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Introduction
Due to feeding and living in the aquatic environments fish are 

particularly vulnerable and heavily exposed to pollution because 
they cannot escape from the detrimental effects of pollutants [1-3]. 
Fish, in comparison with invertebrates, are more sensitive to many 
toxicants and are a convenient test subject for indication of ecosystem 
health [4-17]. Heavy metals are produced from a variety of natural 
and anthropogenic sources [18]. In aquatic environments, heavy 
metal pollution results from direct atmospheric deposition, geologic 
weathering or through the discharge of agricultural, municipal, 
residential or industrial waste products, also via wastewater treatment 
plants (WWTPs) [19-22]. Coal combustion is one of the most 
important anthropogenic emission sources of trace elements and an 
important source of a number of metals [23]. The contamination of 
heavy metals and metalloids in water and sediment, when occurring 
in higher concentrations, is a serious threat because of their toxicity, 
long persistence, and bioaccumulation and bio magnification in 
the food chain [24,25]. Fishes are considered to be most significant 
biomonitors in aquatic systems for the estimation of metal pollution 
level [26,27], they offer several specific advantages in describing the 
natural characteristics of aquatic systems and in assessing changes to 
habitats [28]. In addition, fish are located at the end of the aquatic food 
chain and may accumulate metals and pass them to human beings 
through food causing chronic or acute diseases [29]. Studies from the 
field and laboratory works showed that accumulation of heavy metals 
in a tissue is mainly dependent on water concentrations of metals and 
exposure period; although some other environmental factors such 
as water temperature, oxygen concentration, pH, hardness, salinity, 
alkalinity and dissolved organic carbon may affect and play significant 
roles in metal's accumulation and toxicity to fish [30-35]. Ecological 
needs, size and age of individuals, their life cycle, feeding habits, and 
the season of capture were also found to affect experimental results 
from the tissues [36-38]. Fish have the ability to uptake and concentrate 
metals directly from the surrounding water or indirectly from other 
organisms such as small fish, invertebrates, and aquatic vegetation 
[39]. Fish accumulate pollutants preferentially in their fatty tissues 
like liver and the effects become apparent when concentrations in 
such tissues attain a threshold level [40]. However, this accumulation 

depends upon their intake, storage and elimination from the body [41]. 
This means that metals which have high uptake and low elimination 
rates in tissues of fish are expected to be accumulated to higher levels 
[42,43]. Heavy metals can be taken up into fish either from ingestion 
of contaminated food via the alimentary tract or through the gills and 
skin [44,45]. Effectively, after the absorption, metals in fish are then 
transported through blood stream to the organs and tissues where they 
are accumulated [46, 47]. The heavy metal concentration in fish tissues 
reflects past exposure via water and/or food and it can demonstrate the 
current situation of the animals before toxicity affects the ecological 
balance of populations in the aquatic environment [48]. The obvious 
sign of highly polluted water, dead fish, is readily apparent, but the 
sublethal pollution might result only in unhealthy fish. Dupuy et al. 
[49] reported that the fish health status in some polluted systems
(estimated by the condition factor) indicated that the fish have a lower
condition. Very low-levels of pollution may have no apparent impact
on the fish itself, which would show no obvious signs of illness, but
it may decrease the fecundity of fish populations, leading to a long-
term decline and eventual extinction of this important natural resource 
[34,50]. Also, heavy metals are known to induce oxidative stress and/
or carcinogenesis by mediating free radicals/reactive oxygen species
[51]. In general, metals can be categorized as biologically essential and
non-essential. The nonessential metals (e.g., aluminum (Al), cadmium
(Cd), mercury (Hg), tin (Sn) and lead (Pb)) have no proven biological
function (also called xenobiotics or foreign elements), and their toxicity 
rises with increasing concentrations [45]. Essential metals (e.g., copper 
(Cu), zinc (Zn), chromium (Cr), nickel (Ni), cobalt (Co), molybdenum 
(Mo) and iron (Fe)) on the other hand, have a known important
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Abstract
The present review gives a brief account of the toxic effects of heavy metals on fish. In aquatic ecosystem, 

