DOI QR코드

DOI QR Code

Wire Electric Discharge Machining Process of Various Crystalline Silicon Wafers

다양한 실리콘 웨이퍼 제조를 위한 와이어 전기 방전가공

  • Moon, Hee-chan (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Choi, Sun-ho (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Park, Sung-hee (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Jang, Bo-yun (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kim, Jun-soo (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Han, Moon-hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 문희찬 (한국에너지기술연구원 분리변환소재연구실) ;
  • 최선호 (충남대학교 에너지과학기술대학원) ;
  • 박성희 (충남대학교 에너지과학기술대학원) ;
  • 장보윤 (한국에너지기술연구원 분리변환소재연구실) ;
  • 김준수 (한국에너지기술연구원 분리변환소재연구실) ;
  • 한문희 (충남대학교 에너지과학기술대학원)
  • Received : 2017.02.28
  • Accepted : 2017.03.21
  • Published : 2017.05.01

Abstract

Wire electrical discharge machining (WEDM) process was evaluated to slice Silicon (Si) for various applications. Specifically, various Si workpieces with various resistances, such as single and multi crystalline Si bricks and wafers were used. As conventional slicing processes, such as slurry-on or diamond-on wire slicing, are based on mechanical abrasions between Si and abrasive, there is a limitation to decrease the wafer thickness as well as kerf-loss. Especially, when the wafer thickness is less than $150{\mu}m$, wafer breakage increases dramatically during the slicing process. Single crystalline P-type Si bricks and wafers were successively sliced with considerable slicing speed regardless of its growth direction. Also, typical defects, such as microcracks, craters, microholes, and debris, were introduced when Si was sliced by electrical discharge. Also, it was found that defect type is also dependent on resistance of Si. Consequently, this study confirmed the feasibility of slicing single crystalline Si by WEDM.

Keywords

References

  1. T. M. Bruton, Sol. Energy Mater. Sol. Cells, 72, 3. (2002). [DOI: http://dx.doi.org/10.1016/S0927-0248(01)00145-3]
  2. M. R. Swanson, Prog. Photovolt, 14, 443 (2006). [DOI: https://doi.org/10.1002/pip.709]
  3. T. Saga, NPG Asia Mater., 2, 96 (2010). [DOI: http://dx.doi.org/10.1038/asiamat.2010.82]
  4. S. Bhagavat and L. Kao, Int. J. Mach. Tool. Manuf., 48, 95 (2008). [DIO: http://dx.doi.org/10.1016/j.ijmachtools.2007. 07.009].
  5. R. Steeman, J. Yang, O. Mjos, and S. Adolphus, Energy Procedia, 15, 20 (2012). [DIO: http://dx.doi.org/10.1016/j.egypro.2012.02.003]
  6. Y. F. Luo, C. G. Chen, and Z. F. Tong, J. Mater. Sci., 27, 5805 (1992). [DIO: http://dx.doi.org/10.1007/BF01119742]
  7. D. T. Pham, S. S. Dimov, S. Bigot, A. Ivanov, and K. Popov, J. Mater. Process. Technol., 149, 50 (2004). [DIO: http:// dx.doi.org/10.1016/j.jmatprotec.2004.02.008]
  8. W. Y. Peng and Y. S. Liao, J. Mater. Process. Technol., 140, 274 (2003). [DIO: http://dx.doi.org/10.1016/S0924-0136(03)00718-0]
  9. W. Wang, Z. D. Liu, Z. J. Tian, H. Y. Huang, and Z. X. Liu, J. Mater. Process. Technol., 209, 3149 (2007) [DIO: http://dx.doi.org/10.1016/j.jmatprotec.2008.07.029]
  10. B. Iryna, L. Oleksandr, V. Timur, B. Sergey, and M. K. Frank, Sol. Energy Mater. Sol. Cells, 159, 128 (2017) [DIO: http://dx.doi.org/10.1016/j.solmat.2016.08.038]
  11. C. Lihan, R. Xianpei, F. Baodian, Z. Jincheng, and C. Chao, Optik, 125, 3918 (2014). [DIO: http://dx.doi.org/10.1016/j.ijleo.2014.01.159]
  12. K. Praveen, P. Michael, W. Benjamin, E. Oliver, J. K. Lejo, D. M. Valentin, and K. Radovan, Sol. Energy Mater. Sol. Cells, 157, 200 (2016). [DIO: http://dx.doi.org/10.1016/j.solmat.2016.05.027]
  13. X. Yupeng, H. Peide, W. Shuai, L. Peng, L. Shishu, Z. Yuanbo, H. Shaoxu, Z. Huishi, Z. Chunhua, and M. Yanhong, Sol. Energy Mater. Sol. Cells, 51, 1697 (2015). [DIO: http://dx.doi.org/10.1016/j.rser.2015.07.035]
  14. V. D. Dzung, H. P. Phan, Q. Afzaal, and D. Toan, Roy. Soci. Chem., 6, 21302 (2016). [DIO: http://dx.doi.org/10.1039/C5RA28164D]
  15. Q. Li, J. Bai, Y. Fan, and Z. Zhang, Int. J. Adv. Manuf. Technol., 82, 1089 (2016). [DIO: http://dx.doi.org/10.1007/s00170-015-7412-8]
  16. L. Jing, W. Yao, Y. He, Z. Cheng, J. Yuan, and J. Luo, Int. J. Adv. Manuf. Technol., 82, 523 (2016). [DIO: http://dx.doi.org/10.1007/s00170-015-7370-1]
  17. F. Hu, S. Yun, J. Zha, K. Chen, S. Zou, F. Liang, and X. Su, Sol. Energy Mater. Sol. Cells, 159, 121 (2017). [DIO: http://dx.doi.org/10.1016/j.solmat.2016.08.032]
  18. M. Kunieda, B. Lauwers, K. P. Rajurkar, and B. M. Schumacher, Mechanic. Mater. Eng., 54, 599 (2005).