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Introduction
Kumaraswamy [1] introduced a two parameter absolutely 

continuous distribution which compares extremely favorably, in 
terms of simplicity, with the beta distribution. The Kumaraswamy 
distribution on the interval (0,1), has its probability density function 
(pdf) and its cumulative distribution function (cdf) with two shape 
parameters a>0 and b>0 defined by

1 1( ) = (1 ) (0 < < 1) and ( ) = 1 (1 ) .a a b a bf x a bx x I x F x x− −− − −    (1)

If a random variable X has pdf given in eqn. (1) then we will write 
X~k(a,b)

The density function in eqn. (1) has similar properties to those of the 
beta distribution but has some advantages in terms of tractability. The 
Kumaraswamy pdf is unimodal, uniantimodal, increasing, decreasing 
or constant depending (similar to the beta distribution) on the values 
of the parameters. It has some basic properties of the beta distribution: 
a>1 and b>1 (unimodal); a<1 and b<1 (uniantimodal); a>1 and b ≤ 
1 (increasing); a ≤ 1 and b>1 (decreasing); a=b=1 (constant). For a 
detailed survey of properties of the Kumaraswamy distribution, the 
reader is referred to Jones [2]. This distribution has a close relation with 
beta and generalized beta (first kind) listed below:

• If X~Beta(1,b) then X~k(1,b)

• If X~Beta(a,1) then X~k(a,1)

• If X~K(a,b) , then X~GB1(a,1,1,b)

where GB1 stands for the generalized beta distribution of the first kind.

Over the last few years, there has been a great interest in studying 
the Kumaraswamy distribution, and mixing with other well-known 
probability models to achieve greater flexibility in modeling several 
types of real data exhibiting various patterns. For example, Nadarajah et 
al. [3] studied a new generalized distribution by mixing Kumaraswamy 
distribution with an arbitrary baseline G distribution. Alizadeh et al. [4] 
studied a new model by mixing Kumaraswamy with Marshall-Olkin 
family of distributions. In a separate article, Nadarajah et al. [5] studied 
a mixture of Kumaraswamy and generalized Pareto model. Ghosh [6] 
independently studied a Kumaraswamy mixture with Pareto (type IV) 

model useful for income modeling. Again, in another article, Ghosh 
[7], derived and discussed another Kumaraswamy generalization, with 
mixing with a half-Cauchy distribution. Regarding discrete mixture, 
Ramos et al. [8] developed and studied a new distribution, namely the 
Kumaraswamy-G Poisson family of distributions and discussed the 
associated inferences for the model parameters. Ghosh and Nadarajah 
[9] studied in details, Bayesian inference for Kumaraswamy distribution 
based on censored samples. All the above references are indicative of 
the fact that the Kumaraswamy distribution has a greater applicability 
when it comes to modeling an observed phenomena, with possibly, the 
values of the variable of interest are somehow bounded between (0,1).

However, majority of the inferential work for the Kumaraswamy 
distribution has been conducted under the assumption that complete 
data are available. In contrast, not much work has been done in the 
direction of missing (and or imprecise) information scenario with 
regard to inferential strategy for the Kumaraswamy distribution. This 
is a major motivation for this article.

It has been observed that in numerous real life situations we 
encounter data which are not only random in nature but ambiguous 
as well. It is to be noted that randomness involves only uncertainties 
in the outcomes of an experiment, while ambiguity, on the other 
hand, involves uncertainties in the meaning of the data. For example, 
consider a case study on the electric bulb manufacturing process that 
focuses on the lifetime of an electric bulb. An electric bulb may work 
perfectly over a certain period but may not work efficiently for some 
time, and finally becomes totally exhausted after a certain time point. 
Therefore, the lifetime of each electric bulb may be reported by means 
of ambiguous statements such as “approximately lower than 95 hours”, 
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Abstract
Traditional statistical approaches for estimating the parameters of the Kumaraswamy distribution have dealt with 