heavy metals are considered as the most important pollutants, since they are present throughout the ecosystem and 
are detectable in critical amounts. Heavy metals, such as mercury, cadmium, copper, lead and zinc are of the most 
important pollutants which effect aquatic environment and fish. They are extremely dangerous for the health of fish. 
Most of these metals are characterized by being accumulated in tissues, and lead to the poisoning of fish. These 
metals can effectively influence the vital operations and reproduction of fish; weaken the immune system, and induce 
pathological changes. As such, fish are used as bio-indictors, playing an important role in monitoring heavy metals 
pollution. Finally, some recommendations are given to treatment of different kinds of wastewaters, sewage and 
agricultural wastes before discharge into the aquatic systems. Also, enforcement of laws and legislations regarding 
the protection of aquatic environments must be taken into consideration.
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with aquatic vegetation [83]. Arsenic is able to accumulate in large 
quantities in the sediments on the bed of water courses and reservoirs, 
and in aquatic organisms [71]. Arsenic compounds in the third (III) 
oxidation state (arsenites) are absorbed fairly rapidly into fish and are 
more toxic than arsenic compounds in the oxidation state V (arsenates) 
[84]. Arsenic is actively metabolized in the tissue of fish especially in 
organs such as the liver and has the tendency to accumulate as reported 
in different teleosts such as green sunfish [85], rainbow trout [86], 
Japanese medaka and Tilapia mossambica [87,88]. Donohue and 
Abernathy [89] reported that total arsenic in marine fish, shellfish, 
and freshwater fish tissues ranged from 0.19 to 65, 0.2 to 125.9, and 
0.007 to 1.46 µg g−1 dw, respectively. Koch et al. [90] demonstrated that 
total arsenic in freshwater fish ranged from 0.28 to 3.1 for whitefish 
(Coregonus clupeaformis), 0.98 to 1.24 for sucker (Catostomus 
commersoni), 0.46 to 0.85 for walleye (Stizostedion vitreum), and 
1.30 to 1.40 µg g−1 dry wt for pike (Esox lucius). Acute exposures can 
result in immediate death because of As-induced increases in mucus 
production, causing suffocation, or direct detrimental effects on the 
gill epithelium. Chronic exposures can result in the accumulation 
of the metalloid to toxic levels and is responsible for several disease 
conditions [91]. Hemosiderin granules probably represent an alternate 
storage site for arsenicals in teleosts [83].Fish are continually exposed 
to arsenic through their gills and intake of As-contaminated food [92]. 
Arsenic has been found to cause the head kidney cells to be swollen 
with intercellular oedema in Clarias batrachus [93] while vacuolation 
has also been found in Clarias batrachus exposed to As [94]. On the 
other hand, renal histopathological changes in freshwater teleosts were 
significant in various fish species such as arsenic-exposed rainbow trout 
[95], lake white fish and lake trout [96]. Arsenic was also found to cause 
a depletion of lymphocytes and melano-macrophage centres in Clarias 
batrachus [94]. Hepatic degenerative changes in fish exposed to as 
include submassive necrosis, focal necrosis, bile duct proliferation, bile 
plug's, and acidophilic bodies. Other changes include the formation of 
necrotic bodies, fibrous bodies, and cytoplasmic and intra nuclear As-
inclusions within the parenchymal hepatocytes [83].

It has been observed that, although arsenic accumulates primarily 
in retina, liver and kidney of fish, it can interfere with the fish immune 
system by suppressing antibody [93]. It has also been reported that 
short-term exposure of fish to non-lethal concentration of arsenic 
can induce time-dependent and tissue-specific changes in B and 
T-lymphocytes cells functioning, making them susceptible to infections 
[84,97]. Arsenicals are also known to induce a number of major stress 
protein families, including heat shock proteins (hsps) both in vitro 
and in vivo in several organs and systems with a rapid dose dependent 
response to acute exposure to arsenite [98,99]. Studies on zebrafish 
revealed that arsenic inhibited synthesis of macrophage-derived 
cytokines like TNFα and IFN-γ thereby compromising the antiviral 
responses [100]. Exposure of fish to various concentrations of arsenic 
also affected the phagocytic potential of macrophages and helped in 
the dissemination and persistence of viral and bacterial pathogens into 
distant host tissues [101]. 

Cadmium (Cd)
Cadmium is a naturally occurring nonessential trace element and 

its' tendency to bio accumulate in living organisms often in hazardous 
levels, raises environmental concern [45,102,103]. Cadmium 
production, consumption and emissions to the environment have 
increased dramatically during the 20th century, due to its industrial 
use (batteries, electroplating, plastic stabilizers, pigment), and 
consequently lead to contamination of aquatic habitats [104]. 

biological roles [52], and toxicity occurs either at metabolic deficiencies 
or at high concentrations [53]. The deficiency of an essential metal can 
therefore cause an adverse health effect, whereas its high concentration 
can also result in negative impacts which are equivalent to or worse 
than those caused by non-essential metals [54]. Moreover, the toxicity 
of metals to fish is significantly affected by the form in which they occur 
in water. The ionic forms of metals or simple inorganic compounds are 
more toxic than complex inorganic or organic compounds. The toxic 
action of metals is particularly pronounced in the early stages of fish 
development [55] and adversely affects various metabolic processes 
in developing fish (embryos in particular), resulting in developmental 
retardation, morphological and functional deformities, or death 
of the most sensitive individuals [45]. Heavy metals produce toxic 
effects at high concentrations, and thus could be considered as risk 
factors for several diseases [56-58]. Heavy metals are able to disturb 
the integrity of the physiological and biochemical mechanisms in fish 
that are not only an important ecosystem component, but also used 
as a food source [59-65]. Previous studies have shown that marine 
and farmed fish and shellfish are significant contributors to consumer 
intake of some contaminants due to their presence in the aquatic 
environment and their accumulation in the flesh of fish and shellfish 
[66,67].The objective of the present review article is to briefly describe 
the toxicity and effects of different heavy metals on the fish health and 
the consequent use as bioindicators. The heavy metals: Aluminum, 
Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, 
Mercury, Nickel, Vanadium and Zinc, are going to be investigated in 
this review.

Aluminum (Al)
Aluminum (Al) is the third most common and abundant metal on 

earth after oxygen and silicon [10]. It is similar to many other metals in 
that it is generally considered most toxic in its soluble ionic form [68]. It 
is found in the atmospheric air of the big cities and industrialized areas, 
and is used as a flocculation agent in water treatment [69, 70]. The toxicity 
of aluminum to fish depends to a large extent on the physicochemical 
properties of the water and particularly on its pH. Aluminum is soluble 
at pH values below 6.0 [71]. The mechanism of toxicity in fish seems 
to be related to interference with ionic and osmotic balance and with 
respiratory problems resulting from coagulation of mucous on the 
gills of fish and has been found to cause severe fusion of lamellae and 
filaments in the gills [72]. Al is considered to be an endocrine disrupting 
chemical in mature Oreochromis niloticus females [73]. Fish exposed to 
Al showed significantly higher total erythrocyte counts; haematocrit 
(Hct); mean corpuscular haemoglobin concentration (MCHC) and 
mean corpuscular haemoglobin (MCH) while mean corpuscular 
volume (MCV) was significantly lower [74]. Using concentrations as 
low as 0.52 mg/l aluminum led to markedly reduction in fish growth 
[75]. Physiological alterations frequently observed in different fish 
species exposed to Al are mainly related to cardiovascular [76], 
haematologic [77], respiratory, ionoregulatory [78], reproductive [79], 
metabolic [80], and endocrine [81] disturbances, beyond structural gill 
damage [82].

