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Introduction
High-throughput genotyping technology now provides 

epidemiologists with an unprecedented opportunity to explore the 
association between measured genetic variants and the risk of disease. 
For most common complex diseases of adult life, however, putative 
genetic risk factors explain only a small proportion of phenotypic 
variation. Statistical analysis of family data therefore retains an 
important role in the search for genetic determinants of disease since, 
with suitable assumptions, phenotypic variation can be partitioned 
into shared genetic and common environmental components. Efforts 
to elucidate the role of genetic variants through their functional 
effects can then be concentrated on phenotypes where there is strong 
evidence that observed variation in the phenotype is consistent with 
the influence of genetic factors.

Generalized Linear Mixed Models (GLMMs) offer a convenient 
vehicle to perform the variance components analysis described above. 
Such an analysis relies on a correct specification of the within-family 
variance-covariance matrix of the phenotype, which is implied by 
the correlation structure of shared random effects and individual or 
residual error terms that appear in the linear predictor. It is not always 
obvious how to generate a series of individual-specific regression 
equations to achieve this aim, especially when families are of varying 
sizes and compositions.

Current approaches to specifying GLMMs for family data are tied 
to particular family compositions and/or phenotypic outcomes. Burton 
et al. [1] and Scurrah et al. [2] proposed methods for binary phenotypes 
and censored survival data (respectively), but their specifications 
were derived in an ad-hoc fashion that was dependent on the family 
structures in the data. Rabe-Hesketh et al. [3] proposed some model 
specifications to suit continuously-valued and categorical phenotypes, 

however they require specific family compositions (e.g. monozygotic 
(MZ) and dizygotic (DZ) twins grouped together, nuclear families 
with no MZ twins, etc.). Lange et al. developed FISHER [4,5], which 
inputs the within-family variance-covariance matrix (calculated from 
a pedigree file indicating relationships between individuals within 
families) directly into a multivariate normal likelihood function, thus 
only continuous phenotypes can be analyzed. Atkinson and Therneau 
[6] developed an R package to analyze family data that makes use of
the generalized Cholesky decompostion of the matrix representing
the relatedness between individuals within a family, but again only
for continuously-valued phenotypes. SOLAR [7] uses a liability
threshold model to analyze family data with discrete phenotypes, but
these discrete phenotypes can only consist of two categories (binary
phenotypes only).

In this paper we propose a general specification for GLMMs 
to analyze family data where families are of varying sizes and 
compositions. The specification utilises a decomposition of the within-
family variance-covariance matrices as the basis for generating a 
system of regression equations that imply the desired correlation 
structure between phenotypes. It can be easily implemented in standard 
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Abstract
Statistical models imposed on family data can be used to partition phenotypic variation into components due to 

sharing of both genetic and environmental risk factors for disease. Generalized linear mixed models (GLMMs) are useful 
tools for the analysis of family data, but it is not always clear how to specify individual-level regression equations so that 
the resulting within-family variance-covariance matrix of the phenotype reflects the correlation implied by the relatedness 
of individuals within families. This is particularly challenging when families are of varying sizes and compositions. In 
this paper we propose a general approach to specifying GLMMs for family data that uses a decomposition of the 
within-family variance-covariance matrix of the phenotype to set up a series of regression equations with fixed and 
random effects that corresponds to an appropriate genetic model. This “mechanistic” specification is particularly suited 
to estimation and evaluation of models within a Markov chain Monte Carlo (MCMC) framework. The proposed approach 
was assessed with simulated data to demonstrate the accuracy of estimation of the variance components. We analyzed 
data from the Victorian Family Heart Study (families with two generations over-sampled for those with monozygotic 
and dizygotic twins) and for a binary phenotype (hypertension) that resulted in substantially reduced computation time 
in the MCMC framework (via WinBUGS) compared with a maximum likelihood approach (via Stata). The proposed 
approach to model specification in this paper is easily implemented using standard software and can accommodate 
prior information on the magnitude of fixed or random effects. 
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statistical packages that support mixed effects models, such as Stata [8], 
but is particularly suited to scenarios where the model is expressed in 
a “mechanistic” way via an explicit statement of a regression equation 
with fixed and random effects for each datapoint, such as those 
encapsulated in the WinBUGS software and programming language 
[9].

