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Introduction
The bacterium Ralstonia solanacearum is a widely accepted model 

organism for the study of pathogenicity in plants [1]. This soil-borne 
bacterium, which belongs to the betaproteobacteria, is responsible 
for bacterial wilt on more than 200 plant species from 50 botanical 
families, including important crops such as potato, tomato, eggplant, 
pepper, tobacco and banana. In fact, bacterial wilt is considered the 
single most destructive bacterial plant disease because of its extreme 
aggressiveness, wide geographic distribution, and unusually broad host 
range [2]. 

R. solanacearum inhabits the vascular tissue of its hosts. The 
bacterium normally invades plant roots from the soil through wounds 
or natural openings where secondary roots emerge [3], colonizes the 
intercellular space of the root cortex and vascular parenchyma, and 
eventually enters the xylem vessels and spreads up into the stem and 
leaves, where the pathogen cell density commonly surpasses 109 CFU/g 
of host tissue [3,4]. After R. solanacearum has colonized the xylem, large 
numbers of bacterial cells are shed from roots, providing a pathway for 
bacteria to return to the soil and initiate new infections [1]. Affected 
plants suffer chlorosis, stunting, wilting, and usually die rapidly.

R. solanacearum species complex and classification

R. solanacearum is considered a species complex-a heterogeneous 
group of related but genetically distinct strains [5,6]. DNA-DNA 
hybridization studies have revealed that the identity between R. 
solanacearum genomes is often less than the 70% threshold level 
commonly expected within a bacterial species [7,8]. Gillings and Fahy 
first used the term “species complex” to describe the high genetic 
variation between isolates, and Taghavi et al. [9] expanded the concept 
of the R. solanacearum species complex by including two closely 
related species from Indonesia, Ralstonia syzygii (a pathogen of clove 
trees) and the agent of blood disease of banana, known as the BDB. R. 
solanacearum species complex strains are highly competent for genetic 
exchange in planta [10] and show substantial pathogenic variability in 
host range and aggressiveness [5]. However, the genetic basis for this 
variation is unknown. For the past four decades, two different systems, 
race and biovar, have been widely used to differentiate R. solanacearum 
strains [11-13]. Historically, R. solanacearum was subdivided into 
“races” based loosely on host range [13]. Race 1 strains attack tobacco, 
many other solanaceous crops and many hosts in other plant families; 

race 2 strains are limited to musaceous species including Heliconia spp. 
and triploid banana; race 3 strains primarily attack potato; race 4 strains 
are particularly virulent on ginger; race 5 strains infect and cause disease 
on mulberry tree, and are only found in China [14]. The race structure 
of R. solanacearum is poorly defined and not taxonomically useful.

Based on their different abilities to utilize and oxidize several 
disaccharides (cellobiose, lactose, and maltose) and hexose achohols 
(dulcitol, mannitol, and sorbitol), R. solanacearum strains were 
originally divided into five biovars [12]. Biovar 1 strains metabolize 
none of them; biovar 2 strains only metabolize disaccharides; biovar 3 
strains metabolize all of them; biovar 4 strains metabolize only hexose 
alcohols; biovar 5 strains metabolize all of them except dulcitol and 
sorbitol [12,14]. Later, a new group of R. solanacearum isolates from the 
Amazon basin was differentiated from original biovar 2 using ribose 
and trehalose [15]. This group is named biovar 2-T or biovar N2 and the 
original biovar 2 strains are now referred to as 2-A. Except for biovar 
2-A, which almost always corresponds to race 3, and biovar 5, which is 
identical to race 5, there is no correlation between biovars and races. 

Recently, a new phylogenetic classification system consisting of 
four phylotypes was formed based on phylogenetic analysis of sequence 
data from the 16S-26S internal transcribed spacer region, the egl gene, 
the hrpB gene, and the mutS gene [5,6,16]. The phylotypes correlate 
with the geographical origin of the strains: phylotype I includes 
strains originating primarily from Asia, phylotype II from America, 
phylotype III from Africa and surrounding islands in the Indian 
Ocean, and phylotype IV from Indonesia [5,6]. Each phylotype is 
further divided into sequevars, which are defined as isolates with less 
than 1% nucleotide variation in the endoglucanase (egl) locus [6,16]. 
The R. solanacearum phylotype system is a stable and phylogentically 
meaningful classification scheme that represents the evolutionary 
lineages within the species complex [6]. 
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Abstract
The bacterium Ralstonia solanacearum is the causal agent for bacterial wilt on more than 200 plant species 

from 50 botanical families, including important crops such as potato, tomato, eggplant, pepper, tobacco and banana. 
R. solanacearum is considered a species complex, and is also a widely accepted model organism for the study of 
bacterial pathogenicity in plants. This review discusses the disease caused by R. solanacearum, the classification of 
the pathogen, the major virulence and pathogenicity factors and their complex regulation in R. solanacearum.
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The Major Virulence and Pathogenicity Factors in R. 
solanacearum and Their Regulation 
The major virulence and pathogenicity factors

Many factors contribute to virulence and pathogenicity of R. 
solanacearum strains, including a heterogenous polymer of N-acetylated 
extracellular polysaccharide I (EPS I) [17-19], the type III secretion 
system (T3SS) [20], flagella-driven swimming motility and type IV 
pili-driven twitching motility [21-24], Cell-Wall-Degrading Enzymes 
(CWDEs) and type II secretion sytem (T2SS) [25-27]. 

