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Abstract

The idea of using antibodies to restrain HIV viral replication has been a growing interest since many years
ago. HIV-patient serum with elite virus-neutralizing breadth has led to the preparation of broadly neutralizing
antibodies (BrNAbs) with long and highly mutated CDRH3 domains that can neutralize a broad array of viral strains
and prevent transmission in animal models. Recent advances have resulted in the discovery of BrNAbs that are
more potent and can neutralize many HIV-1 subtypes. However, elicitation of these antibodies in infected individuals
usually requires a long time of antigen exposure. Though BrNAbs are shown to be successful either therapeutically
or prophylactically against HIV-1, production of these antibodies in bulk, commercial-sized batches are expensive
and non-affordable particularly for poor countries. Therefore, more durable preventative or therapeutic strategies are
required. Immunization of the cows with HIV Env is shown to be capable of producing 20 kg purified anti-HIV-1
BrNAbs and this amount could be sufficient for 2 million × 10 mg doses for formulation and pre-clinical testing as an
HIV microbicide. In addition, bovine immunoglobulins typically have variable third heavy complementarity
determining regions (CDRH3) that may potentially facilitate access to antigenic epitopes that are very difficult for
other species to engage. Thus, cows could be engaged to elicit anti-HIV antibodies with the features of human
BrNAbs and bovine colostrum could be a promising and cheap resource for the development of combination
microbicides.
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Introduction
A key component of a vaccine against human immunodeficiency

infection (HIV) will be the production of BrNAbs capable of blocking
infectivity of a diverse array of HIV strains. BrNAbs can emerge in
some HIV-infected individuals after several years of infection [1]. The
serum immunoglobulin G (IgG) from these “elite neutralizer” patients
can neutralize many different HIV-1 strains across various different
subtypes [2]. While waiting for the development of a fully effective
HIV vaccine capable of eliciting these BrNAbs that are considered
essential for blocking HIV transmission, other prevention strategies
have turned towards testing passive infusions of broadly HIV-
neutralizing monoclonal antibodies (BrNmAb) [3-6] derived from
HIV-1 patients. These BrNmAbs have proven beneficial in long-acting
therapeutic strategies, and they are now under evaluation as a systemic
infusion with the BrNmAb to test their potential as a long-acting
therapeutic [7,8] and also for transmission prevention [9-11]. The
Antibody Mediated Prevention (AMP) trial will be considered as an
alternative or adjunct to pre-exposure prophylaxis (PrEP) with
antiretroviral drug combinations, such as Truvada [12]. The PrEP
regimens have already demonstrated robust prevention against HIV
transmission in some human trials in men who have sex with men
(MSM). Effective PrEP requires high adherence in MSM [13].
However, PrEP has significantly lower efficacy in women, and requires
long-term adherent dosing before any protective efficacy is achieved
[14].

In spite of three decades of intensive effort, no prophylactic HIV
vaccine has demonstrated strong protection from virus transmission.

The most challenging factor towards finding a compelling vaccine is
finding a way to stimulate strong BrNAbs for the wide array of
circulating viral strains. To date, vaccination against HIV-1 in human
and animal models have yielded no or just narrowly focussed
neutralizing antibodies, respectively. However, recent immunization
studies in llamas and cows have resulted in induction of BrNAbs.
Induction of BrNAbs in these animals is highly informative, as the
studies from past 2 decades revealed that the antibodies from these
species have unique structure facilitating antibody-antigen interaction
through the less accessible epitopes [15,16]. The cows, particularly,
produce exceptionally long CDRH3 which could be potentially
advantageous in vaccine research developments. But furthermore,
antibodies from Cow and Llama have production properties that
illuminate potentially cheaper alternative approaches for passive
antibody-mediated prevention than the extremely expensive approach
pursued using humanized mAbs in the AMP study.