precise information. However, in real world situations, some information about an underlying experimental process 
might be imprecise and might be represented in the form of fuzzy information. In this paper, we consider the problem of 
estimating the parameters of a univariate Kumaraswamy distribution with two parameters when the available observations 
are described by means of fuzzy information. We derive the maximum likelihood estimate of the parameters by using 
Newton-Raphson as well as EM algorithm method. Furthermore, we provide an approximation namely, Tierney and 
Kadane’s approximation, to compute the Bayes estimates of the unknown parameters. The estimation procedures are 
discussed in details and compared via Markov Chain Monte Carlo simulations in terms of their average biases and mean 
squared errors.
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“approximately 25 to 40 hours”, “approximately 74 to 98 but near to 
110 hours”, “approximately higher than 125 hours” and so on. In such 
a scenario, randomness occurs when the electric bulbs are selected 
at random and vagueness (or ambiguity) is due to limited ability 
of the observer to describe the lifetime of those randomly selected 
electric bulbs using numbers. To deal with both types of uncertainties 
- randomness and vagueness, it is important to incorporate fuzzy 
concept into statistical toolbox.

In recent years, numerous papers on generalization of classical 
statistical methods to analysis of fuzzy data have appeared in the 
literature. Wu [10] discussed the Bayesian estimation on lifetime 
data under fuzzy environments. Gil et al. [11] presented a backward 
analysis on the interpretation, modeling and impact of the concept of 
fuzzy random variable. Viertl [12] studied generalization of classical 
statistical inference methods for univariate fuzzy data. Zarei et al. [13] 
considered the Bayesian estimation of failure rate and mean time to 
failure based on vague set theory in the case of complete and censored 
data sets. Very recently, Pak et al. [14,15] conducted a series of studies 
to develop the inferential procedures for the lifetime distributions on 
the basis of fuzzy data.

The main objective of this paper is to obtain the suitable inferential 
procedures for a Kumaraswamy distribution when the available 
observations are reported by means of fuzzy information. We first 
describe the construction of fuzzy data from imprecise (equivalently 
vague) observations, and then discuss the computation of maximum 
likelihood estimate of the parameter a and b. Based on fuzzy data, there 
is no closed form for the MLE; therefore, we employ the EM algorithm 
to determine the maximum likelihood estimate. We also construct the 
approximate confidence interval of the unknown parameters by using 
the asymptotic distribution of the MLEs. Additionally, we consider 
the Bayesian inference of the parameters of the Kumaraswamy 
distribution. Since the Bayes estimates cannot be obtained in explicit 
form, we provide an approximation, namely Tierney and Kadanes 
approximation, as well as a Markov Chain Monte Carlo (MCMC) 
technique to compute those estimated and construct the highest 
posterior density (HPD) credible interval of the parameters a and b.

The rest of this paper is organized as follows. In Section 2, we obtain 
the maximum likelihood estimates of the parameters a and b, and also 
construct the approximate confidence intervals by using asymptotic 
normality of the MLEs. The Bayesian analyses are provided in Section 
3. A Monte Carlo simulation study is presented in Section 4, which 
provides a comparison of all estimation procedures developed in this 
paper. Some concluding remarks are presented in Section 5.

In the following, at first, we consider the fundamental notation and 
some basic basic definitions of fuzzy set theory which will be frequently used 
in this paper. Consider an experiment characterized by a probability space 
X=(Ω, ,θ), where (Ω, ) is a Borel measurable space and θ belongs to a 
specified family of probability measures (θ,θ∈Θ) on (Ω, ). Assume that 
the observer cannot distinguish or transmit with exactness the outcome 
in the performance of , but that rather the available observation may be 
described in terms of fuzzy information which is defined as follows. For 
details on this topic, see Tanaka et al. [16].

Definition 1

A fuzzy event x on X characterized by a Borel measurable 
membership function ( )x xµ



 from X to [0,1], where ( )x xµ


 represents 
the “grade of membership" of x to ,x  is called fuzzy information 
associated with the experiment X The set consisting of all observable 
events from the experiment X determines a fuzzy information system 

associated with it, which is defined as follows.

Definition 2

A fuzzy information system (henceforth, in short f.i.s.) X  
associated with the experiment X is a fuzzy partition with fuzzy events 
on X, that is a finite set of fuzzy events on X satisfying the orthogonality 
condition

( ) = 1,
x X

x
∈
∑




for all x∈X. Alternatively, according to Zadeh [17], given the 
experiment X=(Ω, ,θ), θ∈Θ and a f.i.s. X  associated with it, each 
probability measure θ on (Ω, ) induces a probability measure on X  
defined as follows:

Definition 3

The probability distribution on X  induced byθ is the mapping  
from X to [0,1] such that

( ) = ( ) ( ),xX
x x d xθµ∫ 

                       (2)

for x X∈ 

 . In particular, the conditional density of a continuous 
random variable U with p.d.f. g(u) given the fuzzy event A  can be 
defined as

( ) ( ) ( )
| = .