R. solanacearum EPS I-deficient mutants are nearly avirulent and 
had reduced stem colonization compared to wild type [3,28-30]. Two 
functions have been hypothesized for EPS I: one is physically blocking 
the vascular system and thereby altering water movement [19,28,29], 
the other is protecting R. solanacearum from plant antimicrobial 
defenses by cloaking bacterial surface features that could be recognized 
by hosts [3,30]. In R. solanacearum, the T3SS is encoded by a 23-kb hrp 
gene cluster on the megaplasmid [20] and is essential for pathogenicity, 
since R. solanacearum hrp mutants are unable to cause disease in many 
susceptible plants [31-33]. Both flagella-driven swimming motility 
and type IV pili-driven twitching motility contribute to the ecological 
fitness and virulence of R. solanacearum [21-24]. While swimming 
motility contributes to virulence only in the early stage of host 
colonization and invasion [21,22,34], the type IV pili and twitching 
motility are important for several stages of wilt disease development 
[23,24]. R. solanacearum secretes several plant CWDEs via the T2SS 
that contribute to the pathogen’s ability to cause wilt, although none 
is essential for disease [25-27]. A T2SS mutant was much less virulent 
than the mutant lacking all known CWDEs, suggesting that additional 
extracellular proteins secreted by the T2SS contribute to the virulence 
of R.solanacearum [27].

Complex regulation of virulence and pathogenicity factors

The key virulence and pathogenicity factors of R. solanacearum are 
controlled by a complex regulatory network that responds to multiple 
signals [35]. The central player of this regulatory network is the 
transcriptional regulator PhcA, involved in the Phc cell density sensing 
system [36]. PhcA positively regulates the production of EPS I, Pme 
and Egl exoproteins, and an acyl-homoserine lactone (AHL) quorum 
sensing system called SolI/R. PhcA also represses the expression of 
genes involved in motility, T3SS, polygalacturonase and siderophore 
production [24,37-42]. The levels of active PhcA protein are controlled 
by a diffusible endogenous signal molecule, 3-hydroxypalmitic 
acid methyl ester (3-OH PAME). When extracellular 3-OH PAME 
accumulates above threshold concentrations (i.e., at high cell density in 
a confined space, such as the plant vascular system), PhcA is expressed, 
resulting in activation or repression of its various target genes [35,43]. 

In addition to the Phc cell confinement sensing system mediated 
by 3-OH-PAME, R. solanacearum also produces acylated homoserine 
lactones (acyl-HSLs) and has a functional acyl-HSL-dependent 
autoinduction system mediated by the above-mentioned SolI-SolR 
regulators, which are LuxI/LuxR homologs [40]. At present, only one 
gene of unknown function (aidA) is known to be regulated by SolI-SolR 
in phylotype II seq 7 strain AW1. aidA is not present in strain GMI1000 
[40]. While inactivation of solIR does not affect any virulence factor 
production, the role of SolIR in the physiology of R. solanacearum 
requires more investigation. The acyl-HSL-dependent autoinduction 
system in R. solanacearum is part of a more complex autoregulatory 

hierarchy, since expression of solR and solI requires PhcA, which is itself 
controlled by another autoregulatory system that responds to 3-OH-
PAME [40]. Expression of SolIR is also dependent on the alternate 
sigma factor RpoS [44]. 

R. solanacearum regulates deployment and use of its T3SS with 
a complex environmentally responsive signal transduction cascade 
via the Prh system [35,45]. R. solanacearum T3SS genes are induced 
by bacterial contact with plant cells or cell wall fragments [46]. This 
contact-dependent induction requires PrhA [47], an outer membrane-
bound protein that may sense and transfer signal to activate T3SS 
expression through a linear pathway including the PrhR, PrhI, PrhJ, 
HrpG and HrpB proteins [48,49]. HrpG, an OmpR family two-
component response regulator, is involved in hrpB gene activation 
in response to both nutrient and metabolic signals. HrpG plays a 
central role in regulating T3SS gene expression [49]. In addition, 
HrpG also independently regulates bacterial production of plant cell 
wall-degrading enzymes, exopolysaccharide, and the phytohormones 
ethylene and auxin [50]. Moreover, in culture the activity of HrpG is 
modulated by the Phc confinement sensing system [41]. HrpB is an 
AraC-like transcriptional activator required for the transcription of 
other hrp genes involved in T3SS and the effector protein genes [51-
53]. HrpB was also found to regulate genes involving in chemotaxis, 
biosynthesis or catabolism of various low-molecular-weight chemical 
compounds, and siderophore production and uptake [51].

Conclusion
The present review has focused on the bacterial wilt disease caused 

by R. solanacearum, the classification of the pathogen, the major 
virulence and pathogenicity factors in R. solanacearum and their 
complex regulation. R. solanacearum, as a model organism for the study 
of bacterial pathogenicity in plants, survives in diverse environments 
and cause destructive disease on a wide range of plants by precisely 
controlling its gene expression through an elaborate regulatory 
network. Over the years, significant progress has been made in studying 
R. solanacearum species complex and bacterial wilt disease. However, 
further research is needed to better understand questions such as how 
does R. solanacearum regulate its gene expression in different niches, 
especially inside host plants? How do different plants respond to R. 
solanacearum? A better understanding of these questions will help us to 
design innovative tools and strategies to combat bacterial wilt disease 
more effectively.
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