Derivation of the Model Specification
 Our models for data have as their basis Fisher’s polygenic model 

[10], where the genetic contribution to the phenotype is the combined 
effect of possibly a large number of separate locations or loci on the 
human genome. At each of these loci an individual inherits one allele 
(of possibly many) from each parent. The effect of these alleles is 
assumed to be additive - the presence of each additional allele of the 
same type changes the phenotype by the same amount (so the effect 
of two identical alleles is twice the effect of one allele acting alone), 
and the effect of two different alleles is the sum of the effect of each 
allele separately. The result of this assumption is a phenotypic model 
where covariation between individuals depends only on their level 
of relatedness. If the underlying additive model holds at a sufficient 
proportion of the active loci, then the polygenic model will be a 
reasonable approximation to the true but unknown effect of the genetic 
factors on the phenotype. Common environmental factors might also 
contribute to similarity of outcomes within families, with the additional 
assumption that the correlation between phenotypes does not depend 
of the degree of relatedness of the individuals.

We can formalise the above by specifying a model for individual 
participant data: 

Yij = µij + aij + cij + εij,                                                                                                                                     (1)

where Yij is the observed phenotype (continuously-valued) for the 
jth member of the ith family, µij is the fixed-effect mean that can be 
expressed in a general linear predictor to capture the effect of measured 
environmental and/or genetic factors, including possible interactions 
between the two, 2N(0, )ij aa σ  is the additive genetic random effect, 

2N(0, )ij cc σ  is a common environment random effect (typically we 
take cij = ci for all i) and 2N(0, )ij εε σ  is an individual-specific residual 
term. We assume that these three sources of variation or random effects 
are independent of each other, so that the total variation is the sum of 
the variance components, i.e. 2 2 2Var( ) =ij a cY εσ σ σ+ + . This preliminary 
model specifies the marginal, univariate distribution of the random 
effects a,c and ε, and hence the distribution of the phenotype Y, but 
we need further structure to express the assumed correlation between 
phenotypes within a family and thus specify the joint distribution of 
phenotypes.This can be achieved through within-family sharing of the 
random effects aij and cij. For a family i with j =1,2,…,ni individuals, we 
re-write equation 1 as a multivariate model: 

i i i i ii i i
µ ε+ + +a cY Z a Z c Z

where Yi is an ni × 1 vector of observed phenotypes, µi is an ni × 1 vector 
of means, ai, ci, and εi are ni × 1 vectors of additive genetic, common 
environment and individual-specific random effects with ni × ni design 
matrices 

iaZ , 
icZ  and 

iεZ  respectively.

Setting aside the specification of 
iaZ  for the moment, let = ni icZ 1 , 

the ni × 1 vector of all ones and cij = ci
 

for all i so that individuals within 
families share a single, common random effect representing the shared 

family environment. More generally, 
icZ  will be a matrix indicating 

which related individuals share a common environment. Also, let 
iεZ  

be the ni × ni identity matrix, ni
I . Our revised specification with these 

assumptions is therefore 

= ,i i i n i n ii i i
cµ ε+ + +aY Z a 1 I                                                   (2)

implying 
' 'Var( ) = Var( ) Var( ) Var( )i i n i ni i i i

c ε+ +a aY Z a Z 1 1

2 ' 2 ' 2= a n n c n n ni i i i i i iεσ σ σ+ +a aZ I Z 1 I 1 I

2 ' 2 2= a c n ni i i iεσ σ σ+ +a aZ Z J I                                                                  (3)

where ni
J  is the ni × ni matrix of all ones. The entries kjj' , of the matrix 

'=i i ia aK Z Z  correspond to the kinship coefficients [4] that represent 
the relatedness of individuals j and j’ within the same family. We can 
then re-state the problem of model specification as the requirement 
that the additive genetic design matrix 

iaZ  satisfies the condition 
' = ii ia aZ Z K  for known Ki.

Since Ki 
can be interpreted as a correlation matrix, it is symmetric 

positive-definite and can therefore be decomposed uniquely into the 
product of a lower triangular matrix (the Cholesky triangle) and its 
transpose. The product '

i ia aZ Z  is then the Cholesky decomposition of 
Ki..

We show in the next section that estimates of the linear predictor 
are invariant to the choice of matrix decomposition.

