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ABSTRACT 

This paper proposes a new Initial CCT (Critical Clearing Time) estimation method using a hybrid neural network com-
posed of iRprop (Improving the Resilient back PROPation Algorithm) and RAN (Resource Allocation Network). In 
transient stability study, CCT evaluation is very important but time consuming due to the fact it needs many iteration of 
time domain simulations gradually increasing the fault clearing time. The key to reduce the required computing time in 
this process is to find accurate initial estimation of CCT by a certain handy method before going to the iterative stage. 
As one of the strongest candidates of this handy method is the utilization of the pattern recognition ability of neural 
networks, which enable us to jump to a close estimation of the real CCT without any heavy computing burden. This 
paper proposes a new hybrid neural network which is a combination of the well-known iRprop and RAN. In the pro-
posed method, the outputs of the hidden units of RAN are modified by multiplying the contribution factors calculated 
by an additional iRprop network. Numerical studies are done using two different test systems for the purpose of con-
firming the validity of the proposal. The result of the proposed method is the best. Properly evaluating the contribution 
of each input to the hidden units, the estimation error obtained by the proposed method is improved further than the 
original RAN based estimation. 
 
Keywords: Critical Clearing Time; Estimation; Power System; iRprop; Resource Allocation Network 

1. Introduction 

In large power systems operation, stability check in the 
contingency analysis is always important. In particular, 
in these two years, we, Japanese electric power engineers, 
cannot depend upon the strong power supply from the 
nuclear power plants and the basic power flow pattern is 
different from the original schedule. It implies that every 
daily grid operation needs more careful study, in which 
stability check should be done. The long and narrow 
power corridor is, in a sense, inevitable due to the geo-
graphical restriction of our country, which makes the 
stability the main restricting factor for the long and heavy 
power transmission. 

One of the biggest problems in the transient stability 
constrained contingency analysis is the long computing 
time required. Transient stability study itself is a typical 
time consuming calculation. Here, we need to iterate 
dynamic simulation many times gradually increasing 
power flow or fault clearing time to reach their critical 
value. Comparing these two, the critical clearing time 
(CCT) is easy to calculate and is often used. For the fast 
evaluation of CCT, we need accurate initial guess of the 
clearing time. If we can start from close guess, the re-
quired time to get the true CCT can be shorter. Since the 

power flow pattern in the whole system gives a substan-
tial effects on the resultant CCT, it can be expected that 
we can accurately estimate CCT if the important vari-
ables such as the specified values of the active and reac-
tive power at each node is given. 

Many methods based on so called artificial neural 
network (ANN) techniques have been studied for this 
initial guess. Ikenono et al proposed to use BP (back 
propagation) based ANN [1]. Bettiol et al proposed to 
use RBF (Radial Basis Function) network for this pur-
pose [2]. The authors ourselves studied this problem and 
proposed to use support vector machine [3] and rele-
vance vector machine [4]. Once properly trained, ANN 
can recognize the given input pattern and make classifi-
cation or give a regression in a short computing time. 
Because of its nonlinear knowledge representation ability, 
it has been a strong candidate for this initial estimator. 
However, even after the above mentioned research ef-
forts, it still remains as a research theme and not a real 
field application. 

In this paper, a new ANN method is proposed for the 
above stated purpose. In this proposal so called RAN 
(Resource Allocation Network) is coupled with iRprop 
(Improving the Rprop Learning Algorithm, in which 
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Rprop stands for Resilient backPROPagation). RAN is 
one type of RBF network, but it has a strong adaptability 
given by the hidden layer adjustment. RAN and its modi-
fications are applied to various fields and makes a con-
siderable contribution. [5-7] The details of iRprop and 
RAN will be described in the next chapter. 

This paper is constructed as follows. Chapter 2 ex-
plains the proposal in this paper together with the basics 
related to iRprop and RAN. Chapter 3 describes our tran-
sient stability problem, followed by numerical examples 
written in Chapter 4. In Chapter 5 concluding remarks 
are stated. 

2. Related Networks and the Proposal 

2.1. iRprop 

The proposed method in this paper is a hybrid of iRprop 
and RAN. The former (more strictly, iRprop+) is an im-
proved version of BP (Back Propagation) ANN. While 
BP shifts the weight of each connection by the gradient 
and needs the partial derivative calculated, iRprop only 
watches the sign of the partial derivative. Its light com-
puting cost enables us to apply this method to many 
fields. 

The mathematical description of its learning algorithm 
is as follows [8]. The weight of each connection is wij and 
it is shifted by the following algorithm depending upon  
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2.2. RAN 

On the other hand, RAN is composed of 1) a network, 2) 
strategy for allocating new units, and 3) a learning rule 
for refining the network. [9] It is based on the concept of 
RBF (Radial Basis Function) machine. [2] Let I be the 
input. Using c and 2, the center and the variance of the 
RBF, y, the output of the hidden unit, is computed by 

2 2exp( / ).i p jy I c j             (1) 

where j, i, and p stand for the suffix for the number of the 
hidden units, those of the input units, and sample id re-
spectively. The network output z is calculated, using the 
weight h and the output bias , as follows. 

k k i
i

z h y k                (2) 

RAN also learns so as to minimize the sum of the 
squared output error E. When the newly obtained input is 
not found in the experience so far (far from the used data 
sample obtained in the history), another hidden unit is 
added. This algorithm is formulated as follows. 

if E> and ||x-cnearest||> then 
j=j+1 
cji=xpi 

j
2=k || x-cnearest|| 

hji=Tpk-zk 

where Tpk is the teacher signal. 