Arsenic (As)
Arsenic reach aquatic ecosystems by a variety of sources including 

manufacturing companies, mineral or strip mines, smelting operations, 
and electric generating stations (power plants). One major agricultural 
source of as is the manufacture and use of arsenical defoliants and 
pesticides. It also has been used to kill aquatic plants to reduce the 
difficulty encountered during hook-and-line fishing of areas overgrown 
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The use of cadmium containing fertilizer, agricultural chemicals, 
pesticides and sewage sludge in farm land, might also contribute to 
the contamination of water [105]. As a nondegradable cumulative 
pollutant, Cd is considered capable of altering aquatic trophic levels 
for centuries [83]. This heavy metal has been shown to accumulate 
mainly (about 75 %) in kidney, liver and gills of freshwater fish [106], 
but it can also be deposited in the hearts [107] and other tissues [108] 
and cause pathological changes of varying severity in above mentioned 
organs [109]. Morphological and histological alterations in liver of 
fishes exposed to cadmium have been documented [110]. Higher doses 
of cadmium caused visible external lesions such as discoloration and 
necrosis on livers of Cyprinus carpio, Carassius auratus and Corydoras 
paleatus [111]. Oreochromis mossambicus exposed to Cd showed liver 
alterations in the form of hyalinisation, hepatocyte vacuolation, cellular 
swelling and congestion of blood vessels [112]. Epithelial swelling of 
the renal tubules and mitochondrial and endoplasmic reticulum (ER) 
swelling (cloudy swelling) were observed in kidney of Dicentrarchus 
labrax exposed to cadmium [113]. Chloride cells proliferation has 
been observed in gills of specimens of D. labrax exposed to cadmium 
[113]. Moreover, cadmium inhibits calcium uptake in gills [114] and 
may alter the metabolism of essential trace element by affecting normal 
tissue distribution of trace elements as Zn and Cu [115]. Omer et al. 
[116] reported histopathological alterations in liver, intestine and 
kidneys of tilapia fish (Oreochromis niloticus) exposed to cadmium. 
Fish exposed to cadmium revealed disturbances in blood constituents 
and differential blood count. Cadmium causes the destruction 
of erythrocytes, decreases the hematocrit value and hemoglobin 
concentration and leads to anemia [117]. Cadmium in plasma of 
goldfish significantly increased the activities of plasma glutamic acid-
oxaloacetic acid-transaminase (GOT) and glutamic acid-pyruvic acid-
transaminase (GPT) [118]. Also, cadmium altered the metabolism 
of carbohydrates, causing hyperglycemia in some marine [119] and 
freshwater fish species [120,121]. Cadmium is considered as endocrine 
disrupter and has been shown to interfere with the formation of steroids, 
eggs and sperm in rainbow trout (Oncorynchus mykiss) where it alters 
hormone synthesis in testes [122]. In carp (Cyprinus carpio) it inhibits 
steroid formation and ovarian function [123]. Also, adverse influence 
of long exposure to cadmium upon the maturation, hatchability and 
development of larvae was recorded [113]. Fish exposed to cadmium 
revealed a negative effect on the growth rate, meat quality and blood 
physiology of Nile tilapia [124]. Exposure of Anabas testudineus, to 
cadmium also showed a significant decline in carbohydrate content in 
body tissues [125]. Shukla et al. [126] showed toxic effects of cadmium 
individually and in combination with other metals on the nutritive 
value of freshwater fish Channa punctatus. About the genotoxicity 
of cadmium in fish species, Sanchez-Galan et al. [127] reported that 
the cadmium chloride injection induced the formation of micronuclei 
in erythrocytes of Anguilla anguilla. Bolognesi et al. [128] reported 
that cadmium yielded negative results with the micronucleus test. 
Induction of micronuclei in polychromatic erythrocytes of Cyprinus 
carpio by cadmium treatment was demonstrated by [129]. Exposures 
to low levels of Cd can cause DNA damage and stress in common carp 
(Cyprinus carpio) [130].

Effects of accumulation of Cd on indicators of oxidative stress in 
several tissues of Sparus aurata were investigated by Souid et al. [131]. 
After exposure to 0.5 mg Cd/L for 24 h, concentration in intestine was 
0.4 while that in liver was 0.13 mg/kg wet mass (wm). Witeska et al. 
[132] studied the effects of Cd (100 μg/L) on the embryonic, larval or 
both stages of the ide, Leuciscus idus. Their results showed that metal 
toxication affected mortality, body size, various body morphometrics 

and deformities (vertebral curvatures and yolk sac deformities). Low 
and Higgs [133] exposed fathead minnows (Pimephales promelas) for 
96 h to a range of cadmium concentrations and found that cadmium 
caused an increase in auditory threshold and a decrease in response 
latency.