( ) ( )
A

A

u g u
g u A

u g u du
µ
µ∫





                  (3)

For more details about the membership functions and probability 
measures of fuzzy sets, one can refer to Pak et al. [14] and the references 
therein. In this context, we consider another definition which is as 
follows:

Definition 4

A fuzzy number is a subset, denoted by x , of the set of real numbers 
(denoted by ) and is characterized by the so called membership 
function , satisfying the following constraints:

(a) : [0,1]xµ ⇒


  is Borel measurable;

(b) For every 0x ∈ , 0( ) = 1;x xµ


(c) The usual λ-cuts (0<λ ≤ 1), defined as { }( ) = : ( ) ,xB x x xλ µ λ∈ ≥


 
are all closed interval, i.e., [ ]( ) = , , (0,1]x a bλ λ λ λ∀ ∈ .

Some widely known examples of membership functions to 
characterize fuzzy numbers are triangular and trapezoidal fuzzy 
numbers. For example, triangular fuzzy number is defined as 

( )= , ,x ξ ω δ  with the corresponding membership function.

, ,

= , ,

0, elsewhere.

x

x x

x x

ξ ξ ω
ω ξ
δµ ω δ
δ ω

− ≤ ≤ −
−

≤ ≤
−







Similarly, a trapezoidal fuzzy number can be defined as Ëœ
( )= , , ,x ξ ω δ θ  with the corresponding membership function

, ,

1, ,=
, ,

0, elsewhere.

x

x x

x
x x

ξ ξ ω
ω ξ

ω δµ
θ δ θ
θ δ

− ≤ ≤ −
≤ ≤


− ≤ ≤ −
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Let us again revisit the example as mentioned earlier in the context 
of life length of an electric bulb.

Example 1: Consider a life-testing experiment in which n identical 
electric bulbs (made by the same company) are placed on test. A 
tested electric bulb may be considered as failed, or to be more precise 
nonconforming, when at least one value of its parameters (constituent 
parts) falls beyond specification limits. In reality, however, the observer 
does not have the possibility to measure all parameters and may not be 
able to define precisely the moment of a failure. So, he/she provides an 
interval[ξi,ωi] which certainly contains the lifetime of the electric bulb 
marked i and an interval [ξi,θi] which contains highly plausible values 
for that lifetime. This information may be encoded as a trapezoidal 
fuzzy number ( )= , , ,i i i i ix ξ ω δ θ  with the corresponding associated 
membership function

, ,

1,
=

, ,

0, elsewhere.

i i
i i i

i i

i i i
xi

i i
i i i

i i

x x

x
x x

ξ ξ ω
ω ξ

ω δ
µ

θ δ θ
θ δ

− ≤ ≤ −
 ≤ ≤
 − ≤ ≤
 −





In this case randomness arises from the selection of electric bulbs 
as well as other observable factors which influence the perception by 
the observer. In contrast, fuzziness arises from the meaning of the 
reported failure times.

Maximum Likelihood Estimation
Suppose that X1,… Xn is a random sample of size n from 

Kumaraswamy distribution with the density function given by eqn. 
(1). Let ( )1= , , nX X X  denotes the corresponding random vector. If a 
realization x  of X  was known exactly, one can obtain the complete-
data log-likelihood function as

( ) ( ) ( )
=1 =1

log ; , = log log ( 1) log ( 1) log 1 .
n n

a
i i

i i
L x a b n a b a x b x+ + − + − −∑ ∑ (4)

Next, consider the situation where x  is not observed precisely, 
and only partial information about x  is available in the form of fuzzy 
observation ( )1 2= , , , nx x x x  with the Borel measurable membership 
function xµ  . In reality, the grade of membership ( )x xµ



 is often 
regarded as a “probability with which the observer gets the information 
x  when he/she really has obtained the exact outcome x ". Once x  is 

given, we can obtain the observed data log-likelihood function by using 
the eqn. (4) as follows:

( ) ( )

( )

0
=1

=1

= log ; , = log log ( 1) log

( ) ( 1) log 1 ( ) .

n

i
n

a
i x i xi i

i

L x a b n a b a

x x dx b x x dxµ µ

+ + −

+ − −

∑

∑∫ ∫ 



                   (5)

The maximum likelihood estimate of the parameters a and b can 
be obtained by maximizing the log-likelihood l0. Equating the partial 
derivatives of the log-likelihood eqn. (5) with respect to a and b to zero, 
the resulting maximum likelihood equations are:

( )
0

=1 =1

log( ) ( )
= log ( ) ( 1) .

