Human dental pulp stem cells differentiate into neural precursors but not into mature functional neurons

Abstract

Large numbers of neuronal cells are needed for regenerative medicine to treat patients suffering from central nervous system diseases and deficits such as Parkinson’s disease and spinal cord injury. One suggestion has been the utilization of human dental pulp stem cells (hDPSCs) for production of neuronal cells which would offer a patient-specific cell source for these treatments. Neuronal differentiation of hDPSCs has been described previously. Here, we tested the differentiation of DPSCs into neuronal cells with previously reported protocol and characterized the cells according to their morphology, gene and protein expressions and most importantly according to their spontaneous electrical functionality with microelectrode array platform (MEA). Our results showed that even though hDPSC-derived neural progenitor stage cells could be produced, these cells did not mature further into functional neuronal cells. Thus, utilization of DPSCs as a cell source for producing grafts to treat neurological deficits requires more efforts before being optimal.

Share and Cite:

Aanismaa, R. , Hautala, J. , Vuorinen, A. , Miettinen, S. and Narkilahti, S. (2012) Human dental pulp stem cells differentiate into neural precursors but not into mature functional neurons. Stem Cell Discovery, 2, 85-91. doi: 10.4236/scd.2012.23013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Lindvall, O. and Kokaia, Z. (2010) Stem cells in human neurodegenerative disorders: Time for clinical translation? The Journal of Clinical Investigation, 120, 29-40. doi:10.1172/JCI40543
[2] Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones, J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145-1147. doi:10.1126/science.282.5391.1145
[3] Takahashi, K., Okita, K., Nakagawa, M. and Yamanaka, S. (2007) Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2, 3081-3089. doi:10.1038/nprot.2007.418
[4] Yu, J., Vodyanik, M.A., Smuga-Otto, K., AntosiewiczBourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. and Thomson, J.A. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917-1920.
[5] Buc-Caron, M.H. (1995) Neuroepithelial progenitor cells explanted from human fetal brain proliferate and differentiate in vitro. Neurobiology of Disease, 2, 37-47. doi:10.1006/nbdi.1995.0004
[6] Daadi, M.M., Maag, A.L. and Steinberg, G.K. (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: Functional engraftment in experimental stroke model. PLoS ONE, 3, e1644.
[7] Schwarz, S.C. and Schwarz, J. (2010) Translation of stem cell therapy for neurological diseases. Translational Research, 156, 155-160. doi:10.1016/j.trsl.2010.07.002
[8] Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G. and Nolta, J.A. (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative Medicine, 5, 933-946. doi:10.2217/rme.10.72
[9] Gimble, J.M., Katz, A.J. and Bunnell, B.A. (2007) Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249-1260. doi:10.1161/01.RES.0000265074.83288.09
[10] Brignier, A.C. and Gewirtz, A.M. (2010) Embryonic and adult stem cell therapy. The Journal of Allergy and Clinical Immunology, 125, S336-S344. doi:10.1016/j.jaci.2009.09.032
[11] Mesim?ki, K., Lindroos, B., Tornwall, J., Mauno, J., Lindqvist, C., Kontio, R., Miettinen, S. and Suuronen, R. (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. International Journal of Oral and Maxillofacial Surgery, 38, 201-209. doi:10.1016/j.ijom.2009.01.001
[12] d’Aquino, R., Graziano, A., Sampaolesi, M., Laino, G., Pirozzi, G., De Rosa, A. and Papaccio, G. (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: A pivotal synergy leading to adult bone tissue formation. Cell Death and Differentiation, 14, 1162-1171. doi:10.1038/sj.cdd.4402121
[13] Nosrat, I.V., Smith, C.A., Mullally, P., Olson, L. and Nosrat, C.A. (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. European Journal of Neuroscience, 19, 2388-2398. doi:10.1111/j.0953-816X.2004.03314.x
[14] Arthur, A., Rychkov, G., Shi, S., Koblar, S.A. and Gronthos, S. (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26, 1787-1795. doi:10.1634/stemcells.2007-0979