To illustrate the Cholesky decomposition of the kinship matrix, we 
now consider two example models, each consisting of a single nuclear 
family. First, let Yi = (Yi1,Yi2) be a vector of continuously-valued 
phenotype data from a pair of full siblings. From equation 3 we have 

2 2 2
sib sib sibVar( ) = ,i a c εσ σ σ+ +Y K J I  

where 

 sib

1 1 / 2
=

1 / 2 1
 
 
 

K

so that the phenotypic correlation between full siblings due to shared 
genetic factors is 1/2 since they will, on average, share half of their 
genetic material. The Cholesky triangle of Ksib is then 

 sib

1 0
=

1 / 2 3 / 2
 
  
 

Z

so that the system of equations in 2 reduces to 

Yi1 = µi1 + ai1 + ci + εi1

2 2 1 2 2
1 3= .
2 2i i i i i iY a a cµ ε+ + + +

For a nuclear family of biologically unrelated parents and two 
children (arbitrarily ordered as father, mother, child 1 and child 2), the 
kinship matrix Knuc for the within-family correlation structure implied 
by shared genetic factors is 

nuc

1 0 1 / 2 1 / 2
0 1 1 / 2 1 / 2

=
1 / 2 1 / 2 1 1 / 2
1 / 2 1 / 2 1 / 2 1

 
 
 
 
 
 

K
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nuc

1 0 0 0
0 1 0 0

= .
1 / 2 1 / 2 1 / 2 0

1 / 2 1 / 2 0 1 / 2

 
 
 
 
 
 
 

Z

so that the system of equations in 2 becomes 

Yi1 = µi1 + ai1 + ci + εi1

Yi2 = µi2 + ai2 + ci + εi2

3 3 1 2 3 3
1 1 1=
2 2 2i i i i i i iY a a a cµ ε+ + + + +

4 4 1 2 4 4
1 1 1= ,
2 2 2i i i i i i iY a a a cµ ε+ + + + +

which produces the correct within-family correlation structure. 

For a non-continuously-valued phenotype, we specify a generalized 
linear model for Y using a link function g () to relate the expected value 
of Y to the linear predictor of fixed and random effects: 

( ( )) = .i i i n ii i
g E cµ + +aY Z a 1                      (4)

McCulloch and Searle [11] show that a Taylor expansion of the link 
function around E (Yi) approximately follows a linear mixed model.

Choice of matrix decomposition

Before illustrating the use of the matrix specification above to 
analyze data from multiple families, we show that predictions from the 
fitted model are invariant to the choice of the matrix decomposition. 
Consider two alternative specifications of the model in equation 2 

=i i i n i n ii i i
cµ ε+ + +a1Y Z a1 1 I

= .i i i n i n ii i i
cµ ε+ + +a2Y Z a2 1 I

 Note that a1i and a2i are alternative specifications of the random 
effect vector ai. The equations above imply 

2 ' 2 2
1Var( ) =i a c n ni i i iεσ σ σ+ +a1 a1Y Z Z J I

2 ' 2 2
2= a c n ni i i iεσ σ σ+ +a2 a2Z Z J I

where 2Var( ) =i akσak  for k = 1,2, which implies that ' '=
i i i ia1 a1 a2 a2Z Z Z Z  

if 2 2 2
1 2= =a a aσ σ σ . Consider now the fitted value at the family level taking 

expectations at the individual level, namely ( ) = .i i i n ii i
E µ + +akY Z ak 1 c

Denoting

2 ' 2 2 2 2 2= Var( ) = =i i a c n n a i c n ni i i i i iε εσ σ σ σ σ σ+ + + +ak akV Y Z Z J I K J I

and using results stated in [12] we have 

' 1( | ) = Var( ) ( )i i i i i ii
E µ− −akak Y ak Z V Y

2 ' 1= ( ),a i i ii
σ µ− −akZ V Y

which implies that 

2 ' 1( | ) = ( )i i a i i ii i i
E σ µ− −ak ak akZ ak Y Z Z V Y

2 1= ( ).a i i i iσ µ− −K V Y

Thus ( | )i ii
E akZ ak Y  does not depend on the choice of 

decomposition. Again using results stated in [12] we also have 

' 2 1 2 1 1Var( | ) = [ ( ) ( ) ] ,i i n ai i iεσ σ− − −+ak akak Y Z I Z

and therefore 

' 2 1 2 1 1 'Var( | ) = [ ( ) ( ) ]i i n ai i i i i iεσ σ− − −+ak ak ak ak akZ ak Y Z Z I Z Z

2 2 '= n ai i iεσ σ+ ak akI Z Z

2 2= .n a iiεσ σ+I K

Therefore Var( | )i iiakZ ak Y  does not depend on the choice of 
matrix decomposition for the design matrix of the genetic random 
effects contribution to the linear predictor.