1 ( )

an n i i xi
i x ai

i i i xi

x x x dxn x x dx b
a a x x dx

µ
µ

µ
∂

+ − −
∂ −

∫∑ ∑∫ ∫








     (6)

( )0

=1
= log 1 ( ) .

n
a
i xi

i

n x x dx
b b

µ∂
+ −

∂ ∑ ∫ 



                (7)

Since there are no closed form of the solutions to the likelihood 
eqns. (6) and (7), an iterative numerical search procedure needs to be 

considered to obtain the MLEs. Next, we describe two widely practiced 
search procedures, namely, the Newton-Raphson method and the EM 
algorithm to determine the MLEs of the parameters a and b.

Newton-Raphson procedure

Newton-Raphson algorithm is a direct approach for estimating 
the relevant parameters in a likelihood function. In this procedure, 
the solution of the likelihood equation is obtained through an iterative 
procedure which is as follows. Let ( )= , Ta bδ , be the parameter vector, 
where T stands for transpose. Next, at the (h+1) th step of iteration 
process, the updated parameter is obtained as

1
1 0 0

= =
= | | ,

T
h h

h hTδ δ δ δ
δ δ

δ δ δ

−
+ ∂ ∂   − ×   ∂ ∂ ∂   

                     (8)

where

0

0

0

= .
a

b

δ

∂ 
 ∂ ∂
 

∂  ∂  ∂ 







And,
2 2

0 0
2

2
0

2 2
0 0

2

= ,T

a a b

a b b

δδ

 ∂ ∂
 ∂ ∂ ∂ ∂
 

∂  
∂ ∂  ∂ ∂ ∂ 

 



 

where the second-order derivatives of the log-likelihood with respect 
to the parameters, required for proceeding with the Newton-Raphson 
method, are obtained as follows:

( )
( )

2
2

0
2 2

=1

log( ) ( )
= ( 1) .

1 ( )

an i i xi
a

i i xi

x x x dxn b
a a x x dx

µ

µ
∂

− − −
∂ −

∫∑
∫







2
0

2 2= .n
b b

∂
−

∂


( )
( )

2
0

=1

log( ) ( )
= .

1 ( )

an i i xi
a

i i xi

x x x dx

a b x x dx

µ

µ
∂

−
∂ ∂ −

∫∑
∫







The iteration process then continues until convergence, i.e., until 
1|| || ,h hδ δ ε+ − ≤  for some predefined ε>0. Note that the second-order 

derivatives of the log-likelihood are required at every iteration stage in 
the Newton-Raphson method. However, quite often, the computation 
of the derivatives based on fuzzy data can be really troublesome. This is 
major drawback of this method.

To remedy against this melody, a viable alternative to the Newton-
Raphson algorithm is the well-known EM algorithm. In the following, 
we discuss how that can be utilized to determine the MLEs in this case.

EM algorithm

The Expectation Maximization (EM) algorithm is a widely 
applicable approach to the iterative computation of maximum 
likelihood estimates and useful in a variety of incomplete-data 
problems. For details, see Dempster et al. [18]. Since the observed 
fuzzy data x can be seen as an incomplete specification of a complete 
data vector x, the EM algorithm is applicable to obtain the maximum 
likelihood estimates of the unknown parameters. In the following, we 
use the EM algorithm to determine the MLEs of a and b.
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Based on complete data log-likelihood function from eqn. (4), and 
taking the partial derivative with respect to a and b, respectively, the 
following likelihood equations are obtained as follows:

= log .i
n x
a

−                    (9)

( )
=1

= log 1 .
n

a
i

i

n x
b

− −∑                  (10)

Therefore the EM algorithm is given by the following iterative 
process

1. Start with an initial starting given values of a and b, say, a(0) and 
b(0) and set h=0.

2. At the (h+1) th stage of iteration:

- The E-step requires to compute the following conditional 
expectations using the eqn. (5):

[ ]
( ) ( 1)

( ) ( ), ( 1)

log ( )
log | = .