Bovine colostrum as viral therapeutics
Immune modulation plays the most essential role in the

recuperation of a patient from a life-threatening viral infection. An
individual’s immune system should act ideally to restrict and control
the infection. The natural health benefit of bovine colostrum use has
been known for centuries [17]. Bovine (cow and buffalo) IgG does not
cross the placenta and IgG levels mount up in colostrum at levels 100-
fold to 1,000-fold larger than in human colostrum. New born calves
must feed on colostrum for continuing health and viability. Even
human children can use cow or buffalo colostrum to attain health
benefits [18,19]. Bovine colostrum contains 3 major groups of
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components: nutritional components [20], immune factors [21] and
growth factors [22].

The antiviral activity of colostrum is due to the presence of
antibodies, lactoferrin, lactoperoxidase, lysozyme and other immune
factors. These components control the pathogens by destroying their
cell membranes or blocking the binding sites on the intestinal wall
[19,23]. The cows can be vaccinated against a specific disease
pathogen, which results in the production of antigen-specific
antibodies and secretion in colostrum and milk. The immunization of
the cow against a specific antigen may increase the specific antibody
titer to 100-400 times in colostrum or milk, making a product known
as hyperimmune colostrum. The total concentration of
immunoglobulins in colostrum is 20-200 g/l (average 60 g/l). Among
all classes, IgG1 with almost 75% is the predominant class in colostral
whey proteins followed by IgM, IgA, and IgG2, respectively [24]. One
promising application of bovine colostral and milk IgG is to provide
passive immunity against diseases in other species, especially in
humans. For instance, it has been suggested that consumption of
immune milk from vaccinated cows is a potential means to control
outbreaks of avian influenza, SARS, and other human respiratory
diseases [25]. There are several studies evaluating passive immune
protection via development and use of immune milk products [26-31].

Hyperimmune bovine colostrum is in particular helpful against
human rotavirus [32]. Casein, a glycosylated protein, binds to the viral
antigens directly using the glycosylated residue [33]. Vaccination of
cows is a natural source of antibody production. However, the
produced amount is not sufficient to cover the global requirement to
reduce the number of death due to rotavirus-induced diarrhea [34].
Engineered Lactobacillus rhamnose GG with surface expressing the
IgG-binding domains of protein G (GB1, GB2, and GB3) can bind to
colostrums IgGs and enhance their potency in targeting rotavirus [34].

Furthermore, oral administration bovine colostrum to C57BL/6
mice improved immunity against influenza A virus (H1N1) through
increasing natural killer cell cytotoxicity. One hypothesis is that
colostrum components interact with innate receptors in the intestinal
epithelium and stimulate these cells [35]. In another study, bovine
colostrum IgG from a vaccinated cow with A/Puerto Rico/8/34 (PR8)
influenza virus weakened the influenza symptoms in pre-treated
BALB/c mice [36].

Anti- HIV/AIDS activity of bovine colostrum
It was demonstrated that the infection-induced inflammation that

occurs in the digestive tract of HIV-infected individuals can be
reversed with bovine colostrum [37]. The bovine colostrum could
possibly improve the tissue repair, mucosal integrity and also have
direct antimicrobial actions [38]. Diarrhea is a common problem in
AIDS patients, causing discomfort and malnutrition. Healthy people
usually do not experience this complication. Human milk is effective in
increasing circulating and tissue-resident helper T cells, consequently
improving the immune system [39]. Bovine colostrum may be
beneficial in HIV-infected individuals to re-establish the immune
system and control the loss of T helper cells. It can also activate good
health in the gastrointestinal immune system and promote mucosal
integrity.

Elevated anti-HIV potency can be obtained from hyperimmune
colostrum when bovine antibodies are directed against the HIV
Envelope glycoproteins. Kramski et al. showed that polyclonal
colostrum IgG fractions from cows hyperimmunized with HIV Env