[15] Ryu, J.S., Ko, K., Lee, J.W., Park, S.B., Byun, S.J., Jeong, E.J., Ko, K. and Choo, Y.K. (2009) Gangliosides are involved in neural differentiation of human dental pulp-derived stem cells. Biochemical and Biophysical Research Communications, 387, 266-271. doi:10.1016/j.bbrc.2009.07.005
[16] Kiraly, M., Porcsalmy, B., Pataki, A., Kadar, K., Jelitai, M., Molnar, B., Hermann, P., Gera, I., Grimm, W.D., Ganss, B., Zsembery, A. and Varga, G. (2009) Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochemistry International, 55, 323-332. doi:10.1016/j.neuint.2009.03.017
[17] Kara?z, E., Demircan, P.C., Saglam, O., Aksoy, A., Kaymaz, F. and Duruksu, G. (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochemistry and Cell Biology, 136, 455-473. doi:10.1007/s00418-011-0858-3
[18] Nourbakhsh, N., Soleimani, M., Taghipour, Z., Karbalaie, K., Mousavi, S.B., Talebi, A., Nadali, F., Tanhaei, S., Kiyani, G.A., Nematollahi, M., Rabiei, F., Mardani, M., Bahramiyan, H., Torabinejad, M., Nasr-Esfahani, M.H. and Baharvand, H. (2011) Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teethderived stem cells. The International Journal of Development Biology, 55, 189-195. doi:10.1387/ijdb.103090nn
[19] Heikkil?, T.J., Yl?-Outinen, L., Tanskanen, J.M., Lappalainen, R.S., Skottman, H., Suuronen, R., Mikkonen, J.E., Hyttinen, J.A. and Narkilahti, S. (2009) Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro. Experimental Neurology, 218, 109-116. doi:10.1016/j.expneurol.2009.04.011
[20] Buzanska, L., Habich, A., Jurga, M., Sypecka, J. and Domanska-Janik, K. (2005) Human cord blood-derived neural stem cell line: Possible implementation in studying neurotoxicity. Toxicology in Vitro, 19, 991-999. doi:10.1016/j.tiv.2005.06.036
[21] Király, M., Kádár, K., Horváthy, D.B., Nardai, P., Rácz, G.Z., Lacza, Z., Varga, G. and Gerber, G. (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochemistry International, 59, 371-381. doi:10.1016/j.neuint.2011.01.006
[22] Pine, J. (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods, 2, 19-31. doi:10.1016/0165-0270(80)90042-4
[23] Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 4, 402-408. doi:10.1006/meth.2001.1262
[24] Lappalainen, R.S., Salomaki, M., Yla-Outinen, L., Heikkila, T.J., Hyttinen, J.A., Pihlajamaki, H., Suuronen, R., Skottman, H. and Narkilahti, S. (2010) Similarly derived and cultured hESC lines show variation in their developmental potential towards neuronal cells in long-term culture. Regenerative Medicine, 5, 749-762. doi:10.2217/rme.10.58
[25] Khanna-Jain, R., Vuorinen, A., Sandor, G.K., Suuronen, R. and Miettinen, S. (2010) Vitamin D3 metabolites induce osteogenic differentiation in human dental pulp and human dental follicle cells. The Journal of Steroid Biochemistry and Molecular Biology, 122, 133-141. doi:10.1016/j.jsbmb.2010.08.001
[26] Takeyasu, M., Nozaki, T. and Daito, M. (2006) Differentiation of dental pulp stem cells into a neural lineage. Pediatric Dental Journal, 16, 154-162.
[27] Lindroos, B., Maenpaa, K., Ylikomi, T., Oja, H., Suuronen, R. and Miettinen, S. (2008) Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochemical and Biophysical Research Communication, 368, 329-335. doi:10.1016/j.bbrc.2008.01.081
[28] Nesti, C., Pardini, C., Barachini, S., D’Alessandro, D., Siciliano, G., Murri, L., Petrini, M. and Vaglini, F. (2011) Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Research, 1369, 94-102. doi:10.1016/j.brainres.2010.09.042
[29] Sundberg, M., Skottman, H., Suuronen, R. and Narkilahti, S. (2010) Production and isolation of NG2+ oligodendrocyte precursors from human embryonic stem cells in defined serum-free medium. Stem Cell Research, 5, 91-103. doi:10.1016/j.scr.2010.04.005
[30] Sakai, K., Yamamoto, A., Matsubara, K., Nakamura, S., Naruse, M., Yamagata, M., Sakamoto, K., Tauchi, R., Wakao, N., Imagama, S., Hibi, H., Kadomatsu, K., Ishiguro, N. and Ueda, M. (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. Journal of Clinical Investigation, 122, 80-90.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.