( )

ha
xi

h h ha b a
xi

x x x dx
E X x

x x dx

µ

µ

− +

− +
− ∫

∫






( ) ( )
( )

( 1)

( ) ( ), ( 1)

log 1 ( )
log 1 | = .

1 ( )

haha
xh ia

h h ha b aha
xi

x x dx
E X x

x x dx

µ

µ

− +

− +

−
 − −  

−

∫

∫







Bayesian Estimation
In this section we describe the Bayes estimate of the unknown 

parameter as well as the corresponding highest posterior density 
credible interval. In the Bayesian estimation unknown parameter is 
assumed to behave as random variable with distribution commonly 
known as prior probability distribution. Here, we consider the 
following independent gamma priors for all the parameters a, b given 
as follows:

• Prior for : ( ) (2.1,1.7)a aΠ Γ

• Prior for : ( ) (1.3,0.89)b bΠ Γ

Note: We do not claim that these choices of the hyperparameters 
are the optimal or uniformly best in all situations like this. However, 
in all the simulations/examples tried, we found this to be a reasonable 
one. Of course there might be others.

By combining eqn. (5) with the above set of independent priors, the 
joint density function of the data and the parameters a and b becomes

[ ]( )( )1.4 0.3( , , ) exp 1.8 1.7data a b a b a bΠ ∝ − +

( ) ( )
=1 =1

log log ( 1) log ( ) ( 1) log 1 ( ) .
n n

a
i x i xi i

i i
n a b a x x dx b x x dxµ µ× + + − + − −∑ ∑∫ ∫ 

  (11)

Therefore, the marginal posterior density functions of a (and b) 
respectively given the data can be obtained as

0
( | ) ( , , ) .a data data a b db

∞
Π ∝ Π∫

0
( | ) ( , , ) .b data data a b da

∞
Π ∝ Π∫
Note that the Bayes estimate of any function of a, say h(a) under 

squared error loss function is the posterior mean which is given by:

0
( | ) ( ) .a data h a da

∞
Π∫                  (12)

and similarly for the other parameter b as well.

However, the eqns. (11) and (12) are not available in analytically 
tractable and closed nice form due to the complex form of the likelihood 

function. Therefore, we use Tierney and Kadanes approximation as 
well as MCMC method for computing the Bayes estimate of a and b.

Tierney and Kadane’s approximation

First, we rewrite the expression in eqn. (11) as (for both the 
parameters a and b respectively)

( )
( )

*

0
0

0

exp ( )
( | ) ( ) = ,

exp ( )

nF a da
a data h a da

nF a da

∞

∞

∞Π ∫
∫

∫
                 (13)

and

( )
( )

*

0
0

0

exp ( )
( | ) ( ) = ,

exp ( )

nF b db
b data h b db

nF b db

∞

∞

∞Π ∫
∫

∫
                (14)

where

1( ) = log ( , ),F a data a
n

Π

and
* 1( ) = ( ) log ( ).F a F a h a

n
+

Tierney and Kadanes [19] applied Laplace method to produce an 
approximation of eqn. (17) as follows:

( )
1/ 2*

* *ˆ ( ) = exp ( ) ( ) ,BTh a n F a F aθ
θ

 
 −   

 
                 (15)

where *a  and a  maximize * *( )F a  and ( )F a , respectively, and θ* 
and θ are minus of the inverse of the second derivatives of *( )F a  and 
F(a) at *a  and a  respectively.