2.3. The Proposed Method 

RAN modifies its structure by adding a new hidden unit 
only in the case where the output error and the difference 
between the input data and the nearest center of the ex-
isting radial basis functions are big enough simultane-
ously. However, in our specific problem, the input data 
contain various quantity such as voltage, power, and fault 
location etc.. Some input might have strong effects on the 
inputs to the hidden layer, but others not. In the proposed 
method, this difference in the degree of the effects on the 
hidden layer is assessed by an additional iRprop network 
which connects every input variable with every hidden 
unit.  

Learning is done simultaneously in this additional iR-
prop network and the obtained weight of each connection 
is multiplied to the difference between each input and the 
nearest center, the sum of which is used to calculate the 
output of the hidden units. Using y, I, c, and  of the 
same meaning as in the previous section, the output of 
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the hidden unit y is written as 
2 2

2
exp( )

p j i

i
j

I c ef
y




               (3) 

where the new coefficient ef implies the degree of effects 
and is calculated by the following formula; 

,i i
j

ef w  j  

which is the sum of the weights in the above stated addi-
tional iRprop network. The proposed network takes the 
form shown in Figure 1. The additional part on the top 
(boxed in the broken rectangle) is iRprop, the sum of the 
connection weight of which is ef and is multiplied to the 
distance between input Ik and the nearest center as shown 
in Equation (3). Figure 2 shows the type of input/output 
data used in the proposed method. 

3. Studied Problem 

3.1. Data Preparation Procedure 

In our particular problem, so called CCT (Critical Clear-
ing Time) is the target of the estimation. CCT is the 
 

 

Figure 1. The structure of the proposed network. 
 

gen output             load power           LFdata & transmission loss       gen volt.     fault location

CCT (Critical Clearing Time)

 

Figure 2. Inputs and output of the proposed network. 

maximum fault duration which does not cause instability. 
In order to obtain the teacher signal fed to the proposed 
method, the true CCT, dynamic simulation is run many 
times. It is true that this is only a result of simulation 
analysis, but is treated as the correct CCT. 

Using CPAT (CRIEPI’s Power system Analysis Tool) 
[10], a de facto standard stability analysis program in 
many Japanese power utilities, the power system tran-
sient behavior is computed under various conditions such 
as initial load flow, fault location etc., where the fault 
clearing time is gradually increased. The assumed long-
est clearing time which causes no transient stability 
problem such as out of step within the predetermined 
time range (described later in Tables 1 and 2) is consid-
ered as CCT. 
 

Table 1. Simulation Condition in 9 Node System. 

item setting 

gen. output 
increased at the constant rate to keep up with 
the total demand 

load demand 80, 90, 100, 110, 120% 

input data 
gen and load power, branch power flow, nodal 
voltage, branch loss, fault location 

output CCT 

fault locations sending end of all branches 

fault type 3LG (three lines grounded) 

criterion of SO internal bus angle > 180 deg 

etc simulation quits after t=0.5sec 

 
Table 2. Simulation Condition in 47 Node System. 

item setting 

gen. output 

output from a gen in Area A is increased by 
0.1pu step while the output from all gens in 
Area B are reduced at the same rate to keep the 
total demand unchanged 

load demand 100% unchanged 

input data 
gen power, branch power flow, nodal voltage, 
fault location 

output CCT 

fault locations 
at HV bus of the step-up transformer of gen-
erators 8,9,10 

fault type 3LG (three lines grounded) 

criterion of SO internal bus angle > 180 deg 

etc simulation quits after t=4.0sec 

3.2. Study Power Systems 

Two model systems shown in Figures 3 and 4 are stud-
ied. The details such as machine constants used in the 9 
bus model can be found in [11]. In the study of the 47 
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4. Numerical Study node system, base loading is set as its standard, or 100% 
loading condition. The analysis condition is summarized 
in Tables 1-3. 

For the purpose of confirmation of the validity of the 
proposed method, it is compared with the two existing 
networks, BP (the classical Back Propagation based net-
work) and iRprop. The parameters are determined by try 
and error. They are summarized in Tables 5-6. 

3.3. Transient Stability Analysis 

The transient stability analysis is done, which is required 
to get the input and the teacher signal fed to our ANN, as 
explained below. The simulation condition used for the 
nine bus model is shown in Table 1. On the other hand, 
Table 2 shows that used in 47 node model. In Table 2, 
two areas are refereed in the description of the procedure 
how the generator outputs are changed. Area A means 
the northern part of the 47 node system, which includes 
the three generators G8 - G10. The remaining region is 
Area B. Tables 3 and 4 show the generation/demand 
settings for each case. 

