Fixed-Parameter Debordering of Waring Rank

Authors Pranjal Dutta , Fulvio Gesmundo , Christian Ikenmeyer , Gorav Jindal , Vladimir Lysikov



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.30.pdf
  • Filesize: 0.76 MB
  • 15 pages

Document Identifiers

Author Details

Pranjal Dutta
  • School of Computing, National University of Singapore (NUS), Singapore
Fulvio Gesmundo
  • Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
Christian Ikenmeyer
  • University of Warwick, UK
Gorav Jindal
  • Max Planck Institute for Software Systems, Saarbrücken, Germany
Vladimir Lysikov
  • Ruhr-Universität Bochum, Germany

Cite AsGet BibTex

Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Fixed-Parameter Debordering of Waring Rank. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.30

Abstract

Border complexity measures are defined via limits (or topological closures), so that any function which can approximated arbitrarily closely by low complexity functions itself has low border complexity. Debordering is the task of proving an upper bound on some non-border complexity measure in terms of a border complexity measure, thus getting rid of limits. Debordering is at the heart of understanding the difference between Valiant’s determinant vs permanent conjecture, and Mulmuley and Sohoni’s variation which uses border determinantal complexity. The debordering of matrix multiplication tensors by Bini played a pivotal role in the development of efficient matrix multiplication algorithms. Consequently, debordering finds applications in both establishing computational complexity lower bounds and facilitating algorithm design. Currently, very few debordering results are known. In this work, we study the question of debordering the border Waring rank of polynomials. Waring and border Waring rank are very well studied measures in the context of invariant theory, algebraic geometry, and matrix multiplication algorithms. For the first time, we obtain a Waring rank upper bound that is exponential in the border Waring rank and only linear in the degree. All previous known results were exponential in the degree. For polynomials with constant border Waring rank, our results imply an upper bound on the Waring rank linear in degree, which previously was only known for polynomials with border Waring rank at most 5.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
Keywords
  • border complexity
  • Waring rank
  • debordering
  • apolarity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alexander Alder. Grenzrang und Grenzkomplexität aus algebraischer und topologischer Sicht. PhD thesis, Universität Zürich, 1984. Google Scholar
  2. J. Alexander and A. Hirschowitz. Polynomial interpolation in several variables. J. Alg. Geom., 4(2):201-222, 1995. Google Scholar
  3. Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman. Tensor rank: Some lower and upper bounds. In CCC 2011, pages 283-291. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/CCC.2011.28.
  4. Eric Allender and Fengming Wang. On the power of algebraic branching programs of width two. Comput. Complex., 25(1):217-253, 2016. URL: https://doi.org/10.1007/s00037-015-0114-7.
  5. Edoardo Ballico. On the ranks of homogeneous polynomials of degree at least 9 and border rank 5. Note di Matematica, 38(2):55-92, 2019. URL: https://doi.org/10.1285/i15900932v38n2p55.
  6. Edoardo Ballico and Alessandra Bernardi. Stratification of the fourth secant variety of Veronese varieties via the symmetric rank. Adv. Pure Appl. Math., 4(2):215-250, 2013. URL: https://doi.org/10.1515/apam-2013-0015.
  7. Edoardo Ballico and Alessandra Bernardi. Curvilinear schemes and maximum rank of forms. Le Matematiche, 72(1):137-144, 2017. URL: https://doi.org/10.4418/2017.72.1.10.
  8. Alessandra Bernardi, Jérôme Brachat, and Bernard Mourrain. A comparison of different notions of ranks of symmetric tensors. Linear Algebra Appl., 460:205-230, 2014. URL: https://doi.org/10.1016/j.laa.2014.07.036.
  9. Alessandra Bernardi, Alessandro Oneto, and Daniele Taufer. On schemes evinced by generalized additive decompositions and their regularity, 2023. URL: https://arxiv.org/abs/2309.12961.