Implementing the Model Specification
The model specification described above can be implemented 

using, for example, R and WinBUGS by the following procedure: 

× N block diagonal sparse matrix, with N being the total number 
of individuals in the data. Here we assume that the data can be 
partitioned into families (possibly extended families or “pedigrees”) 
and that members in the same family appear as consecutive records 
in the dataset. The diagonal blocks are the within-family kinship 
matrices and the off-diagonal blocks are zero (implying outcomes 
for individuals in different families are uncorrelated). This 
computation can be done in R using the makekinship command 
from the kinship package [6]. Note that makekinship does not 
distinguish between monozygous (MZ) and dizygous (DZ) twins, 
so the resulting kinship matrix needs to be amended to reflect this 
distinction.

2. Obtain Z by computing the transpose of the Cholesky 
decomposition of the kinship matrix, which can also be done in 
R. This results in a “triangular diagonal” matrix, that is, a block 
diagonal sparse matrix where the blocks are lower triangular 
matrices.

3. Set up a three level hierarchical model in WinBUGS. For a 
continuously-valued phenotype, level one (the individual level, i.e. 
the jth member of family i ) is specified as 

2( , ),ij ijY N εµ σ

where 

µij = xijβ + zaija + cij                                                                                    (5)

Thus the mean µ for the jth person of family i depends on (i) a vector 
of fixed-effects regression coefficients β and the corresponding fixed-
effects design matrix X (has columns xij); (ii) the N × 1 vector of genetic 

random effects a (with 2N(0, )ij aa σ ) and the corresponding N × 

N block diagonal sparse matrix of family decompositions Za (which 
has columns zaij) and (iii) the common environment random effect 

cij, where cij = ci for all i and 2N(0, )i cc σ . For a general categorical 
phenotype, the model is specified as the linear model in equation 5 for 

 1. Create the kinship matrix for all families, which results in a N 
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g(E(Yij)), where g is the link function. In a full probability (i.e. Bayesian) 
framework, prior distributions would be specified for β, 2

aσ , 2
cσ  and 

2
εσ . 

It is straightforward to implement this process in standard statistical 
software, for example, by creating an R source file that prepares the 
data (steps 1 & 2), performs the analysis in WinBUGS via R2WinBUGS 
[13] (step 3) and outputs the results as dataframes and tables.

Evaluation of the Model Specification
Analysis of simulated data

To assess empirically the validity of the proposed model 
specification, we conducted a small simulation study. Data were 
simulated (in R) for 790 independent nuclear families (two parents and 
one or more children, possibly including MZ or DZ twins), where the 
family sizes and compositions were chosen to mimic those from the 
Victorian Family Heart Study (VFHS) [14].

Three phenotypes were simulated: (i) a continuously-valued 
phenotype from the linear mixed model in equation 2 with µi = 0, σa = 
4, σc = 3 and σε = 2; (ii) a binary phenotype from the generalized linear 
mixed model specified in equation 4 with g(E(Yi)) = log(E(Yi)/(1-

E(Yi))) (i.e the logit transformation of a proportion) and = 3.70i ni
µ − 1

, corresponding approximately to an overall proportion of E(Yi) = 

0.25;  and (iii) a binary phenotype generated in the same way as (ii) 

above but with g(E(Yi)) = Φ-1(E(Yi)) where Φ-1 is the inverse cumulative 

distribution function of the standard normal distribution (i.e. the 
probit transformation of a proportion).

The simulated data were analyzed by fitting the models from which 
they were generated, producing three analyses per simulated dataset. 
The proposed model specification was implemented in WinBUGS (via 
R2WinBUGS, [13]) in R. For all models in WinBUGS, a single chain 
was specified and uniform prior distributions (U(0,30)) were specified 
for 2 2,a cσ σ  and 2

εσ . The linear model was run for 5,000 iterations (2,500 
burn-in), the logistic model was run for 10,000 iterations (5,000 burn-
in) and the probit model was run for 20,000 iterations (10,000 burn-in). 
For the binary phenotypes the cut function was used to prevent any 
“orphan” random effects (those that appear in the linear predictor of 
a single individual and are not shared by any other family members) 
from contributing to the posterior distribution of the corresponding 
variance component. This was done since these random effects mimic 
those associated with a residual error term (which no longer exists in 
a GLMM specification) and can lead to upwardly biased estimates [1]. 
For all analyses, the posterior medians and 95% posterior intervals for 
the variance components were computed. This simulation-estimation 
process was repeated 10 times for all phenotypes.

