Electrodeposition of Bi-Sb alloy using Cu electrodes

Abstract

Bi-Sb alloys were grown by means of an electrodeposition method using Cu electrodes. The alloys were studied with the help of an x-ray diffractometer and an electron probe microanalysis. The both investigations have shown no trace of Cu in the obtained alloys. It can be concluded that Cu electrodes can be used for the deposition of Bi-Sb alloys; which results in an advantage of availability of the electrode.

Share and Cite:

M. Ohmukai and A. Tsuyoshi, "Electrodeposition of Bi-Sb alloy using Cu electrodes," Materials Sciences and Applications, Vol. 3 No. 7, 2012, pp. 492-494. doi: 10.4236/msa.2012.37069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. M. Rowe and C. M. Bhandari, “Modern Thermoelec- trics,” Holt Rinehart and Winston, London, 1983.
[2] R. B. Mallison and J. A. Rayne, “De Haas-Van Alphen Effect in n-Type Bi2Te3,” Physical Review, Vol. 175, No. 3, 1968, pp. 1049-1056. doi:10.1103/PhysRev.175.1049
[3] L. P. Caywood, Jr. and G. R. Miller, “Anistropy of the Constant-Energy Surfaces in n-Type Bi2Te3 and Bi2Se3 from Galvanomagnetic Coefficients,” Physical Review B, Vol. 2, No. 8, 1970, pp. 3209-3220.
[4] M. Stordeur, “Anisotropie des seebeck-koeffizienten, der lorenz-zahl und des hall-koeffizienten von halbleitern, verursacht durch anisotrop gemischte streuung,” Physica Status Solidi (b), Vol. 98, No. 1, 1980, pp. 199-206. doi:10.1002/pssb.2220980119
[5] V. A. Kutasov and L. N. Lukyanova, “The Conduction Band Parameters and Scattering Mechanisms in Solid Solutions Based on Bi2Te3,” Physica Status Solidi (b), Vol. 154, No. 2, 1989, pp. 669-677. doi:10.1002/pssb.2221540226
[6] H. Kaibe, Y. Tanaka, M. Sakata and I. Nishida, “Anisot- ropic Galvanomagnetic and Thermoelectric Properties of n-Type Bi2Te3 Single Crystal with the Composition of a Useful Thermoelectric Cooling Material,” Journal of Phy- sics and Chemistry of Solids, Vol. 50, No. 9, 1989, pp. 945-950. doi:10.1016/0022-3697(89)90045-0
[7] D. Hicks and M. S. Dresselhaus, “Effect of Quantum- Well Structures on the Thermoelectric Figure of Merit,” Physical Review B, Vol. 47, No. 19, 1993, pp. 12727- 12731. doi:10.1103/PhysRevB.47.12727
[8] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-Film Thermoelectric Devices with High Room- Temperature Figures of Merit,” Nature, Vol. 413, 2001, pp. 597-602. doi:10.1038/35098012
[9] V. D. Das and N. Meena, “Electrical Properties of Bi80Sb20 Alloy Thin Films, Vacuum-Deposited at Different Sub- strate Temperatures,” Journal of Materials Science, Vol. 16, No. 12, 1981, pp. 3489-3495. doi:10.1007/BF00586312
[10] R. Tolutis, V. Tolutis, J. Novickij and S. Balevicius, “Ne- gative Magnetoresistance of Polycrystalline Thin Bi1?xSbx Alloy Films in Quantizing Magnetic Fields,” Semiconductor Science and Technology, Vol. 18, No. 6, 2003, pp. 430-433. doi:10.1088/0268-1242/18/6/306
[11] F. H. Xue, G. T. Fei, B. Wu, P. Cui and L. D. Zhang, “Direct Electrodeposition of Highly Dense Bi/Sb Super- lattice Nanowire Arrays,” Journal of the American Chemical Society, Vol. 127, No. 44, 2005, pp. 15348- 15349. doi:10.1021/ja0547073
[12] P. M. Vereecken, S. Ren, L. Sun and P. C. Searson, “Electrodeposition of Bi1–xSbx Thin Films,” Journal of the Electrochemical Society, Vol. 150, No. 3, 2003, pp. C131-C139.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.