  10. Dario Bini. Relations between exact and approximate bilinear algorithms. Applications. Calcolo, 17(1):87-97, 1980. URL: https://doi.org/10.1007/BF02575865.
  11. Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. O(n^2.7799) complexity for n × n approximate matrix multiplication. Inf. Process. Lett., 8(5):234-235, 1979. URL: https://doi.org/10.1016/0020-0190(79)90113-3.
  12. Markus Bläser, Julian Dörfler, and Christian Ikenmeyer. On the complexity of evaluating highest weight vectors. In 36th Computational Complexity Conference (CCC 2021), volume 200 of LIPIcs, pages 29:1-29:36. Dagstuhl, 2021. URL: https://doi.org/10.4230/LIPIcs.CCC.2021.29.
  13. Grigoriy Blekherman and Zach Teitler. On maximum, typical and generic ranks. Math. Ann., 362(3-4):1021-1031, 2015. URL: https://doi.org/10.1007/s00208-014-1150-3.
  14. Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching programs of small width. J. ACM, 65(5):32:1-32:29, 2018. URL: https://doi.org/10.1145/3209663.
  15. Weronika Buczyńska and Jarosław Buczyński. Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. J. Algebraic Geom., 23(1):63-90, 2014. URL: https://doi.org/10.1090/S1056-3911-2013-00595-0.
  16. Weronika Buczyńska and Jarosław Buczyński. On differences between the border rank and the smoothable rank of a polynomial. Glasg. Math. J., 57(2):401-413, 2015. URL: https://doi.org/10.1017/S0017089514000378.
  17. Jaroslaw Buczyński and Joachim Jelisiejew. Finite schemes and secant varieties over arbitrary characteristic. Differential Geom. Appl., 55:13-67, 2017. URL: https://doi.org/10.1016/j.difgeo.2017.08.004.
  18. Weronika Buczyńska and Jarosław Buczyński. Apolarity, border rank, and multigraded Hilbert scheme. Duke Math. J., 170(16):3659-3702, 2021. URL: https://doi.org/10.1215/00127094-2021-0048.
  19. Weronika Buczyńska, Jarosław Buczyński, and Zach Teitler. Waring decompositions of monomials. Journal of Algebra, 378:45-57, 2013. URL: https://doi.org/10.1016/j.jalgebra.2012.12.011.
  20. Peter Bürgisser. The complexity of factors of multivariate polynomials. Found. Comput. Math., 4(4):369-396, 2004. URL: https://doi.org/10.1007/s10208-002-0059-5.
  21. Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic Complexity Theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1997. URL: https://doi.org/10.1007/978-3-662-03338-8.
  22. Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry and geometric modeling, pages 237-247. Springer, Berlin, 2006. URL: https://doi.org/10.1007/978-3-540-33275-6_15.
  23. Arthur Cayley. On the theory of linear transformations. Cambridge Math. J., IV:193-209, 1845. Reprinted in A. Cayley, The Collected Mathematical Papers I, 80-94, Cambridge University Press, 1889. URL: https://doi.org/10.1017/CBO9780511703676.014.
  24. Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Landsberg, and Giorgio Ottaviani. Polynomials and the exponent of matrix multiplication. Bull. LMS, 50(3):369-389, 2018. URL: https://doi.org/10.1112/blms.12147.
  25. Alfred Clebsch. Zur Theorie der algebraischen Flächen. J. Reine Angew. Math., 58:93-108, 1861. URL: https://doi.org/10.1515/crll.1861.58.93.
  26. Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Demystifying the border of depth-3 algebraic circuits. In FOCS 2021, pages 92-103. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00018.
  27. Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Fixed-parameter debordering of Waring rank, 2024. (Extended version of this paper). URL: https://arxiv.org/abs/2401.07631.
  28. Klim Efremenko, Ankit Garg, Rafael Mendes de Oliveira, and Avi Wigderson. Barriers for rank methods in arithmetic complexity. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of LIPIcs, pages 1:1-1:19. Dagstuhl, 2018. URL: https://doi.org/10.4230/LIPIcs.ITCS.2018.1.
  29. Michael Forbes. Some concrete questions on the border complexity of polynomials. Presentation given at the Workshop on Algebraic Complexity Theory (WACT 2016) in Tel Aviv, 2016. URL: https://www.youtube.com/watch?v=1HMogQIHT6Q.
  30. Maciej Gałązka. Vector bundles give equations of cactus varieties. Lin. Alg. Appl., 521:254-262, 2017. URL: https://doi.org/10.1016/j.laa.2016.12.005.
