−

			             (102)

2 ( ) ln (2 ) ln(1 ) ln[1 ( )],n nk n k Aπ π π π∝ + − − − − 		               (103)

2
( ) ( )2( ) = .

1 1 ( )
n n

n
n

n A Bk n kS
A

π π µπ
π π π

−−
− +

− −
		              (104)

The fact that E[SN(π)|N]=0 follows from the derivations in Section 
5. 1, as well as from first principles. 

It is clear that the above expressions are slightly different than the 
general expressions (75)–(78), because π is not the natural parameter. 
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This does not prohibit further derivations but makes them cumbersome 
from an algebraic standpoint. Therefore, we switch to the logit form, i. 
e., α=ln[π/(1 - π)] will be used. Furthermore, we restrict attention to 
the particular stopping rule used in previous sections, F(k)=k/n. Then, 
(93)-(96) become: 

( )
1

( ) = ,
1

z zk

N

N e k n kL
k n ne

α

α
α

−  −   ⋅ ⋅     
     +

		             (105)

( )( ) ln 1 ,k N eαα α∝ − + 				                (106)

( ) = ,S k Nα π− 					                (107)

( ) = (1 ).H Nα π π− − 				                (108)

The use of π on the right hand sides of (107) and (108) rather than 
α is for convenience only. The expected Hessian is straightforward to 
derive, given that E(N)=n(2 - π): 

[ ( )] = (2 ) (1 ).E H nα π π π− − − 			              (109)

In fact, this calculation is considerably easier than the derivation of 
(97), even though they are equivalent. Indeed, (97) follows from (109) 
by applying the delta method. Because π=expit(α), the derivative is 

1= / = [ (1 )]α π π π −∆ ∂ ∂ − , and 2[ ( )] = [ ( )]E H E Hπ α∆ ⋅ , as it should. 

The forms for (100)–(104), supplemented with the Hessians, are: 

( ) ( )( ) ln 1 ln 1 ,n k n e eα αα α α∝ − + − + + 		                (110)

( ) = ( 1) ( 1) ,nS k nα π− − − 				               (111)

( ) = ( 1) (1 ),nH nα π π− − − 				                (112)

( ) ( )2 ( ) 2 ln 1 ln 1 ,n k n e eα αα α∝ − + + +

		             (113)

2 ( ) = (2 1) ,nS k nα π− − 				               (114)

2 ( ) = (2 1) (1 ).nH nα π π− − − 				              (115)

Note that the conditional Hessians are in line with what one would 
expect from conditioning upon the sample size: one ‘degree of freedom’ 
is removed for mean parameter estimation. Such an operation though, 
is standard only when the sample size is fixed. The counterintuitive 
effect on the efficiency was seen in general in Section 5. 1 and very 
explicitly for the normal data setting in Section 5. 2. Straightforward 
algebra then establishes: 

[ ( )] = (1 )[(2 ) 1] = [ ( )] (1 ).NE H n E Hα π π π α π π− − − − + − 	               (116)

 Thus, the conditional information is expected to take one subject 
less into account than the marginal expectation, precisely the opposite 
of what one would expect in the fixed sample-size case. The bias in the 
estimators is easy to quantify, given that the estimators are  = /k Nπ  in 
the marginal case and  = ( 1) / ( 1)c k nπ − −  when N=n and  = / (2 1)c k nπ −
when N=2n. The biases are (n-k)/([n(n-1)] and -k/[2n(2n-1)], respectively. 
This follows from the difference between the marginal and conditional 
estimators, given that the latter is unbiased. For this stopping rule, E  
(K|N=n)=nπ + 1 -π and E(K|N=2n)=π(2n – 1), and so the average bias 
is (98), as we expect. 

The variances are equal to the negative inverses of the expected 
Hessians. These, combined with bias (98), readily leads to the MSE. Of 
course, (112) and (115) are for  cα  and hence the delta method needs 
to be applied to obtain the variances for  cπ . Note that the variance for 
π  was already derived in (97), but applying the delta method to (108) 

gives the exact same result. The additional expressions are 



(1 )( | = ) = ,
1

cvar N n
n

π ππ −
−

				                (117)



(1 )( | = 2 ) = ,
2 1

cvar N n
n

π ππ −
−

			               (118)

with the expected conditional Hessians the inverses of these quantities: 

  

( 1)( ) = ( | = ) ( | = 2 ) (1 ) = (1 ).
( 1)(2 1)

c c c
n nvar var N n var N n

n n
ππ π π π π π π+ −

⋅ + ⋅ − −
− −

  (119)

Note that the derivation of overall variance (119) involves the 
expectation of the conditional variances only, while the variance of the 
conditional expectations is zero, because both conditional estimators 
are unbiased. Finally, 

  

2 2

2
(1 ) (1 )( ) = ( ) ( ) =

(2 )) (2 )
MSE var Bias

n n
π π π ππ π π

π
− −

+ +
−

21 (1 )= ( ),
2

O n
n

π π
π

−−
⋅ +

−
			                               (120)

 

( 1) (1 )( ) = ( ) =
( 1)(2 1)

c c
n nMSE var

n n
π π ππ π + − −

− −

21 (1 )( 1)= ( ).
2

O n
n

π π π −− +
⋅ + 			              (121)

Calculating the difference between (121) and (120), we find 

 

2 2
21 (1 )( ) ( ) = ( ).