gp140 demonstrate potent and broad HIV neutralization. In these
studies, cows were immunized with HIV envelope (Env) gp140 for
very long 10-month duration, before and after conception. The results
showed that the cows were capable of producing broad cross-subtype
strain neutralizing activity that was transferred at high titer (1: 1 × 106)
into colostrum. These antibodies include specificities that bind the
highly conserved CD4bs on HIV Env trimmers and compete with the
VRC01 mAb selected for analysis in the AMP trial and related BrNAbs,
like b12 [40]. Heydarchi et al. showed that bovine antibodies from
vaccinated cow, not only bind to CD4bs but also can neutralize HIV
infectivity through this region [41]. In addition, they showed that
vaccination of the cows with oligomeric AD8 gp140 could induce the
antibody response against the SOS-IP gp140 Env, which is the antigen
with the closest structure to the functional Env protein [41]. In another
study, IgG from hyper immune bovine colostrum from Env gp140
trimer vaccinated cows showed anti-HIV Antibody-Dependent
Cellular Cytotoxicity (ADCC) activity. Bovine IgG could bind to Fcγ-
receptors (FcγRs) on human neutrophils, monocytes, and NK cells.
Though anti-HIV-1 colostrum IgG displayed antibody-dependent
killing, no killing was detected for non-immune colostrum IgG.
ADDC activity was not seen with F(ab')(2) fragments and was only
dependent on Fc and FcγR [42] (Figure 1). Antibodies supporting
ADCC activity correlated with protection in the RV144 trial, the only
human vaccine trial to date that demonstrates any protective efficacy
[43].

Figure 1: Anti-HIV activity of colostrums from vaccinated cow. The
purified IgG from colostrums of vaccinated cow showed ADCC and
neutralization activity [40-42].

Bovine CDRH3 length goes beyond expectation
Potent antibody binding to key pathogen infectivity determinants

requires a high level of evolution of the immunoglobulin CDRH3
domain to achieve high affinity for antigen [44]. The CDRH3 domain
has the highest amino acid variability in IgG and plays the most critical
role in the antigen binding interaction. This arises through two steps,
first through a diversity generating mechanism using DNA
rearrangement of variable (V), diversity (D) and joining (J) genes to
create CDRH3 with novel gene sequences [45,46]. In the second step,
somatic hyper mutation (SHM) drives further maturation to higher
affinity and this occurs in the presence of antigen in the germinal
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center of lymph nodes. In addition to VDJ recombination and SHM,
the different use of D reading frames and variation in junction sites (P-
nucleotides and addition of N-nucleotides) contribute to CDRH3
diversity [47,48]. The ultimate result is an affinity maturation of the
variable region, especially the CDRH3 domain, and this increases the
IgG neutralizing activity against HIV Env antigen [49].

The human CDR H3 length is normally 8-16 amino acids which
contribute to form a flat or undulating binding surface along with the
other heavy and light CDRs. Broad HIV-strain neutralizing antibodies
obtained from long-term infected patients frequently contain an
unusually long protruding CDRH3 [50-55]. The average CDRH3 size
in mouse is 3 amino acids shorter than those in human [56]. Rabbit
antibodies, on the other hand, present a length distribution similar to
humans, with a slightly shorter CDRH3 (up to 23 residues) but keeping
the highest frequencies around 13 residues [57,58]. In mice and rabbit,
there is a bias against long CDRH3 antibodies development [60,61]
which causes difficulties in using small animals for HIV vaccination
trials [60]. Camelids present CDRH3 regions of between 3 to 24
residues, with the highest frequency between 13 and 17 residues
[61,62]. In addition to heterogenic antibodies, camelids also present
homogenous, light-chain depleted antibodies [63]. These antibodies,
called heavy chain antibodies, have a variable region called VHH,
which has its own CDR3 region. A comparison of VHH with
conventional antibodies shows that the former group presents larger
CDH3 length (between 7 and 24 residues) than the VH of conventional
antibodies [61]. Heavy chain camelid antibodies offer the potential for
high-level production in conventional bacterial and yeast
biofermentation which may lead to large-scale, relatively low-cost
production [64]. In contrast, the length of bovine CDRH3 is highly
variable and longer (up to 70 amino acids) than those in other species
particularly compared to human [16,65-68]. The antibodies with
ultralong CDRH3 can comprise up to 10-15% of the entire bovine IgG
repertoire (Figure 2) [16]. Crystal structure of the bovine antibodies
with ultra-long CDRH3 shows that these long variable domains
contribute to an unusual structure. These CDRH3 regions join to a
particular set of lambda light chains with limited diversity [67].