Similar operation will be assumed for the other parameter b as well. 
Next, we apply this approximation to obtain the Bayes estimate of the 
parameter a. Setting h(a)=a we have

( )0

=1

1.4log (1.8 1.7 ) 0.3log
1( ) =

log log ( 1) log ( )
n

i xi
i

a a b b n
F a

a b a x x dxn µ
∞

− + + +

 + + −

∫ ∑ ∫ 

( )
=1

( 1) log 1 ( ) ,
n

a
i xi

i
b x x dx dbµ 

+ − − 


∑ ∫ 

              (16)

and

( )
*

0

=1

2.4log (1.8 1.7 ) 0.3log
1( ) =

log log ( 1) log ( )
n

i xi
i

a a b b n
F a

a b a x x dxn µ
∞

− + + +

 + + −

∫ ∑ ∫ 

( )
=1

( 1) log 1 ( ) .
n

a
i xi

i
b x x dx dbµ 

+ − − 


∑ ∫ 

               (17)

On substitution of eqns. (16) and (17) in eqn. (15), one can obtain 
the Bayes estimate of a under squared error loss. Similar approach can 
also be made to obtain the Bayes estimate of b under square error loss.

MCMC and HPD credible interval

Here, we first draw random samples from the posterior density 
function eqn. (15). Then, we compute the Bayes estimates of a and b and 
also construct its Highest Posterior Density (in short HPD) credible 
interval. Since the joint posterior density function in eqn. (11) can not 
be computed explicitly, we use a Metropolis-Hastings algorithm to 
generate samples from posterior density of τ=(a,b) as follows:

The Metropolis-Hastings algorithm is carried out considering the 
following steps:
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1. We consider a starting (initial) value ( )(0) (0) (0)= ,a bτ .

2. At iteration stage t, draw (*)τ  from a jumping distribution 
( 1)( | )t

tJ τ τ − .

3. Compute an acceptance ratio 
(*) ( 1)

( 1) ( 1) (*)

( | ) / ( | )=
( | ) / ( | )

t
t

t t
t

f data Jr
f data J

τ τ τ
τ τ τ

−

− − .

4. Accept (*)τ  with probability min (r,1). If (*)τ  is not accepted then 
( ) ( 1)=t tτ τ − .

5. We repeat steps 2-4, M, M times to get M draws from ( | )f dataτ . 
We consider 20 parallel chains of length M each. Thus, we will have aj 
and bj for j=1,2,…M in general.

The retained sample values, say,τ1,… τM, are a random sample from 
the joint posterior density ( , | ).a b data  Next, by using Monte Carlo 
integration technique Rubinstein and Kroese [20], the Bayes estimate 
of a and b under squared error loss function can be obtained as

=1

1= ,
M

BM i
i

a a
M ∑

and

=1

1= .
M

BM i
i

b b
M ∑

For constructing HPD credible interval of a (say), one may use the 
method proposed by Chen and Shao [21] as follows:

Let a(1)<…<a(M) be the ordered values of ai for i=1,2,…M. Then, 
consider the following 100(1-α)% credible intervals of a:

( ) ( )(1) ((1 ) ) ( ) ( ), , , , .M M Ma a a aα α− 

The HPD credible interval of a can be derived by choosing the 
interval which has the shortest length.

Similarly, one may obtain the HPD interval for the parameter b.

Simulation Study
In this section, simulation studies are conducted to compare the 

performances of the different estimators and also different confidence/
credible intervals. Our main objective is to compare the performances 
of the MLE and Bayes estimates of the unknown parameters, in terms 
of their average values and mean squared errors. We also compare 
the average lengths of the asymptotic confidence intervals to the HPD 
credible intervals and their coverage percentages. All the computations 
are performed on R-programming environment. For simulation 
purposes, we have considered a=2 and b=3 and different choices 

of sample sizes, namely n=50,75,100,150,200. For each n. we have 
generated random sample from the Kumaraswamy distribution with 
a=2, b=3. Then, using the method as proposed by Pak et al. [15], each 
realization of the generated samples was fuzzified by employing fuzzy 
information system. The estimates of the parameters a and b for the 
fuzzy sample were computed using the maximum likelihood method 
and under the Bayesian paradigm (with independent priors set up). For 
initial choices of the parameters (a,b) required for the MLE method, 
we have taken values that are wide apart from the actual values of the 
parameters. For computing the Bayes estimate, we have assumed that 
both a and b have independent gamma priors with specific choices 
of the hyperparameters (described earlier). We replicate the process 
20000 times with a burn in of 1000 samples and report the average 
values (AV) and mean squared errors (MSE) of the estimates in Tables 
1 and 2.