Chromium (Cr)
Chromium is an essential nutrient metal, necessary for metabolism 

of carbohydrates [134]. Chromium enter the aquatic ecosystem through 
effluents discharged from leather tanneries, textiles, electroplating, 
metal finishing, mining, dyeing and printing industries, ceramic, 
photographic and pharmaceutical industries etc. [135,136]. Poor 
treatment of these effluents can lead to the presence of Cr (VI) in the 
surrounding water bodies, where it is commonly found at potentially 
harmful levels to fish [45,137,138]. In surface waters, depending on 
physicochemical characteristics, the most stable forms of chromium 
are the oxidation states trivalent Cr (III) or (Cr3+) and the hexavalent 
Cr(VI) or (Cr6+). Hexavalent chromium (Cr6+) is considered to be toxic 
(i.e. carcinogenic) because of its powerful oxidative potential and ability 
to cross cell membranes [139-141]. Fish assimilate Cr by ingestion or 
by the gill uptake tract and accumulation in fish tissues, mainly liver, 
occurs at higher concentrations than those found in the environment 
[138,142]. The overall toxic impact on organs like gill, kidney and liver 
may seriously affect the metabolic, physiologic activities and could 
impair the growth and behavior of fish [55]. Toxic effects of Cr in fish 
include: hematological, histological and morphological alterations, 
inhibition/reduction of growth, production of reactive oxygen species 
(ROS) and impaired immune function [143, 144]. Oreochromis 
mossambicus exposed to sublethal Cr showed histological alterations 
in the liver (congestion of blood vessels; fat accumulation; increase 
in melano-macrophage centres and necrosis), gills (hyperplasia of 
primary lamellar epithelium), ovaries (deposits in interstitial tissue) 
and testes (hypertrophy and vacuolation of spermatocytes) [145]. Acute 
poisoning by chromium compounds causes excess mucous secretion, 
damage in the gill respiratory epithelium and the fish may die with 
symptoms of suffocation [146]. Palaniappan and Karthikeyan [147]  
reported that the kidney is a target organ for chromium accumulation, 
which implies that it is also the “critical” organ for toxic symptoms. On 
chronic exposures, hexavalent chromium severely affected the renal 
tubules causing hypertrophy of epithelial cells, reduction of tubular 
lumen, contraction of glomeruli and epithelial and glomerular necrosis 
[148]. Necrosis and fibrosis of tubular lumen was reported in chronic 
chromium-exposed chinook salmon [134]. Chromium compounds 
also cause renal failure leading to the loss of osmoregulatory ability 
and respiration in fish [149].Sublethal effects of chromium in fish were 
directly related to the inhibition of various metabolic processes [150]. 
The hexavalent chromium induced depletion in the profiles of liver 
glycogen, total protein and total lipid has been reported [151]. Nguyen 
and Janssen [152] studied the effect of chromium on the African catfish 
(Clarias gariepinus). The exposure took place right after fertilization 
and lasted for 5 days. Concentrations used varied from 11 to 114 mg/L 
(K2Cr2O7). They found that the main deformity reported was abnormal 
body axis. Virk and Sharma [153] assessed the effects of acute toxicity 
of chromium on fingerlings of the C. mrigala. After 45 days of exposure 
significant decline in the protein and carbohydrate content of gills was 
observed. Reduced locomotor activity has been reported in chronic 
chromium-exposed Gambusia affinis [154]. 

Copper (Cu)
Copper (Cu) is an essential trace metal and micronutrient 
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for cellular metabolism in living organisms on account of being 
a key constituent of metabolic enzymes [155]. However it can be 
extremely toxic to intracellular mechanisms in aquatic animals at high 
concentrations which exceed normal levels [156, 157]. It is an abundant 
element which occurs as a natural mineral with a wide spread use [45]. 
Copper pollution is through extensive use of fungicides, algaecides, 
molluscicides, insecticides and discharge of wastes [158]. Copper sulfate 
(CuSO4) is often used as an algaecide in commercial and recreational 
fish ponds to control the growth of phytoplankton and filamentous 
algae and to control certain fish disease [159]. Fish can accumulate 
copper via diet or ambient exposure [45]. Even at low environmental 
concentrations, copper shows distinct affinity to accumulate in the 
fish liver [160]. The typical patho-anatomical appearance includes a 
large amount of mucus on body surface, under the gill covers and in 
between gill filaments [71]. Copper-induced histological alterations 
are found in the gill, kidney hematopoietic tissue, mechanoreceptoes, 
chemoreceptors, and other tissues [83]. Morphological and histological 
alterations in liver of fishes exposed to copper have been documented 
[161]. Higher doses of copper caused visible external lesions such 
as discoloration and necrosis on livers of Cyprinus carpio, Carassius 
auratus and Corydoras paleatus [111]. Arellano et al. [162] reported 
vacuolization of endothelial cells in fish liver by after copper exposure. 
Hepatocyte vacuolization, necrosis, shrinkage, nuclear pyknosis 
and increase of sinusoidal spaces were the distinct changes observed 
in the liver of copper-exposed fish [163]. Exposure of Nile tilapia 
(Oreochromis niloticus) to sublethal levels of Cu has been shown to 
cause histopathological alterations in gills (edema; vasodilation of the 
lamellar vascular axis) and livers (vacuolation and necrosis) [163]. 
Oreochromis mossambicus exposed to Cu showed histopathological 
alterations in the testes (testicular hemorrhage necrosis; pyknosis; 
disintegration of primary spermatogonia and interstitial tissue) [164].In 
copper exposed fish; Esomus danricus, decreased oxygen consumption 
and increased opercular activity have been reported due to gill damage 
[165]. Chloride cell dystrophies were observed by Arellano et al. [162] 
in S. senegalensis exposed to waterborne copper. It was demonstrated 
that the gill Na,K-ATPase activity appeared to be more sensitive to the 
chronic waterborne Cu exposure in Oncorhynchus mykiss compared to 
intestinal tissue [166]. Grosell et al. [167] observed that Na+/K+-ATPase 
enzyme activity elevated as Cu exposure progressed in the intestine of 
Opsanus beta and this was associated with a compensatory elevation of 
intestinal fluid absorption. High concentrations of copper have been 
reported to inhibit catalase (CAT) enzyme in liver, gill and muscle after 
24 hr of exposure in carp (Cyprinus carpio L.) [168]. Radhakrishnaiah 
et al. [169] have recorded stimulation of glycogenolysis in fish L. 
rohita on exposure to a sub lethal concentration of copper. Sanchez 
et al. [170] showed that Cu is able to induce oxidative stress in fish 
(Gasterosteus aculeatus) even before significant metal accumulation 
occurs in the liver. Cyriac et al. [171] showed that fish acutely exposed 
to copper showed an increase in both hematocrit as well as hemoglobin 
content in blood, possibly due to changes in blood parameters which 
result in erythrocyte swelling or by release of large red blood cells from 
the spleen. Nussey et al. [172] reported that; during copper poisoning; 
the release of erythroblasts usually results from an increased rate of red 
blood cells (RBCs) catabolism. Reproductive effects are noted at low 
levels of Cu and include blockage of spawning, reduced egg production 
per female, abnormalities in newly-hatched fry, reduced survival of 
young, and other effects [83]. Gainey and Kenyon [173] mentioned 
that exposure of fishes to sublethal concentrations of copper leads 
to cardiac activity and reduction in heart rate. Dietary Cu level of 20 
mg/Kg significantly reduced the weight gain of growing tilapia [174]. 
Chronic toxic effects may induce poor growth, decreased immune 

response, shortened life span, reproductive problems, low fertility and 
changes in appearance and behavior [175]. An increased superoxide 
dismutase activity in gills of rainbow trout after three days of exposure 
to 20 mg/L copper was found by Eyckmans et al. [176]. Barjhoux et al. 
[177] studied the effect of Cu spiked sediment on the Japanese medaka 
during the entire embryonic stage (concentrations varied between 6.95 
and 23.1 μg/g d.w.). They observed deformed larvae up to 52% in the 
populations. Specimens were examined at hatching and the deformities 
found were mostly spinal (mainly kyphosis, lordosis and C-shaped 
larvae) and cardiovascular (mainly abnormal positioning and heart 
looping). 

Iron (Fe)
Iron is prevalent component of industrial and mining effluents that 

are often discharged into aquatic environments. Ferrous iron (Fe2+) is 
considered to be more toxic to fish than the ferric (Fe3+) form [178]. The 
highest bioconcentration of iron in fish tissues was found in the liver 
and gonads, decreasing in brain, muscle and heart [179,180]. Recently, 
Omar et al. [40], in their study, proofed that the fish liver is the target 
organ for iron. Respiratory disruption due to physical clogging of 
the gills is suggested as a possible mechanism for iron toxicity [181]. 
Because the gill surface of the fish tends to be alkaline, soluble ferrous 
iron can be oxidized to insoluble ferric compounds which then cover 
the gill lamellae and inhibit respiration [182]. The precipitated iron 
compounds has serious effect starting from reduce the gill area available 
for respiration, damage the respiratory epithelium and ending with 
suffocate the fish and death. In banded tilapia (Tilapia sparrmanii), 
iron caused hyperplasia and necrosis of the secondary lamellae [183]. 
Gonzalez et al. [184] suggested that respiratory distress was a significant 
factor in the mortality of brook charr Salvelinus fontinalis (Mitchill) 
on exposure to iron, and Grobler et al. [180] observed a decrease in 
activity, coughing, yawning, spasmodic movements and an increase 
in opercular movements in iron exposed Tilapia sparrmanii (Smith). 
Peuranen et al. [185] agreed with earlier research, observing iron 
deposits on the surface of gill epithelia in brown trout Salmo trutta L., 
exposed to iron. They reported gill damage during exposure to 0.8–1.7 
mg l−1 iron at pH 5 and 6. They suggested that as iron had been detected 
only on the surface, and not inside gill epithelia, it exerted its toxicity 
through action on the gill surface. A scanning electron micrograph 
study on the gills of T. sparrmanii after exposure to sublethal iron 
concentrations for 72 hrs in a continuous flow system, revealed collapse 
of the gills as well as increased amounts of mucus cells [179]. Gill 
collapse reduces the diffusion distance between the water and blood, 
and benefits the oxygen consumption of fish. Also, iron compounds 
can precipitate on the surface of fish eggs causing death due to a lack 
of oxygen [71]. Clarias gariepinus showed restricted growth when fed 
a Fe-rich diet [186].

