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Introduction
In computational biomechanics there are three important phases: 

the modulation, the simulation and the analysis. In order to perform 
them, it is necessary to use a discretization technique. This design 
process is naturally recurrent and strongly depends on the selected 
numerical methodology. The research community continuously 
seeks the best numerical approach to reproduce in-silico the studied 
biological phenomenon.

Presently, there are many numerical methods available and 
capable to successfully handle the previously mentioned phases of the 
bioengineering design.

However, the different numerical approaches described in the 
literature are fundamentally very dissimilar, which lead to distinct 
numerical performances.

Nowadays, the finite element method (FEM) is the most popular 
discretization technique available in the literature [1]. The FEM 
replicates the physical domain with a geometrical model constructed 
with finite elements that do not overlap each other and do not present 
any gap disrupting the model continuum. In Figure 1a is represented 
the geometric model of a half human head, which was obtained 
directly from a CAT scan, and in Figure 1b is shown the corresponding 
3D element mesh. This discretization technique requires a heavy 
pre-processing phase to build a balanced element mesh. The FEM 
performance relies strongly on the model’s mesh quality. Additionally, 

any mesh modification or mesh refinement during the analysis 
represent an extra (heavy) computational cost, which is a significant 
drawback in biomechanics.

Recently, within the computational mechanics scientific 
community, meshless methods became a focus of interest for solving 
partial differential equations. Since in meshless methods the rigid 
concept of element, in meshless methods the solid domain can be 
discretized with an unstructured cloud of nodes [2-6]. In Figure 1c 
is represented the nodal discretization of a half human head. Truly 
meshless methods [5-11] allow to acquire the nodal cloud directly from 
the CAT scan or the MRI by considering the pixels (or voxels) position 
and then obtain the nodal connectivity, the integration points and the 
shape functions using only the nodal spatial information [5]. Using the 
grey tones of medical images, truly meshless methods are even capable 
of recognizing distinct biomaterial and then affecting directly to the 
nodes the corresponding material properties, Figure 1c.

Meshless Methods in Biomechanics
Meshless methods possess several advantages over the FEM, such 

as the remeshing efficiency, which permits to simulate explicitly fluid 
flow (the hemodynamics, the swallow, the respiration, etc.) and to deal 
with the large distortions of soft materials (internal organs, muscles, 
tendons, skin, etc.). Furthermore, the smoothness and the accuracy of 
the solution fields (displacements, stresses, strain, etc.) obtained with 
meshless methods are very useful to predict the remodelling process 
of biological tissues and the rupture or damage of such biomaterials. 
Additionally, recent works show that the combination of medical 
imaging techniques (CAT scan and MRI) with meshless methods is 
more efficient than using the FEM [12,13].
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Abstract
Meshless methods are advanced discretization techniques, which permit to discretize the problem physical domain 

with an unstructured nodal cloud. This discretization flexibility allows obtaining the geometrical model directly from 
medical images, such as computerized axial tomography (CAT) scans or magnetic resonance imaging (MRI) techniques. 
Then, it is possible to analyse straightforwardly the biomechanical behaviour of biological structures. When compared 
with other mesh-dependent discretization techniques, meshless methods are capable of producing smoother and much 
more accurate stress and strain fields. The literature shows that meshless methods have the potential to be the future 
of biomechanical computational simulation.

(a)   (b)     (c)

Figure 1: (a) Physical domain of a half-brain. (b) Element mesh. (c) Nodal 
discretization.
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The work of Doweidar et al. [14] showed that meshless methods 
possess clear advantages over the FEM in biomechanical problems 
dealing with large strains, such as in the simulation of the human 
lateral collateral ligament and the human knee joint. Additionally, 
Zhang et al. [15] extended a meshless method to the nonlinear explicit 
dynamic analysis of the brain tissue response. The results confirmed 
the accuracy of meshless methods to deal with highly demanding 
nonlinear hyperelastic biomaterials.

Furthermore, meshless methods are frequently used to simulate 
hemodynamics. In the literature it is possible to find research works 
in which meshless methods are used to simulate the motion of a 
deformable red blood cell in flowing blood plasma [16] or to study the 
effect of red blood cells on the primary thrombus formation [17].

Another popular computational biomechanical field in which 
meshless methods proved to possess clear advantages is the in-silico 
prediction of bone tissue remodelling [18]. The first work dealing with 
bone structures and using meshless methods was published by Liew et 
al. [19]. Then, other authors applied meshless methods to simulate the 
bone tissue remodelling process with success [20,21]. Recently, Belinha 
et al. [22,23] presented a new bone tissue remodelling algorithm relying 
on the meshless method accuracy. The methodology was capable to 
obtain numerical solutions very close with the clinical X-ray images 
of natural bones [22-24], Figure 2a, and natural bones with implants, 
Figure 2b [25,26]. The methodology was applied also to predict the 
bone biological behaviour dental biomechanics, with and without the 
presence of implants [27-30].

The simulation of the non-linear behaviour of biological material 
was also addressed with meshless methods. In this class of problems, 
due to its iterative nature, the precision and smoothness of the stress/
strain field is very important to achieve stable and robust solutions. 
Belinha and co-workers have developed non-linear elasto-plastic 
constitutive models to reproduce the biomechanical behaviour of 
bone structures [29] and atherosclerotic plaque tissue [31], Figure 
2c. These models were combined with meshless methods. The results 
allow to predict with precision the failure of those biological structures. 
Another interesting application of meshless methods is the simulation 
of endolymph, fundamental part of the vestibular system, which plays 
an important role in vertigo, Figure 2d.

Final Remarks
There are several research works available in the literature showing 

the numerical efficiency of meshless methods [5]. Based on those 
manuscripts and in my personal experience, I predict that in the 
near future meshless methods (or advanced discretization meshless 
techniques) will substitute traditional numerical techniques, such 

as the FEM, in the computational biomechanical analysis. There are 
several biomechanical computational fields waiting to be explored, 
combining distinct physics behaviours, such as: electrical, magnetic, 
chemical, thermic, biological and fluid/solid mechanics. Up to now, 
meshless methods proven to be capable to deliver an accurate solution 
to all mentioned physics problems. Combining the discretization 
flexibility of this innovating technique with its accuracy will permit to 
break the present science frontiers, offering new therapeutic solutions 
and predicting pathological conditions.

•	 For instances, in the near future meshless methods will:

•	 Assist surgical operations, governing a virtual numerical model 
that will guide the surgeon in real-time;

•	 Permit to make hundreds of in-silico experiments, testing the 
effects of new drugs at the micro-scale level (cellular level) and 
at the macro-scale level (muscles, bones, tendons, etc.)

•	 Predict the regeneration of soft and hard tissues, allowing to 
select the most efficient physical or chemical therapy.

•	 Assess the health or the risk of failure of all biological structures 
after a complete CAT scan.

•	 Design patient specific instrumentation or prosthesis much 
more adapted to the patient physiognomy.

With meshless methods, there is no limits in computational 
biomechanics. The limit is bounded by our imagination and necessity.
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