2(2 )
cMSE MSE O n

n
π ππ π

π
−−

− +
−

Hence, like in the normal case, the joint estimator is more 
efficient than the marginal one. Of course, the MSE increase when 
moving from the joint to the conditional estimator is modest, with 

  ( ) ( ) 1.125 ( )cMSE MSE MSEπ π π≤ ≤ , the maximum discrepancy reached 
for π=0. 5, and equality for π =0 or π =1. 

Concluding Remarks
We have considered the consequences for statistical inference of a 

random sample size. Our setting is that of univariate random variables 
from the exponential family that are subject to a stopping rule such that 
the sample size is either N=n or N=2n, with n specified by design. The 
stopping rule is stochastic and is allowed to depend on the sample sum 
κ over the first n observations. The rule is generic in the sense that its 
limiting cases are a deterministic stopping rule, such as in a sequential 
trial, and a completely random sample size, independent of the data. 
This setting extends those of both Liu et al. and Molenberghs et al. [5]; 
the former restrict attention to a deterministic stopping rule, although 
they do so for an arbitrary number of interim looks. The latter confined 
attention to normally distributed outcomes only. 

We have focused on three important inferential aspects. First, we 
have shown that the sufficient statistic (K, N) is incomplete. Second, 
we have examined the consequences of this for the sample average, as 
well as for linear generalizations thereof. We have shown that there 
is small-sample bias, except for the CRSS case. Even then, there is 
no optimal estimator, except for the exponential distribution, for 
which the optimum differs from the ordinary sample average. Third, 
we have studied maximum likelihood estimation in both a joint 
as well as a conditional framework. The joint likelihood is for the 
exponential-family parameter and the stopping rule simultaneously. 
The conditional likelihood starts from the conditional distribution 
of the outcomes, given the sample size. Also here, counterintuitive 
results are derived. The joint likelihood produces the sample average 
as maximum likelihood estimator, which is biased in finite samples 
but is asymptotically unbiased, provided a regularity condition on the 
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stopping rule applies. The conditional likelihood estimator is unbiased, 
even in small samples. This notwithstanding, the sample average has 
smaller MSE than the conditional estimator in many important cases, 
such as the normal and binary examples considered, as well as when 
the variance of the outcomes is sufficiently small. Under regularity 
conditions, both estimators are asymptotically equivalent, with the 
difference between both being O(n-1). The regularity condition is not 
very restrictive; it essentially comes down to requiring that F ′(k=nµ) 
approaches zero where F is the stopping rule. For broad classes of 
parametric functions, this condition is satisfied. We have shown that 
the corresponding conditional expectations are unbiased. 

Hence, when the regularity conditions are satisfied, the sample 
average remains an attractive and sensible choice for sequential trials. 
Thus, while some familiar inferential properties no longer hold, 
estimation after sequential trials will often be more straightforward than 
commonly considered. In other words, often, there will be no need for 
modified estimators as have been proposed in the literature [2,11] or 
for our conditional estimator. Of course, if finite-sample unbiasedness 
is of overriding importance, such estimators may be preferred. 

Note that there are several situations possible where sample size is 
or appears to be random, yet distinct from our setting. One example is 
when studies are stopped for futility reasons and estimation takes place 
only when the trial runs its full course [12-15]. 

Molenberghs et al. [5] considered several ramifications of their 
developments. They commented on the situation of an arbitrary number 
of looks in a sequential trial, and considered in detail the CRSS case for 
more than two possible sample sizes. All of this was done for normally 
distributed outcomes. They also commented on the connection 
between their derivations and longitudinal outcomes subject to 
dropout of an MAR type, where dropout depends on observed but 
not further on unobserved outcomes. While similar, there are subtle 
differences because now the randomness in the sample size pertains to 
the number of measurements per subject, rather than to the number 
of subjects. The difference lies in the fact that measurements within 
a subject are not independent. Our results extend to these settings 
as well for the exponential family. Furthermore, connections can be 
made with a variety of other settings with random sample sizes, such as 
clustered data with informative cluster sizes, time-to-event data subject 
to censoring, jointly observed longitudinal and time-to-event data, and 
random observation times. These settings are currently scrutinized 
further, and will be reported in a separate manuscript. It would also be 
of interest to extend our results to the case of semi-parametric models, 
e.g., generalized estimating equations [Liang and Zeger(1986)]. This is
outside of the scope of the current manuscript [16-18].

In our illustrations, we have focused on the important, but still 
particular, case of binary outcomes, juxtaposed to the normal outcomes 
case of Molenberghs et al. [5]. Evidently, other data types, such as 
counts, time-to-event data, and ordinal outcomes may be handled in 
the same way, as long as exponential families are used. Technically, 
the ordinal case is a little more involved, because ordinal outcomes 
are frequently modeled using a sequence of dummy variables, thus 
requiring a multivariate version of our developments. Fortunately, this 
poses no insurmountable problems. 
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