Furthermore, we provide an approximate 95% confidence interval 
and also the HPD credible interval of the unknown parameters. 
Criteria appropriate to the evaluation of the two methods under 
consideration include: closeness of the coverage probability to its 
nominal value and expected interval width. For each simulated sample, 
we have confidence/ credible intervals and checked whether the true 
value of the parameter lay within the intervals and recorded the length 
of the intervals. The estimated coverage probability was computed as 
the number of intervals that covered the true value divided by 20000. 
while the estimated expected width of the intervals was computed as 
the sum of the lengths for all intervals divided by 20000. The coverage 
probabilities and the expected widths for different sample sizes are 
presented in Tables 1 and 2.

From Tables 1 and 2, one may observe the following:

• The MSE of the estimators decrease significantly as the sample 
size n increases, as one would expected.

• The performances of the Bayes estimates with with informative 
prior are uniformly better. It is also seen that the Bayes estimates 
obtained by Tierney and Kadanes approximation and the MCMC 
method behave in a similar manner. So, we can not say that one 
procedure is uniformly better than the other (while comparing Tierney 
and Kadanes approximation and the MCMC method). It should be 
noted here that although the MCMC techniques are computationally 
expensive, but in turn we can use them to construct HPD credible 
interval.

Next, considering the confidence and credible intervals, it 
is observed that the asymptotic results of the MLE work quite 
satisfactorily. It can maintain the coverage percentages in most of the 
cases even when the sample size is relatively small. The widths of the 

Sample Size Estimation method Bias and (MSE) CI for a and CI for b
N Coverage (width) a Coverage (width)b
50 NR 0:473(0:823) 0:379(0:768) 0:8231(0:4522) 0:8312(0:4655)

EM algorithm 0:417(0:624) 0:347(0:478) 0:8326(0:3765) 0:8411(0:4624)
75 NR 0:386(0:652) 0:361(0:533) 0:8843(0:3102) 0:8593(0:3318)

EM algorithm 0:316(0:533) 0:259(0:375) 0:8937(0:2958) 0:8642(0:3429)
100 NR 0:326(0:437) 0:311(0:427) 0:9032(0:2648) 0:8947(0:2585)

EM algorithm 0:289(0:417) 0:238(0:329) 0:9119(0:2215) 0:9067(0:2653)
150 NR 0:277(0:369) 0:254(0:322) 0:9245(0:2138) 0:9136(0:2484)

EM algorithm 0:273(0:338) 0:214(0:243) 0:9307(0:2016) 0:9177(0:2152)
200 NR 0:226(0:304) 0:236(0:228) 0:9377(0:1868) 0:9435(0:1946)

EM algorithm 0:213(0:195) 0:183(0:205) 0:9587(0:1773) 0:9513(0:1804)
Table 1: Averages values and mean squared errors of the ML estimates of a and b, coverage probabilities and expected width of 95% confidence interval for different 
sample sizes. max width=tw.
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confidence/credible intervals decreases with an increase in the sample 
size n as expected. The performances of the credible intervals are quite 
good and their coverage percentages are close to the corresponding 
nominal level. Moreover, in most of the cases, the average lengths of 
the credible intervals are slightly shorter than the confidence intervals. 
One may consider a dependent prior choice set up for the Bayesian 
inference and perform a similar study.

Conclusions
A lot of work has been done regarding the estimation of parameters 

of the Kumaraswamy distributions based on complete and censored 
samples. However, in almost all cited references in this article, it was 
assumed that the available data are (or can be) obtained in exact 
numbers. In contrast, in many real world observed phenomena, the 
data obtained as an outcome of an experiment may not always be 
recorded/ evaluated/measured properly. As a consequence, there is a 
greater need of developing an appropriate statistical methodology to 
tackle such data and conduct a proper statistical analysis.

In this paper, we have discussed several estimation procedures for 
the Kumaraswamy distribution when the reported data are available 
in the form of fuzzy information. In particular, we have discussed 
the traditional maximum likelihood method and the Bayesian 
procedure (both under the independent non-informative prior and 
dependent prior set up). From the simulation study, it appears that 
the performance of the MLE based on NR method is less efficient as 
compared to the EM algorithm. Although, one can not say in some 
absolute sense that one method is superior than the other always, but 
still the EM algorithm is preferred due to its computational simplicity. 
In terms of overall comparison (with respect to minimum average bias 
and MSEs) the performance of the Bayes estimates is generally best.
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