Figure 2: A comparison of CDRH3 length distribution between
different species. The length of bovine CDRH3 is highly variable
and longer (up to 70 amino acids) than those in other species
particularly compared to human [16,56,58,59,61,62].

In the naïve B cell pool, 3.5% of B cells have CDRH3 ≥ 24 residues
and 0.43% of them contain very long CDRH3 ≥ 28 residues [69].
However, this percentage is substantial with consideration of the total
potential number of 1012 different antibodies in the human B cell
repertoire. This means that B cells with long CDRH3 can actively
contribute in the human humoral immune system. It appears that B

cells producing antibodies with long CDRH3 are selected with HIV-1
Env to generate BrNAbs targeting deep epitopes of HIV-1 Env.
Furthermore, there is a meaningful relationship between long CDR H3
(20-34 residues) and BrNAbs especially in antibodies targeting the
glycan-related V1/V2 and V3 category, the gp120/gp41 bridging region
category and the gp41-MPER category. This contrasts with the average
16 residues of CDRH3 in the antibodies elicited by other viral antigens
[54,70]. The role of such long CDRH3 (18 residues) in b12, as a
member of CD4 binding site antibodies, is to access a glycosylation site
[71,72]. However, the CDRH3 in CD4bs BrNAbs are shorter than the
glycan-related V1/V2 and V3 category. The longest CDRH3 belongs to
PG9-like and PGT128-like BrNAbs that forms a sub-domain that is
important for neutralization (Figure 3). These CDRH3 regions help the
antibodies to penetrate the glycan shield of Env trimer then interact
with the V1/V2 and/or V3 region of gp120 [73]. Also, CDRH3 is an
important component in gp41-reactive antibodies such as 2F5
(CDRH3 of 22 residues) and 4E10 (CDRH3 of 18 residues) which
performs the additional activity causing a hydrophobic interaction
with the membrane [74-80] and forming a loop to contact the highly
conserved hydrophobic residues on gp41 [52,81-83].

Figure 3: Comparison of bovine CDRH3 length with the CDRH3
size of human BrNAbs. The bovine CDRH3 covers the size of
CDRH3 in all human BrNAbs. Bov: bovine; Hu: Human antibodies
[16,50-55].

Aromatic residues in bovine CDRH3 pave the wave toward
HIV neutralization

Previous studies on human immunoglobulins derived from HIV
patients illustrate that although the presence of Cys and aromatic
residues is a rare feature, these amino acids play a crucial role for HIV
BrNAbs in epitope binding or virus neutralization. The substitution of
aromatic residues, mainly Trp or tyrosine (Tyr), in MPER binding
antibodies reduces the neutralization activity of these antibodies
[74,84]. Also, the importance of Cys and aromatic residues such as Trp
is shown in neutralization activity of CD4bs BrNAbs antibodies
[85,86], highlighting the significant function of these residues in either
directly in the antigen binding interaction or involvement in shaping
the required structure for epitope binding.

The activity of patient-derived HIV-1 BrNAbs requires an extensive
affinity maturation in the lymph node germinal centers in comparison
with other human IgG antibodies against most other pathogens, or
with poorly neutralizing HIV antibodies [70,87,88]. The most
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important of the maturation mechanisms is SHM particularly in the
heavy variable region [89-95]. A high degree of amino acid SHMs
ranging from 9.4% for M66.6 (gp41 MPER antibody) up to 47.9% for
VRC06 (CD4bs antibody) is a characteristic feature of HIV-1 BrNAbs
[96]. The importance of SHM is demonstrated by low or absent
reactivity of predicted un-mutated germline ancestors of BrNAbs
[97,98].