  31. Ankit Garg, Visu Makam, Rafael Mendes de Oliveira, and Avi Wigderson. More barriers for rank methods, via a "numeric to symbolic" transfer. In FOCS 2019, pages 824-844. IEEE, 2019. URL: https://doi.org/10.1109/FOCS.2019.00054.
  32. John Hilton Grace and Alfred Young. The Algebra of Invariants. Cambridge Library Collection - Mathematics. Cambridge University Press, 2010. URL: https://doi.org/10.1017/CBO9780511708534.
  33. Leonid Gurvits. Ryser (or polarization) formula for the permanent is essentially optimal: the Waring rank approach. Technical Report LA-UR08-06583, Los Alamos National Laboratory, 2008. Google Scholar
  34. Anthony Iarrobino. Inverse system of a symbolic power II. the Waring problem for forms. Journal of Algebra, 174(3):1091-1110, 1995. URL: https://doi.org/10.1006/jabr.1995.1169.
  35. Anthony Iarrobino and Vassil Kanev. Power sums, Gorenstein algebras, and determinantal loci, volume 1721 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. URL: https://doi.org/10.1007/BFb0093426.
  36. Christian Ikenmeyer and Abhiroop Sanyal. A note on VNP-completeness and border complexity. Inf. Process. Lett., 176:106243, 2022. URL: https://doi.org/10.1016/j.ipl.2021.106243.
  37. Joachim Jelisiejew. An upper bound for the Waring rank of a form. Arch. Math. (Basel), 102(4):329-336, 2014. URL: https://doi.org/10.1007/s00013-014-0632-6.
  38. Joachim Jelisiejew. Pathologies on the Hilbert scheme of points. Inventiones mathematicae, 220(2):581-610, 2020. URL: https://doi.org/10.1007/s00222-019-00939-5.
  39. Joachim Jelisiejew and Tomasz Mańdziuk. Limits of saturated ideals, 2022. URL: https://arxiv.org/abs/2210.13579.
  40. Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. comput. complex., 16(2):115-138, 2007. URL: https://doi.org/10.1007/s00037-007-0226-9.
  41. Hanspeter Kraft. Geometrische Methoden in der Invariantentheorie. Springer, Berlin, 2 edition, 1985. URL: https://doi.org/10.1007/978-3-663-10143-7.
  42. Mrinal Kumar. On the power of border of depth-3 arithmetic circuits. ACM Trans. Comput. Theory, 12(1):5:1-5:8, 2020. URL: https://doi.org/10.1145/3371506.
  43. Joseph M. Landsberg and Zach Teitler. On the ranks and border ranks of symmetric tensors. Found. Comput. Math., 10(3):339-366, 2010. URL: https://doi.org/10.1007/s10208-009-9055-3.
  44. Thomas Lehmkuhl and Thomas Lickteig. On the order of approximation in approximative triadic decompositions of tensors. Theor. Comput. Sci., 66(1):1-14, 1989. URL: https://doi.org/10.1016/0304-3975(89)90141-2.
  45. Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory I: an approach to the P vs. NP and related problems. SIAM J. Comput., 31(2):496-526, 2001. URL: https://doi.org/10.1137/S009753970038715X.
  46. Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In STOC'91: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 410-418. ACM, 1991. URL: https://doi.org/10.1145/103418.103462.
  47. Rufus Oldenburger. Polynomials in several variables. Annals of Mathematics, 41(3):694-710, 1940. URL: https://doi.org/10.2307/1968741.
  48. Francesco Palatini. Sulle superficie algebriche i cui S_h (h+1)-seganti non riempiono lo spazio ambiente. Atti della R. Acc. delle Scienze di Torino, 41:634-640, 1906. URL: https://archive.org/details/attidellarealeac41real/page/634.
  49. Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Part I, volume 5125 of Lecture Notes in Computer Science, pages 60-71. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-70575-8_6.
  50. James Joseph Sylvester. On the principles of the calculus of forms. J. Cambridge and Dublin Math., 7:52-97, 1852. Reprinted in J. J. Sylvester, The Collected Mathematical Papers I, 284-327, Cambridge University Press, 1904. Google Scholar
  51. Alessandro Terracini. Sulle V_k per cui la varietà degli S_h (h+1)-seganti ha dimensione minore dell'ordinario. Rend. Circ. Mat., 31:392-396, 1911. URL: https://doi.org/10.1007/BF03018812.
  52. WACT 2016. Some accessible open problems. URL: https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/openprobs.pdf.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail