Neuroprotection by Melatonin on Mercury Induced Toxicity in the Rat Brain
Mandava V. Rao, Anshita R. Purohit
.
DOI: 10.4236/pp.2011.24049   PDF    HTML     5,917 Downloads   12,732 Views   Citations

Abstract

Free radicals are common outcome of normal aerobic cellular metabolism. In-built antioxidant system of body plays its decisive role in prevention of any loss due to free radicals. However, imbalanced defense mechanism of antioxidants and overproduction or incorporation of free radicals from environment to living systems leads to serious damage. It also attacks nervous system resulting in neural-degeneration. In order to evaluate the neurotoxic effect on the brain parts of mercury in our study, oxidative stress indices of enzymatic and non enzymatic components were measured in rats intoxicated with mercury (2 mg and 4 mg/kg body weight) for 60 days to adult rats. Along with gravimetry, tissue burden was also recorded. Alterations in these indices were further supported by ultrastructural studies carried out in the brain as indicated by myelin disintegration, cell organelle alterations and neuronal loss by mercury poisoning. Treatment with the antioxidant melatonin (N-acetyl 5-methoxy tryptamine, 5 mg/kg) prevented mercury exerted toxicity due to its antioxidant property. The pathological changes were also ameliorated in the brain region comparatively to support biochemical profile of brain. Thus, melatonin produced neuroprotection against mercury poisoning in rats.

Share and Cite:

M. Rao and A. Purohit, "Neuroprotection by Melatonin on Mercury Induced Toxicity in the Rat Brain," Pharmacology & Pharmacy, Vol. 2 No. 4, 2011, pp. 375-385. doi: 10.4236/pp.2011.24049.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. W. Clarkson, J.B. Hursh, P. R. Sager and T. L. M. Syversen, “Mercury in Biological Monitoring of Toxic Metals”, Plenum Press, New York, 1988, p.p. 199-246.
[2] World Health Organization (WHO). “Inorganic mercury. In Environmental Health Criteria”, Geneva, Switzerland, Vol. 118, 1991, pp. 1-115.
[3] J. Clausen, “Mercury and multiple Sclerosis”, Acta Neurol. Scand., Vol. 87, 1993, pp. 461-464.
[4] M. S. Hua, C. C. Huang and Y. J. Yang, “Chronical elemental mercury intoxication: neuropsychological follow-up case study”, Brain Inj., Vol. 10, 1996, pp. 377- 384.
[5] H. Langauer-Lewowicka and M. Zajac-Nedza, 1997. “Changes in nervous system due to occupation metallic mercury poisoning”, Neurol. Neurochir. Polska, Vol. 31, 1997, pp. 905-913.
[6] D. Deleu, V. Hanssens, H. S. Salmy and I Hastie, “Peripheral polyneuropathy due to chronic use of topical ammoniated mercury”, J. Toxicol. Clin. Toxicol., Vol. 36, 1998, pp. 233-237.
[7] S. Gasso, C. Sunol, C. Sanfeliu, E. Rodriguez-Farre and R. M. Cristofol, “Pharmacological Characterization of the effects of methyl mercury & mercuric chloride on spontaneous nonadrenaline release from rat hippocampal slices”, Life Sci., Vol. 67, 2000, pp. 1219-1231.
[8] G. Galreunthaier, W. Pialler and P. Kolanka, “Glutathione depletion and invitro lipid peroxidation in mercury or malate induced acute renal failure”, Biochem. Pharmacol., Vol. 32, 1983, pp. 2969-2972.
[9] National Research Council (NRC). “Toxicological effects of methylmercury”, Washington D.C. National Academy Press. 2000, pp. 54-56.
[10] G. Discalzi, E. Pira, E. Herrero-Hernandez, C. Valentini, M. Turbiglio and F. Meliga, “Occupational Mn parkinsonism: magnetic resonance imaging and clinical patterns following CaNa2-EDTA chelation”, Neurotoxicology, Vol. 21, 2000, pp. 863-866.
[11] S. Araragi, M. Kondoh, M. Kawase, S. Saito, M. Higashimoto and M. Sato, “Mercuric chloride induces apoptosis via a mitochondrial-dependent pathway in human leukemia cells,” Toxicology, Vol. 184, 2003, pp. 1-9.
[12] F. L. Lorscheider, M. J. Vimy, A. O. Summers and H. Zwiers, “Inorganic mercury and the CNS: genetic linkage of mercury and antibiotic resistance”, Toxicology, Vol. 97, 1995, pp. 19-22.
[13] J. C. Pendergrass and B. E. Haley, “The Toxic Effects of Mercury on CNS Proteins: Similarity to Observations in Alzheimer’s Disease”, Univ. Of Kentucky Dept. Of Chemistry, 1997a, IAOMT Symposium paper.
[14] C. Hock, G. Drasch, S. Golombowski, F. Muller-Spahn, B. Willer-Shausen-Zonnchen, P. Schwarz, U. Hock, J. H. Growdon and R. M. Nitsch, “Increased blood mercury levels in patients with Alzheimer’s disease”, J. Neural Transm., Vol. 105, 1998, pp. 59-68.
[15] J. C. Pendergrass and B. E. Haley, “Mercury Vapor Inhalation Inhibits Binding of GTP-Similarity to Lesions in Alzheimer’s Diseased Brains”, Neurotoxicology. Vol. 18, 1997b, pp. 315-24.
[16] H. Moreno-Fuenmayor, L. Borjas, A. Arrieta and V. Valera, 1996. “Plasma excitatory amino acids in autism”, Invest. Clin., Vol. 37, 1996, pp.113-28.
[17] S. Belletti and R. Gatti, “Time course assessment of methylmercury effects on C6 glioma cells: submicromolar concentrations induce oxidative DNA damage and apoptosis”, J. Neurosci. Res., Vol. 70, 2002, pp. 703-711.
[18] F. Bakir, S. F. Damluji, L. Amin-Zaki, M. Murtadha, A. Khalidi and N.Y. Al-rawi, “Methyl mercury poisoning in Iraq”, Sci., Vol. 181, 1973, pp. 230-241.
[19] T. Kjelstrom, P. Kennedy, S. Wallis, A. Stewart, L. Friberg and B. Lind, 1989. ”Physical and mental development of children with prenatal exposure to mercury from fish. Stage II: Interviews and psychological tests at age 6”, Solna: National Swedish Environmental Protection Board Report.
[20] P. Grandjean, P. Weihe, R. F. White, F. Debes, S. Araki and K. Yokoyama, “Cognitive deficit in 7-year-old children with prenatal exposure to methyl mercury”, Neurotoxicol. Teratol., Vol. 19, 1997, pp.417-428.
[21] P. Grandjean, E. Budtz-Jorgensen, R. F. White, P. J. Jorgensen, P. Weihe and F. Debes, 1999. “Methyl mer- cury exposure biomarkers as indicators of neurotoxicity in children aged 7 years”, Am. J. Epidemiol., Vol. 150, 1999, pp. 301-305.
[22] G. L. Diamond and R.K. Zalups, “Understanding renal toxicity of heavy metals”, Toxicol. Pathol., Vol. 26, 1998, pp. 92-103.
[23] H. Fukine, M. Hirai, Y. M. Rsuch and Y. Yamane, “Effect of zinc pretreatment on mercuric chloride-induced lipid peroxidation in the rat kidney”, Toxicol. Appl. Pharmacol., Vol. 73, 1984, pp. 395-401.
[24] N. Basu, A. M. Scheuhammer, R. D. Evans, M. O’Brien and L H. M. Chan, “Cholinesterase and monoamine oxidase activity in relation to mercury levels in the cerebral cortex of wild river otters”, Human and Experimental Toxicology, Vol. 3, 2007, pp. 213-220.
[25] N, Basu, A. M. Scheuhammer, K. Rouvinen-Watt, R. D. Evans, N. Grochowina N and L. H. Chan, “The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink”, Neurotoxicology, Vol. 29, 2008, pp. 328-334.
[26] D. X. Tan, L. D. Chen, B. Poeggeler, L. C. Manchester and R. J. Reiter, ”Melatonin: A potent, endogenous hydroxyl radical scavenger”, Endocrine J., Vol.1, 1993, pp. 57-60.
[27] M. Allegra, R. J. Reiter, D. X. Tan, C. Gentile, L. Tesoriere and M. A. Livrea, “The chemistry of melatonin interaction with reactive species,” J. Pineal Res., Vol. 34, 2003, pp. 1-10.
[28] R. J. Reiter, D. X. Tan, J. C. Mayo, R. M. Sainz, J. Leon, Z. Czarnocki, “Melatonin as an antioxidant; Biochemical mechanisms and pathophysiological implications”, Acta Biochem. Polon., Vol. 50, 2003, pp. 1129-1146.
[29] I. Antolin, C. Rodriguez, R. M. Sainz, J. Mayo, H. Uria, M. L. Kotler, M. J. Rodriguez-Colunga, D. Tolivia and A. Menendez Pelaez, “Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes,” FASEB J., Vol.10, 1996, pp. 882-890.
[30] C. Rodriguez, J. C. Mayo, R. M. Sainz, I. Antolin, F. Herrera, V. Martin and R. J. Reiter, “Regulation of antioxidant enzymes: A significant role for melatonin”, J. Pineal Res., Vol. 36, 2004, pp. 1-9.
[31] C. Tomas-Zapico and A. Coto-Montes, “A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes”, J. Pineal Res., Vol. 39, 2005, pp. 99-104.
[32] K. Winiarska, T. Fraczyk, D. Malinska, J. Drozak and J. Bryla, “Melatonin mitigated diabetes induced oxidative stress in rabbits”, J. Pineal Res., Vol. 40, 2006, pp. 168- 176.
[33] J. Leon, D. Acuna-Castroviejo, G. Escames, D. X. Tan and R. J. Reiter, “Melatonin mitigates mitochondrial malfunction”, J. Pineal. Res., Vol. 38, 2005, pp. 1-9.
[34] S. Lopez-Burillo, D. X. Tan, J. C. Mayo, R. M. Sainz and R. J. Reiter, “Melatonin xanthurenic acid reveratrol, EGCG, Vitamin C and alpha-lipoic acid differentially reduce oxidative DNA damage induced by Fenton reagents, a study of their individual and synergistic actions”, J. Pineal. Res., Vol. 34, 2003, pp. 269-277.
[35] R. J. Reiter, D. Melchiorri, E. Sewerynek, B. Poeggeler, L. Barlow-Walden, J. Chuang, G. G. Ortiz and D. A. Acuna-Castroviejo, “A review of the evidence supporting melatonin’s role as an antioxidant”, J. Pineal Res., Vol. 18, 1995, pp. 1-18.
[36] M. V. Rao, A. R. Purohit and T. A. Patel, “Melatonin protection on mercury exerted neurotoxicity in the rat”, Drug and Chem. Toxicol,. Vol. 33, 2010, pp. 209-216.
[37] G. Jansson and Harms-Ringdahl, “Stimulating effects in human polymorphonuclear leucocytes”, Free Radical Res. Commun., Vol. 18, 1993, pp. 87-98.
[38] B. O. Lund, D. M. Miller and J. S. Woods, “Studies on Hg (II)–induced H2O2 formation and oxidative stress in vivo and vitro in rat kidney mitochondria”, Biochem. Pharmacol., Vol. 45, 1993, pp. 2017 2024.
[39] R. J. Lewis and R. Tatken, “NIOSH. Registry of toxic effects of chemical substances”, U.S. Department of Health, Education and Welfare. 1979, Cincinati, Ohio.
[40] O., Vakkuri, J. Leppaluto and A. Kaupplia, “Oral administration and distribution of melatonin in human saliva and urine”, Life Sci., Vol. 37, 1985, pp. 489-495.
[41] H. Ohkawa, N. Ohishi and K. Yagi, “Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction”, Anal. Biochem., Vol. 95, 1979, pp. 351-358.
[42] G. L. Ellman, “Tissue sulfhydyl groups”, Arch. Biochem. Biophys., Vol. 82, 1959, pp. 70-77.
[43] J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman and W.G. Hoekstra, “Selenium: Biochemical roles as a component of glutathione peroxidase”, Sci., Vol. 179, 1973, pp. 585-590.
[44] I. Carlberg and B. Mannervik , “Glutathione reductase”, Methods Enzymol. , Vol.113, 1985, pp. 484-490.
[45] W. H. Habig, J.P., Michael and W. B. Jakoby, “Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation”, J. Biol. Chem., Vol. 249, 1974, pp. 7130-7139.
[46] R. L. Levine, J. A. Williams, E. R. Stadtman and E. Shacter, “Carbonyl for determination of oxidatively modified proteins”, Methods. Enzymol., Vol. 233, 1994, pp. 346-357.
[47] E. Pick and Y. Keisari, “Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages-Induction by multiple non phagocytic stimuli”, Cellular Immunology, Vol. 59, 1981, pp. 301-318.
[48] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein measurements with folin phenol reagent”, J. Biol. Chem., Vol. 193, 1951, pp. 265-275.
[49] J. H. Roe and C. A. Kuether, “The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenyl hydrazine derivatives of dehydroascorbic acid”, J. Biol. Chem., Vol.147, 1943, pp. 399-407.
[50] M. V. Rao and H. Tiwari, “Amelioration of melatonin of chromosomal anomalies induced by arsenic &/or fluoride in human blood lymphocyte culture”, Fluoride. Vol. 39, 2006, pp. 251-256.
[51] G. Lumb, 1995. Metal toxicity, in: Craighead JthE (Eds.), Pathology of environmental and occupational disease. Mosby Year Book, St. Louis.
[52] H. L. Evans, 1998. “Environmental and Occupational Medicine”, (Ed.), Lippincott-Raven, Philadelphia.
[53] B. Korenekova, M. Skalickaand P. Nad. “Cadmium exposure of cattle after long-term emission from polluted area”, Trace Elem. Electrolytes, Vol. 19, 2002, pp. 97-99.
[54] M. V. Rao, 1997. “Mercury and its effect on mammalian systems. A critical review”, Indian J. Environ. Toxicol., Vol. 7, 1997, pp. 3-11.
[55] Y. L. Huang, S. L. Cheng and T. H. Lin, “Lipid peroxidation in rats administrated with mercuric chloride”, Biol. Trace Elem. Res., Vol. 52, 1996, pp.193-206.
[56] E. Hijova, F. Nistiar and A. Sipulova, “Changes in ascorbic acid and malondialdehyde in rats after exposure to mercury”, Bratisl Lek Listy, Vol. 106, 2005, pp. 248-251.
[57] F. H. El-Rashidy, W. A. Al-Turk and S. J. Stohs, “Glutathione, Glutathione reductase and Glutathione S-trans- ferase activities in erythrocytes and lymphocytes in chronic renal disease”, Res. Commun. Chem. Pharm., Vol. 44, 1984, pp. 423-429.
[58] D. J. Reed, “Glutathione: Toxicological implications”, Annu. Rev. Pharmacol. Toxicol., Vol. 30, 1990, pp. 603- 631.
[59] R. Franco, O. J. Schoneveld, A. Pappa and M. I. Panayiotidis 2007. “The central role of glutathione in the pathophysiology of human diseases”, Arch. Physiol. Biochem., Vol. 113, 2007, pp. 234-258.
[60] V. H. Neefjes, C. T. Evelo, L. G. Baars and L. E. Blanco, “Erythrocyte Glutathione-S transferase as a marker of oxidative stress at birth”, Arch. Dis. Child Fetal Neonatal, Vol. 81, 1999, pp.130-133.
[61] R. J. Kutsky, 1973. “Handbook of Vitamins and Hormones”, Van. Nostrand Reinhold, New York.
[62] B. Halliwell, 1996. “Free radicals, proteins and DNA: Oxidative damage versus redox regulation”, Biochemical Society Transactions, Vol. 24, 1996, pp. 1023-1027.
[63] S. Hussain, D. A. Rodgers, H. M. Duhart and S. F. Ali, “Mercuric chloride-induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain”, J. Environ. Sci. Health, Vol. 32, 1997, pp. 359-409.
[64] T. W. Clarkson, “The Three Modern Faces of Mercury”, Environmental Health Perspectives, Vol. 110, 2002, pp. 11-23.
[65] M. V. Rao and B. Gangadharan, “Antioxidative potential of melatonin against mercury induced intoxication in spermatozoa in vitro”, Toxicol. in Vitro, Vol. 22, 2008, pp. 935-942.
[66] M. V. Rao and B. Chhunchha, “Effects of Melatonin on mercury induced endocrine toxicity in the rats”, J. of Herbal Med. Toxicol., Vol. 3, 2009, pp. 85-89.
[67] S. D. Vinay, K. G. Raghu and P. P. Sood, “Dose and duration related methyl mercury deposition, glucosidase inhibition, myelin degeneration and chelating therapy”, Cell Mol. Biol., Vol. 36, 1990, pp. 609-623.
[68] R. J. Reiter, D. X. Tan, L. C. Manchester and I. L. Tamura, “Melatonin defeats neutrally-derived free radicals and reduces the associated neuromorphological and neurobehavioral damage”, J. of Physiol. and Pharmacol., Vol. 38, 2007, pp. 3-22.
[69] Y. Quiroz, A. Ferrebuz, F. Romero, N. D. Vaziri and R. I. Bernardo, “Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction”, Am. J. Physiol. Renal Physiol., Vol. 294, 2008, pp. 336-344.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.