Lead (Pb)
Lead (Pb) is a persistent heavy metal which has been characterized 

as a priority hazardous substance [45]. Although Pb is a naturally 
occurring substance, its environmental concentrations are significantly 
increased by anthropogenic sources which include base metal mining, 
battery manufacturing, Pb-based paints and leaded gasoline [187,188]. 
Lead in water may come from industrial and smelter discharges; 
from the dissolution of old lead plumbing, lead containing pesticides, 
through precipitation, fallout of lead dust, street runoff, and municipal 
wastewater [83,189]. The concentration and bioavailability of Pb 
is mainly dependent on the absorption into the sediments and the 
natural organic matter content of the water as well as the pH, alkalinity 
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and hardness [187,189]. Aquatic organisms bio accumulate Pb from 
water and diet, although there is evidence that Pb accumulation in 
fish, is most probably originated from contaminated water rather 
than diet [190]. Lead deposits in various fish organs: liver, kidneys 
and spleen, but also digestive tract and gills [160]. Accumulation of 
lead in different fish species has been determined in several works 
[191], leading to disorders in fish body. When C. batrachus exposed 
to 5 ppm of lead nitrate for 150 days, it exhibited marked inhibition 
of gonadal growth and showed decrease in cholesterol and lipid levels 
in brain, testis and ovary whereas the liver showed an elevation of 
both [192]. Iger and Abraham [193] observed a very high number 
of rodlet cells (RCs) in the epidermis of common carp and rainbow 
trout kept in lead polluted water. Hepatocyte vacuolization, hepatic 
cirrhosis, necrosis, shrinkage, parenchyma degeneration, nuclear 
pyknosis and increase of sinusoidal spaces were the distinct changes 
observed in the liver of lead-exposed fish [194]. Acute lead toxicity 
is initially characterized by damaging gill epithelium and ultimately 
suffocation. Two types of structural alterations of gill, defense/
compensatory responses and direct deleterious effects were observed 
in chronic lead exposed fish [195]. The necrosis and desquamation of 
gill epithelium as well as lamellar curling and aneurisms were the direct 
deleterious effects reported in chronic lead exposed Clarias gariepinus 
[194]. The characteristic symptoms of chronic lead toxicity include 
changes in the blood parameters with severe damage to erythrocytes 
and leucocytes and damage in the nervous system [196]. Lead deplete 
major antioxidants in the cell, especially thiol-containing antioxidants 
and enzymes, and can cause significant increases in an reactive oxygen 
species (ROS) production, followed by a situation known as ‘‘oxidative 
stress’’ leading to various dysfunctions in lipids, proteins and DNA 
[197]. Low levels of Pb pollution could cause some adverse effects on 
fish health and reproduction [198]. Also, lead was found to inhibit the 
impulse conductivity by inhibiting the activities of mono aminooxidase 
and acetylcholine esterase, to cause pathological changes in tissue and 
organs [199] and to impair the embryonic and larval development of 
fish species [200]. Hou et al. [201] monitored the effect of lead on the 
Chinese sturgeon, Acipenser sinensis. They observed deformities as 
body (spinal) curvatures. The authors also reported reduced ability of 
locomotion and foraging by deformed juveniles. Shah and Altindağ 
[202] reported significant increase in immunological metrics following 
Pb exposure, which suggests that Pb may weaken the immune system, 
resulting in increased susceptibility to infections.

Mercury (Hg)
Unpolluted water contains trace amounts which do not exceed 

than 0.1 μg/l of mercury [203]. The main source of mercury in 
environment is the fungicides, especially in the organic fungicides 
as mercurial materials which are organic compounds of mercury. 
The chronic data about mercury toxicity indicated that the organic 
form of Hg, methylmercury (MeHg+) is the most chronically toxic 
of the mercury compounds [204-206], and it is estimated that 70 to 
100% of the Hg in fish is present as MeHg+ [207,208]. Methylmercury 
is generated by methylation of inorganic Hg by microorganisms 
such as anaerobic sulfate-reducing bacteria (SRB), iron reducers 
(FeRP), and methanogens (MPA) [209,210]. The rise in water 
temperatures attributed to climate change may stimulate methylation 
of Hg. Simulations of ocean warming rates of 0.4◦C and 1◦C predicted 
increases in the mean MeHg+ concentration of 1.7% (range, 1.6–
1.8%) and 4.4% (range, 4.1–4.7%), respectively, resulting in elevated 
MeHg+ concentrations in fish [210,211]. The LC50 of MeHg for fish 
is reported to be in the range of 0.004–0.125 mg/L, depending on the 

species, which is far lower than the LC50 of inorganic Hg [212]. The 
adverse effects of methylmercury (MeHg) were first recognized in the 
early 1970s following the pollution of Minamata Bay, Japan [213] and 
shortly thereafter a massive human poising that occurred in Iraq [214]. 
This organometallic compound is a highly lipophilic environmental 
contaminant derived from inorganic mercury by bacterial activity 
which easily crosses the blood barrier. The primary route of exposure 
for fish is through ingestion of contaminated food [44, 215]. The 
liver plays a central role in the binding, storage, and redistribution 
of mercurials which enter peripheral circulation [83].Fish tissues are 
sensitive indicators of aquatic pollution and have a high mercury 
bioaccumulation capacity for both organic and inorganic forms [216]. 
Although damages have been observed in the gill arches, liver, kidney, 
blood parameters, olfactory epithelium and nervous system [217-219], 
some reports showed that mercury compounds could be retained in the 
tissues of animals for long periods, resulting in irreversible damages, 
such as neurological impairment and lesions, behavioral and cognitive 
changes, ataxia, as well as convulsions, in addition to its harmful effect 
on reproduction [220, 221]. Necrosis and fibrosis of renal tubular lumen 
was reported earlier in chronic mercury exposed Clarias batrachus 
kidney [222]. At very low concentrations mercury reduces the viability 
of spermatozoa, reduce egg production and affect the survival rate of 
developing eggs and fry [223]. Zaki et al. [224] observed a significant 
increase in cholesterol, alkaline phosphatase, alanine aminotransferase 
(ALT), aspartate aminotransferase (AST) and cortisol levels and a 
significant decrease in haemoglobin (Hb), haematocrite (Ht), mean 
total protein values in serum and body weight of Clarias gariepinus fish 
fed with 15 mg/kg diet mercuric oxide for 4 weeks.

Nickel (Ni)
Nickel is a ubiquitous trace metal and occurs in soil, water, air, and 

in the biosphere. It is emitted into the environment from both natural 
and man-made sources. Nickel is released during nickel mining and 
by industries that convert scrap or new nickel into alloys or nickel 
compounds or by industries that use nickel and its compounds. 
These industries may also discharge nickel in wastewater. Nickel is 
also released by oil-burning power plants, coal-burning power plants 
and trash incinerators [225]. Once released to the environment, 
nickel readily forms complexes with many ligands, making it more 
mobile than most heavy metals [147].While nickel is an essential 
element at low concentrations for many organisms, it is toxic at 
higher concentrations [226]. Exposure to nickel may lead to various 
adverse health effects, such as nickel allergy, contact dermatitis, and 
organ system-toxicity. According to the Institute of Medicine [227], 
nickel can cause respiratory problems and is carcinogenic [228]. 
Numerous studies have confirmed the carcinogenic potency of nickel 
compounds in experimental animals [147]. Friedrich and Filice [229] 
studied the intake and accumulation pattern of nickel in Mytules edulis 
over a period of 4 weeks. The accumulation pattern was found to be 
varying with time. As with the toxicity of other metals, the toxicity of 
nickel compounds to aquatic organisms is markedly influenced by the 
physicochemical properties of water [71]. The toxicity of nickel may be 
due to nickel being in contact with the skin (body surface), penetrating 
the epidermis and combining with body protein [230]. Sreedevi et al. 
[231] studied the effect of nickel on freshwater fish Cyprinus carpio 
treated to various concentrations. The study indicates that nickel 
accumulation is more in lethal than in sub-lethal concentrations. 
After toxic exposure to nickel compounds, the gill chambers of the 
fish are filled with mucus and the lamellae appeared dark red in colour 
[232]. Nickel, for instance, induces histopathological changes in the 
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different tissues of the silver carp (Hypophthalmichthys molitrix) 
including fusion of the gill lamellae and tissue hypertrophy [233]. Al-
Attar [225] studied the effect of nickel on freshwater fish Oreochromis 
niloticus treated with sublethal concentration of nickel and found 
decreased values of serum sodium, chloride and osmolality, whereas 
levels of serum glucose, cholesterol, total protein, albumin, amylase, 
lipase, alanine aminotransferase and aspartate aminotransferase were 
significantly elevated. Also, he reported some histological changes in 
fish gill structure which included hyperplasia, hypertrophy, shortening 
of secondary lamellae and fusion of adjacent lamellae. Cyprinus carpio 
fingerlings exposed to nickel showed decreased blood parameters 
(erythrocyte, leucocytes, hematocrit and hemoglobin count) and 
lowered values of mean corpuscular volume (MCV), mean corpuscular 
hemoglobin (MCH) and mean corpuscular hemoglobin concentration 
(MCHC) when compared with the control [234].

Selenium (Se) 
Selenium is an essential trace element required in the diet for 

normal growth and physiological function of animal, including fish 
[235-237]. This element is required for normal development, growth 
and maintenance of homeostatic functions at trace concentrations 
[238]. It is a part of the antioxidant defense system and is involved 
in thyroid hormone metabolism, in spermatogenesis, and probably 
in other processes unidentified to date [239]. Se is involved in many 
functions such as moderation of the immune system and prevention 
of cancer, acting directly as a support for the organismal health [240]. 
It is widely distributed throughout the environment and is found in 
most ground and surface waters at concentrations between 0.1 and 0.4 
μg/L of Se [241,242]. Agricultural drain water, sewage sludge, fly ash 
from coal-fired power plants, oil refineries, and mining of phosphates 
and metal ores are all sources of selenium contamination of the aquatic 
environment [243,244]. Sorensen [83] documents the tendency of 
selenium to concentrate more highly in the liver, gonads, and kidneys 
of fish than in muscle. Se is a suspected carcinogen and teratogen [245] 
and becomes very toxic to fish when it is elevated above a threshold 
concentration [246]. The difference between nutritional requirement 
and toxic levels is very narrow for Se. For most fish, the requirement 
range is 0.25–0.70 μg Se/g diet [247,248] and the toxic levels with 
prolonged exposure can be as low as 3 μg Se/g diet [235]. The U.S. 
Environmental Protection Agency (USEPA) proposed a chronic 
criterion for selenium at a whole body fish concentration of 7.91 µg/g 
dry weight [241,242]. Excess selenium, even as low as 3-8 ppb, in the 
water can cause numerous life-threatening changes in feral freshwater 
fish [83]. However, there is still controversy regarding the proposed 
selenium threshold for the protection of fish populations [249]. The 
most significant effect of excess Se in fish is growth inhibition, tissue 
damage, damage on most biomolecules (namely lipids, proteins and 
DNA), reproductive impairment, larval deformities and mortality 
[250]. Other documented effects in fish include skin lesions, cataracts, 
swollen gill filament lamellae, myocarditis, and liver and kidney 
necrosis [244]. 

Vanadium (V)
The emission of vanadium into the environment is mostly 

associated with industrial sources, especially oil refineries and power 
plants using V-rich fuel oil and coal [251]. Such sources can release 
appreciable amounts of V and combine to increase natural background 
levels associated to rock weathering and sediment leaching [189]. 
Vanadium is essential for normal growth where it has been found 
to regulate the activity of various enzymes that induce pronounced 

changes in metabolic functions. At higher concentrations (>1–10 
nM), vanadium becomes toxic to the cells inducing several injury 
effects at specific target organs, such as liver and kidney, inducing 
oxidative damage, lipid peroxidation and changes in haematological, 
reproductive and respiratory systems [252-256]. Earlier studies 
indicated that in vivo exposure to 5 mM vanadate or cadmium 
solutions intra peritoneally injected affect differently subcellular 
metal distribution and antioxidant enzymes activities (catalase, CAT; 
superoxide dismutase, SOD; and glutathione peroxidases, GPx), 
induce lipid peroxidation, methaemoglobinemia and tissue damage 
in several organs, namely kidney, liver and heart of the H. didactylus 
[257-259].Vanadium toxicity to Clarias lazera fish caused a significant 
decrease in body weight,  haemoglobin (Hb),  haematocrite (Ht) and 
protein levels, and increase in cholesterol, alkaline phosphate, cortisol, 
aspartate aminotransferase (AST) enzyme, alanine aminotransferase 
(ALT) enzyme, urea and creatinine levels. Also, abnormal swimming, 
lighting of the skin and hemorrhages were seen on the external body 
surface [260]. 

Zinc (Zn)
Zinc (Zn) is the second most abundant trace element after Fe and 

is an essential trace element and micronutrient in living organisms, 
found almost in every cell and being involved in nucleic acid synthesis 
and occurs in many enzymes [45]. Additionally, Zn is involved in more 
complicated functions, such as the immune system, neurotransmission 
and cell signaling [261,262]. It may occur in water as a free cation as 
soluble zinc complexes, or can be adsorbed on suspended matter. Zinc 
and its compounds are extensively used in commerce and in medicine. 
The common sources of it are galvanized ironwork, zinc chloride 
used in plumbing and paints containing zinc [263]. Zinc wastes can 
have a direct toxicity to fish at increased waterborne levels [264], and 
fisheries can be affected by either zinc alone or more often together 
with copper and other metals [83,265]. The main target of waterborne 
Zn toxicity are the gills [262], where the Ca2+ uptake is disrupted, 
leading to hypocalcemia and eventual death [264]. The other endpoints 
of toxicity vary amongst freshwater and marine fish with the most 
common being survival, growth, reproduction, and hatching [262]. 
Also, fish kidney is considered as a target organ for Zn accumulation 
[40]. The clinical symptoms and patho-anatomical picture of zinc 
poisoning in fish are similar to those found for copper [71, 266]. Zinc 
causes mortality, growth retardation, respiratory and cardiac changes, 
inhibition of spawning, and a multitude of additional detrimental 
effects which threaten survival of fish. Gill, liver, kidney, and skeletal 
muscle are damaged [83]. In fish, zinc significantly increases the 
activity of serum transaminases in some freshwater fishes [267]. Gill 
proliferation and stimulation of mucous cells and an increase in mucus 
production generally occur in response to zinc exposure [268]. The 
first sign of gill damage is detachment of chloride cells from underlying 
epithelium. The sub epithelial space enlarges because of detachment 
of epithelial cells from basal lamina. Water to blood distance can 
more than double, making gaseous exchange more difficult [83]. Abd 
El-Gawad [269] mentioned that, Oreochromis niloticus fish exposed 
to zinc sulphate, showed pale and congested gills. The epithelial 
covering of the gill filaments was hyperplastic and edematous with 
vacuolated epithelial covering of the gill rakers. The lamellar blood 
spaces showed telangiectasis. Zinc exposure has been shown to induce 
histopathological alterations in ovarian tissue of Tilapia nilotica 
(degeneration and hyperaemia) [270] and liver tissue of Oreochromis 
mossambicus (hyalinisation; hepatocyte vacuolation; cellular swelling 
and congestion of blood vessels) [112]. Finally, for the protection of 
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aquatic systems and fish from heavy metals pollution, new methods of 
eliminating pollutants, including heavy metals, from wastewater must 
be applied. Among these are treatments with powdered or granular 
activated carbon, ozonation, ultraviolet light, and reverse osmosis [271]. 
For wastewater treatment plants (WWTPs), powdered or granular 
activated carbon and/or ozonation in combination with different types 
of sand filters are currently the most common advanced wastewater 
treatment technologies [20, 272]. In addition, new technologies such 
as environmental flow diagram (EFD) must be considered [273-275].

Conclusion and recommendations
In conclusion, the toxic effects of heavy metals in fish have been 

demonstrated in the present study. It is abundantly clear that metals 
induce an early response in the fish as evidenced by alterations both at 
structural and functional levels of different organs include enzymatic 
and genetic effects, thereby affecting the innate immune system of 
exposed fish and/or increasing susceptibility to multiple types of 
disease. 

Biomarkers can offer additional biologically and ecologically 
relevant information – a valuable tool for the establishment of guidelines 
for effective environmental management. So, it can be stated that fish 
biomarkers are necessary for monitoring environmentally induced 
alterations to assess the impact of xenobiotic compounds (i.e. heavy 
metals) on fish. Also, it is recommended that treatment of all kinds of 
wastewaters, sewage and agricultural wastes must be conducted before 
discharge into the aquatic systems. Also, enforcement of all articles of 
laws and legislations regarding the protection of aquatic environments 
must be taken into considerations.
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