In Bos taurus, the V gene is almost limited to one family (gl.110.20)
[65,66,68]. However, the bovine immune system has a robust function
which implies that some diversification mechanisms are employed to
help the immunoglobulins to target epitopes of diverse pathogens.
High level SHM in the immunoglobulins is one of the main strategies
that bovine immune system uses to provide enough antibody evolution
and adaption for efficient antigen recognition [99]. There are other
major factors that result in the bovine immunoglobulins being
exceptional amongst immunoglobulins derived from other species.
Most unique is that bovine IgG can have ultra-long CDRH3 that form
a β strand ‘‘stalk’’ that supports a structurally classified, disulfide-
bonded ‘‘knob’’ domain. To create diverse antigen binding surfaces, a
Cys diversification is employed through a single V(D)J event in cows
which reshape the knob domain in the ultra-long CDRH3 regions [16].
In bovine, CDRH3 domains are particularly elongated, and Cys
residues are normally frequent forming structures that involve
disulfide bonds [67]. The DH2 germline gene encodes repeating motif
of Gly-Tyr-Gly which could be mutated into cysteine [16,66]. In
another study, the critical contribution of aromatic residues
(particularly Trp and His) for HIV Env binding has been revealed
(Heydarchi et al. submitted). The long CDRH3, high level of SHMs and
presence of Cys and aromatic residues are parts of the normal bovine
immunoglobulin that are comparable to what was observed from
human neutralizing immunoglobulins which in contrast, require a
long time to develop and are not observed in normal antibodies [1].

Limitation and Challenges
There are some challenges with the production of virus-specific

bovine antibodies from colostrum. Our experience with HIV Env
antibodies suggests potent neutralizing IgG antibodies required a
relatively long maturation time when produced by pregnant cows [40].
Furthermore, the large body mass of the cows may require much more
vaccine compared to other animals [40,100-102]. Additionally, highest
concentrations of colostrum antibody are found in the first colostrum
and this must be collected immediately after the unpredictable event of
calving. Nevertheless, production of large scale anti-viral components
and antibodies compensates for this drawback.

Other potential issues may arise when animal-derived un-purified
polyclonal antibodies from colostrum are used for clinical applications
and these materials would usually require purification of IgGs [103]. In
general, quantitative and qualitative batch-to-batch variation is the
another potential obstacle with the use of polyclonal antibodies from
animals [104]. Though passive immunization with the bovine
polyclonal antibodies can prevent or control infection [26-31,40], a
general problem for polyclonal antibodies is that a large portion of
stimulated antibodies will target non-neutralizing epitopes and titer of
specific antibodies may be low [42]. However, one strategy to cope this
problem may be the production of the monoclonal BrNAbs targeting
conserved epitopes among different subtypes of a virus. Finally
humanization of the bovine monoclonal antibodies will be required to
modify the protein sequence towards antibodies naturally tolerated in
humans [104,106] therefore reducing anti-antibody responses [107].

On the whole, though there are some challenges existing with the
use of bovine polyclonal antibodies from colostrum, it seems that the
advantages of repertoire diversity and production scale outweigh the
disadvantages when bovine-derived antibodies are employed in the
control and/or treatment of antigenically complex viruses, such as HIV.

Conclusion
The colostrum-derived IgG could improve the immunity against

different viruses including HIV. It is curious that bovine yields
remarkable high titers of BrNAbs after vaccination but that this does
not occur following vaccination of other species. Vaccinations with
HIV Env gp140 trimmers that have evolved to evade human antibody
immunity may present epitopes in bovine that are anergic in primates
[108]. Furthermore, as previously shown the pre-existing immunity
against human microbiota could mislead the immune system to induce
non-neutralizing antibodies [109]. So, it is also possible that the
microbiota that shapes the polyfunctional B cell precursors that spawn
BrNAbs in humans are different to those in a ruminant, like the
bovine, leading to a more rapid and reproducible production of
neutralizing antibodies. Finally, the unprecedented long length of the
CDRH3 regions of the bovine IgG [65,66] leads to V-regions that make
long CDRH3 with an average CDRH3 length that is equal to the
maximum size for human CDRH3 frequently observed in BrNAb from
human [54,71]. In addition, high a rate of SHM is used in the bovine
antibodies [109] may lead to elicit BrNAbs with characteristic highly
mutated. Indeed, the bovine antibodies from vaccinated cows could
eventually benefit HIV-infected individuals by means of their extra-
ordinary features.
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