 
Table 3. Generator Condition in 47 Node System. 

gen No gen type voltage capacity 

1 LNG 1.01pu 8240MVA 

2 nuclear 1.00pu 12940MVA 

3 pumped storage 1.02pu 7060MVA 

4 coal 1.01pu 12940MVA 

5 pumped storage 1.02pu 7060MVA 

6 coal 1.02pu 12940MVA 

7 nuclear 1.00pu 12940MVA 

8 oil 1.00pu 8240MVA 

9 oil 1.00pu 8240MVA 

10 oil 1.02pu 5880MVA 

 

G1

G3G2

4

1

65

9

8

72 3

 

Figure 3. Anderson and Fouad 9 bus system. 
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Figure 4. IEEJ standard 47 bus model system EAST-10. 
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Table 4. Load Condition in 47 Node System. 

Node No active power reactive power 

38 3.5pu 0.986pu 

39 7.0pu 1.972pu 

40 7.0pu 1.972pu 

41 7.0pu 1.972pu 

42 7.0pu 1.972pu 

43 3.5pu 0.986pu 

44 3.5pu 0.1pu 

45 3.5pu 0.1pu 

46 3.5pu 0.1pu 

18 3.85pu 1.205pu 

19 3.85pu 1.205pu 

47 2.8pu 0.806pu 

 
Table 5. Settings in BP. 

Hidden 
units 

Learning 
rate 

treshold 
Initial 
setting 

max learning 
iteration 

132 0.2 0.0 
randomly set  

between -1.0 - 1.0 
6000 

 
Table 6. Settings in iRprop. 

hidden 
units 

initial 
update 

max/min 
update 

initial setting 
max learning 

iteration 

30 0.5 50, 10-6 
randomly set  

between -1.0 - 1.0 
10000 

 
The obtained results are summarized in Table 7 for the 

9 node system, and in Table 8 for the 47 node system 
respectively. Both in these two systems, the proposed 
method, and the hybrid iRprop/RAN network gives the 
best results. In our preliminary study, the existing RAN 
network has also been applied to these two networks. 
The results are shown in Table 9. This table shows the 
fact that RAN itself has certain relative advantage over 
the other existing networks, BP and iRprop. As far as the 
authors know, the application of RAN to this problem is 
the first attempt, but in this paper, RAN is further im-
proved to the hybrid network, and this proposed method 
gives the best result. 

The main reason why the proposed method gives the 
better results compared to RAN is, as the authors esti-
mate, the contribution of the additional iRprop network.    
Because iRprop itself has a certain strength in this CCT 
estimation problem, it appropriately extracts the input 
feature and enables us to judge the necessity of adding a 
new hidden unit. The maximum error in the 9 node sys-
tem becomes worse than in case of the conventional 
RAN but compared to the improvement from BP and 
iRprop, this deterioration is very small.  

Table 7. Resultant Error in the 9 node system. 

 BP iRprop proposed net 

average 0.0674sec 0.0396sec 0.0191sec 

max 0.2488sec 0.2646sec 0.1131sec 

 
Table 8. Resultant Error in the 47 node system. 

 BP iRprop proposed net 

average 0.00249sec 0.00263sec 0.00208sec 

max 0.00884sec 0.01041sec 0.00691sec 

 
Table 9. Error in Case of Conventional RAN. 

 9 node system 47 node system 

average 0.03003sec 0.00229sec 

max 0.09311sec 0.00855sec 

 
Since the maximum error is reduced to be around 70% 

of that by the existing method, the required computation 
time is also expected to be around 70%. 

Summarizing all these points, it can be said that the 
proposed method gives significant improvement on the 
initial CCT guess, and it implies that the total computing 
time required to get the true CCT can be shorten consid-
erably. 

5. Conclusions 

In this paper, a new ANN based CCT estimation method 
is proposed to realize a faster power system transient 
study. The proposed ANN is a hybrid of iRprop and 
RAN, in which additional iRprop network gives helpful 
information concerning the new hidden unit generation in 
the conventional RAN. 

Numerical study is done to confirm the validity of the 
proposed method in the CCT estimation problem in the 
power system stability analysis, where several existing 
methods are also tested and compared. The existing RAN 
is used for this purpose, which is, as far as the authors 
know, also the first attempt so far, and gives a better re-
sult compared to other existing methods such as BP and 
iRprop. Furthermore, the proposed method gives an even 
better result in the sense of the maximum and averaged 
estimation error. 

In the present paper, initial load flow pattern and, 
needless to say, the fault location are varied and the pro-
posed method is shown to be able to give a fairly good 
result in a wide range of the condition. However, no to-
pological change is considered in the model system. 
Since the addition of the iRprop network might have 
given a strong ability of adapt and adjust to new operat-
ing condition in the proposed method, it can be expected 
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that our method might be well applied in a bigger condi-
tion change such as topological. Due to the new grid par-
ticipants such as distributed generators, the grid configu-
ration might be more frequently changed from now, 
which might affects the power transmission capability of 
the trunk system. It implies that the importance of the 
proposed method will become bigger and bigger in near 
future. 
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