The results from the simulation-estimation procedure are displayed 
in Figure 1. For the linear model all displayed posterior summaries were 
close to the target values (the median of the posterior medians for σa, 
σc and σε, were 4.14 (target value 4), 3.04 (3) and 1.90 (2), respectively). 
The estimates from the logistic model were consistent with the nominal 
values, with only one posterior interval for σa and one posterior interval 
for σc excluding the target values (the median of the posterior medians 
for σa 

and σc 
were 4.05 (4) and 2.82 (3), respectively). The estimates 

from the probit model were somewhat less consistent with the nominal 
values, with four posterior intervals for σa 

and three posterior intervals 

for σc 
excluding the target values (although the median of the posterior 

medians for σa and σc were 3.79 and 2.90, respectively, which were close 
to the respective target values of 4 and 3). On average it took 58 seconds 
per analysis for the linear models, 5.15 minutes for the logistic models 
and 6.36 minutes for the probit models.

Analysis of data from the victorian family heart study

To illustrate the proposed model specification in an application, 
data from the Victorian Family Heart Study (VFHS) were analyzed 
in WinBUGS. The Victorian Family Heart Study was established to 
investigate the causes of familial patterns in cardiovascular risk factors. 
The study consisted of adult families recruited in Melbourne, Australia, 
where each family consisted of both parents and at least one natural 
adult offspring. For full details of the study see [14].

Two phenotypes were analyzed: systolic blood pressure (SBP) 
taken lying down (continuously-valued) and high blood pressure 
(HBP), defined as a systolic blood pressure reading of >140 mm Hg 
or a diastolic blood pressure reading of >90 mm Hg. SBP was analyzed 
using a linear model and HBP was analyzed using a logistic model. In 
both models, age (dichotomised as <35 years or ≥ 35 years) and sex 
were included as fixed-effect covariates, and the additive genetic and 
common environment variance components were estimated (the linear 
model also included the residual component of variance). Descriptive 
statistics of the phenotypes and covariates included in the analyses 
are given in Table 1. In addition, three chains were specified for each 
model, and convergence was declared when the Gelman-Rubin R-hat 
statistic was ≤ 1.1. The analyses were also run in Stata to provide a 
comparison with a maximum likelihood method. Stata was chosen for 
the maximum likelihood analysis since it comes with pre-packaged 
routines allowing easy implementation of the proposed model 
specification for both continuously-valued and categorical phenotypes 
(xtmixed was used for SBP and xtmelogit was used for HBP, where 6 
integration points were specified for xtmelogit). The results from these 
analyses are displayed in Table 2.

The results were similar between WinBUGS and Stata, however 
Stata took substantially longer to achieve estimates for the logistic 
model.

Discussion
In this work we developed a general method for specifying GLMMs 

for data from families of varying size and composition. We evaluated 
the method by analyzing simulated and real data and found that it 
performed well for parameter estimation and run times for both 
continuously-valued and binary phenotypes. The model specification 
is particularly suited to MCMC methods that require a “mechanistic” 
description of a linear predictor containing both fixed and random 
effects.

For the simulated continuously-valued phenotypes the proposed 
model specification delivered unbiased parameter estimates. Using 
the specification in WinBUGS for the continuously-valued phenotype 
from the Victorian Family Heart Study (systolic blood pressure) gave 
similar results to xtmixed in Stata. The analysis did, however, take 
much longer in WinBUGS - iterative estimation routines for linear 
mixed models typically converge to the maximum likelihood estimates 
quickly, so a simulation-based approach to parameter estimation will 
under-perform in comparison. The MCMC framework does, however, 
allow for flexibility in model specification, such as the opportunity for 
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Figure 1: Posterior medians and 95% posterior intervals from the simulation-estimation procedure for the linear, logistic and probit models.

the shared environment component of variance to be dependent on the 
value of other covariates, something that is difficult to achieve in linear 
modelling routines such as xtmixed in Stata.

For the simulated binary phenotypes the proposed model 
specification also produced parameter estimates close to the target 
values, but the coverage of the target parameters by the nominal 95% 
posterior intervals was not as good as it was for the continuously-
valued phenotype. The analysis of the binary phenotype from the 
Victorian Family Heart Study (high blood pressure) that employed 

our model specification using WinBUGS yielded similar estimates to 
xtmelogit in Stata, however the analysis took substantially less time in 
WinBUGS. The xtmelogit routine uses adaptive quadrature, which can 
be slow, especially when there are many random effects, a large number 
of observations and several integration points [15]. Even with the use 
of multiple processors, it is unlikely that the processing time in Stata 
could be reduced from days to hours.

It is straightforward to extend the proposed model specification to 
accommodate multi-category phenotypes. Details on the specification 
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of logistic regression models that incorporate random effects that can 
reproduce within-family correlation structures for ordinal outcomes 
due to shared environmental and genetic risk factors are described 
in Zaloumis [16]. In addition, Ellis et al. [17] analyzed data from the 
VFHS to investigate risk factors for male pattern baldness (a four-
category ordinal outcome variable) using generalized linear mixed 
models similar to those proposed here.

We successfully reduced the processing time in WinBUGS by 
stating explicitly the multiplication of the columns of the design matrix 
Za by the aij’s. This contrasts with what appears to be a more convenient 
coding strategy relying on the inprod (inner product) command. 
Results from a small subset of simulated data (continuously-valued 
phenotype, 300 families) showed this choice of coding took at least 
three times as long to achieve convergence of estimates. In addition, it is 
possible to further reduce the processing time in WinBUGS (and Stata) 
by “stacking” the diagonal blocks of Za 

on top of one another, so that 
the number of columns of this “stacked” matrix is equal to the number 
of people in the largest observed family. For families that don’t have 
as many members as the largest family, the remaining columns can be 
filled in with zeros. This “stacking” approach is appropriate if families 
are assumed to be unrelated (as they were in the simulation-estimation 
procedure and the analysis of the VFHS data) and the software allows 
one to specify a hierarchical model on families where the ai random 
effects vectors are independent among families.

Although we have shown in this paper that our approach to 
specifying GLMMs for family data is analytically sound, it does 
not overcome the computational difficulties of estimating variance 

components with categorical phenotypes [1]. It is possible to 
circumvent these problems with careful specification of the model, but 
a large number of iterations of the Gibbs sampler will be required (i.e. 
tens if not hundreds of thousands) and accurate estimation will require 
a substantial number of families (i.e. hundreds if not thousands). 
Therefore when using our proposed approach to specifying mixed 
models for family data with categorical phenotypes, a large number 
of families will be needed for adequate estimation of the variance 
components, particularly 2

aσ , and the Gibbs sampler will have to be 
run for several thousands of iterations.

Our proposed general approach to specifying GLMMs for 
family data avoids the nuisance of having to specify a model that is 
dataset-specific, which can be tedious and time-consuming. This is 
an improvement on current approaches, which are tied to particular 
phenotypes and/or family compositions. The method can be easily 
implemented in freely available software and was particularly suited to 
the MCMC framework. The method of specification proposed in this 
paper should be considered when analyzing family data, particularly 
when outcomes are categorical, prior information on parameters needs 
to be incorporated and/or non-standard specifications of the genetic 
model are of interest.
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   SBP* lying down (mm Hg)  HBP
†

 

   No.  Mean (SD
‡

)  Range  Percent 

Offspring     
Female  767  114 (9.86)  86-149  1.22 
Male  698  122 (11.2)  96-167  6.68 
Parents     
Female  790  126 (16.4)  87-198  20.5 
Male  790  132 (16.6)  96-215  27.5 
*SBP = systolic blood pressure
† HBP = high blood pressure
‡ SD = standard deviation
Table 1: Descriptive statistics of phenotypes by generation and sex in the 
Victorian Family Heart Study.

    σa   σc   σe  

Model  Package  (95% 
interval)* 

 (95% 
interval)* 

 (95% 
interval)*  Run time 

Linear   WinBUGS  6.1  4.7  11.8  2.4 minutes †
 

  (4.3, 7.6)  (3.6, 5.7)  (11.2, 12.2)  
Linear   Stata  5.8  4.8  11.9  8 seconds 

  (4.1, 8.0)  (3.8, 6.0)  (11.2, 12.6)  

Logistic   WinBUGS  2.1  1.2  n/a  24.3 minutes ‡
 

  (1.2, 3.0)  (0.7, 1.7)  n/a  
Logistic   Stata  1.7  1.1  n/a  25 days 

  (0.9, 3.2)  (0.8, 1.6)  n/a  
*95% posterior intervals for  WinBUGS; 95% confidence intervals for  Stata
† Results based on 3,000 iterations (1,500 burn-in)
‡ Results based on 10,000 iterations (5,000 burn-in)

Table  2: Results from analyzing continuously-valued and binary phenotypes 
from the Victorian Family Heart Study.
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