DOI QR코드

DOI QR Code

Synthesis and Densification Behavior of Al Doped (La0.8Ca0.2)(Cr0.9Co0.1)O3(LCCC) Ceramics for SOFC Interconnects

SOFC 연결재용 Al이 도핑된 (La0.8Ca0.2)(Cr0.9Co0.1)O3(LCCC)계 세라믹스의 합성 및 치밀화 특성

  • Lee, Ho-Young (School of Materials Science & Engineering, Kyungpook National University) ;
  • Kang, Bo-Kyung (School of Materials Science & Engineering, Kyungpook National University) ;
  • Lee, Ho-Chang (School of Materials Science & Engineering, Kyungpook National University) ;
  • Heo, Young-Woo (School of Materials Science & Engineering, Kyungpook National University) ;
  • Kim, Jeong-Joo (School of Materials Science & Engineering, Kyungpook National University) ;
  • Kim, Jae-Yuk (Ssangyong Materials Corp.) ;
  • Lee, Joon-Hyung (School of Materials Science & Engineering, Kyungpook National University)
  • Received : 2012.02.23
  • Accepted : 2012.04.16
  • Published : 2012.05.01

Abstract

In the $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC), which has been using as interconnector materials in SOFC, Al ions were substituted for Co because ionic radius of Al is similar to that of Co. Because of the almost identical ionic radius of Al and Co, the substitution was not thought to be affect the tolerance factor of LCCC, and the densification behavior, high temperature electrical conductivity and thermal expansion coefficient were examined as a function of Al concentration. In the cases of the x= 0 and x= 0.02 in $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1-x}Al_x)O_3$ (x= 0~0.1), the samples showed the relative densities above ${\geq}95%$ when those were sintered at ${\geq}1,350^{\circ}C$. In the case of the $x{\geq}0.06$ the sintered density deteriorated greatly at lower sintering temperatures. High temperature electrical conductivity of the samples decreased as the content of Al increased. Since the valence state of Al ion is unchangeable, while Cr or Co ions contribute to the electrical conduction by changing those valence states, Al substitution resulted in the decreased electrical conductivity. Al doping of LCCC was an effective way of decreasing the thermal expansion coefficient (TEC).

Keywords

References

  1. F. Boroomand, E. Wessel, H. Bausinger, and K. Hilpert, Solid State Ionics, 129, 251 (2000). https://doi.org/10.1016/S0167-2738(99)00330-6
  2. S. P. Jiang and S. H. Chan, J. Mater. Sci., 39, 4405 (2004). https://doi.org/10.1023/B:JMSC.0000034135.52164.6b
  3. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  4. J. Wang, C. B. Ponton, and P. M. Marquis, J. Mater. Sci., 15, 658 (1996).
  5. F. Boroomand, E. Wessel, H. Bausinger, and K. Hilpert, Solid State Ionics, 129, 251 (2000). https://doi.org/10.1016/S0167-2738(99)00330-6
  6. W. Z. Zhu and S. C. Deevi, Mater. Sci. Eng., A362. 228 (2003).
  7. N. Sakai, T. Kawada, H. Yokokawa, and M. Dokiya, J. Mater. Sci., 25, 4531 (1990). https://doi.org/10.1007/BF00581119
  8. A. Zuev, L. Singheiser, and K. Hilpert, Solid State Ionics, 147, 1 (2002). https://doi.org/10.1016/S0167-2738(02)00010-3
  9. D. B. Meadowcroft and J. M. Wimmer, Amer. Ceram. Soc. Bull., 58, 610 (1979).
  10. Y. Lee and C. L. Nassaralla, Metall. Mater. Trans., B28, 855 (1997).
  11. G. M. Christie, P. H. Middleton & B. C. H. Steele, European Ceramic Society, 47, 163 (1944).
  12. H. C. Lee, B. K. Kang, J. H. Lee, Y. W. Heo, J. Y. Kim, and J. J. Kim, J. Kor. Ceramic Soc., 49, 197 (2012). https://doi.org/10.4191/kcers.2012.49.2.197
  13. M. Mori, T. Yamamoto, T. Ichikawa, and Y. Tkeda, Solid State Ionics, 148, 93 (2002). https://doi.org/10.1016/S0167-2738(02)00109-1
  14. M. Mori, Y. Hiei, and N. M. Sammes, Solid State Ionics, 135, 743 (2000). https://doi.org/10.1016/S0167-2738(00)00372-6