DOI QR코드

DOI QR Code

Comparison of Efficiency of Flash Memory Device Structure in Electro-Thermal Erasing Configuration

플래시메모리소자의 구조에 대한 열적 데이터 삭제 효율성 비교

  • Kim, You-Jeong (School of Electronics Engineering, Chungbuk National University) ;
  • Lee, Seung-Eun (School of Electronics Engineering, Chungbuk National University) ;
  • Lee, Khwang-Sun (School of Electronics Engineering, Chungbuk National University) ;
  • Park, Jun-Young (School of Electronics Engineering, Chungbuk National University)
  • Received : 2022.04.01
  • Accepted : 2022.04.22
  • Published : 2022.09.01

Abstract

The electro-thermal erasing (ETE) configuration utilizes Joule heating intentionally generated at word-line (WL). The elevated temperature by heat physically removes stored electrons permanently within a very short time. Though the ETE configuration is a promising next generation NAND flash memory candidate, a consideration of power efficiency and erasing speed with respect to device structure and its scaling has not yet been demonstrated. In this context, based on 3-dimensional (3-D) thermal simulations, this paper discusses the impact of device structure and scaling on ETE efficiency. The results are used to produce guidelines for ETEs that will have lower power consumption and faster speed.

Keywords

Acknowledgement

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2021R1F1A1049456). This research was also partially supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Re-search Center support program (IITP-2022-2020-0-01462) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation).

References

  1. D. Gupta and S. K. Vishvakarma, IEEE Trans. Electron Devices, 63, 668 (2016). [DOI: https://doi.org/10.1109/TED.2015.2510018]
  2. T. Kim, N. Franklin, C. Srinivasan, P. Kalavade, and A. Goda, IEEE Electron Device Letters, 32, 1185 (2011). [DOI: https://doi.org/10.1109/LED.2011.2159573]
  3. M. Park, K. Kim, J. H. Park, and J. H. Choi, IEEE Electron Device Letters, 30, 174 (2009). [DOI: https://doi.org/10.1109/LED.2008.2009555]
  4. H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H. Aochi, and A. Nitayama, Proc. IEEE Symposium on VLSI Technology (IEEE, Kyoto, Japan, 2007) pp. 14-15. [DOI: https://doi.org/10.1109/VLSIT.2007.4339708]
  5. J. Fu, N. Singh, K. D. Buddharaju, S.H.G. Teo, C. Shen, Y. Jiang, C. X. Zhu, M. B. Yu, G. Q. Lo, N. Balasubramanian, D. L. Kwong, E. Gnani, and G. Baccarani, IEEE Electron Device Letters, 29, 518 (2008). [DOI: https://doi.org/10.1109/LED.2008.920267]
  6. C. Zambelli, R. Micheloni, and P. Olivo, Proc. IEEE 11th International Memory Workshop (IMW) (IEEE, Monterey, CA, USA, 2019) pp. 1-4. [DOI: https://doi.org/10.1109/IMW.2019.8739741]
  7. J. Cho, D. C. Kang, J. Park, S. W. Nam, J. H. Song, B. K. Jung, J. Lyu, H. Lee, W. T. Kim, H. Jeon, S. Kim, I. M. Kim, J. I. Son K. Kang, S. W. Shim, J. Park, E. Lee, K. M. Kang, S. W. Park, J. Lee, S. H. Moom, P. Kwak, B. H. Jeong, C. A. Lee, K. Kim, J. Ko, T. H. Kwon, J. Lee, Y. Lee, C. Kim, M. W. Lee, J. Yun, H. Lee, Y. Choi, S. Hong, J. Park, Y. Shin, H. Kim, H. Kim, C. Yoon, D. S. Byeon, S. Lee, J. Y. Lee, J. Song, Proc. IEEE International Solid- State Circuits Conference (ISSCC) (IEEE, San Francisco, CA, USA, 2021) pp. 426-428. [DOI: https://doi.org/10.1109/ISSCC42613.2021.9366054]
  8. H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. C. Chen, J. Ku, K. Y. Hsieh, R. Liu, and C. Y. Lu, Proc. IEEE International Electron Devices Meeting, 2005. IEDM Tech. Dig. Dec. (IEEE, Washington, DC, USA, 2005) pp. 547-550. [DOI: https://doi.org/10.1109/IEDM.2005.1609404]
  9. C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K Kim, Proc. IEEE International Electron Devices Meeting 2003 (IEEE, Washington, DC, USA, 2003) pp. 26.5.1-26.5.4. [DOI: https://doi.org/10.1109/IEDM.2003.1269356]
  10. J. Y. Park, D. I. Moon, G. B. Lee, and Y. K. Choi, IEEE Trans. Electron Devices, 67, 777 (2020). [DOI: https://doi.org/10.1109/TED.2020.2964846]
  11. J. Y. Park, D. I. Moon, M. L. Seol, C. K. Kim, C. H. Jeon, H. Bae, T. Bang, and Y. K. Choi, IEEE Trans. Electron Devices, 63, 910 (2016). [DOI: https://doi.org/10.1109/TED.2015.2513744]
  12. Y. J. Kim and J. Y. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 246 (2022). [DOI: https://doi.org/10.4313/JKEM.2022.35.3.6]
  13. D. H. Wang and J. Y. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 50 (2022). [DOI: https://doi.org/10.4313/JKEM.2022.35.1.8]
  14. T. H. Hsu, H. T. Lue, P. Y. Du, W. C. Chen, T. H. Yeh, R. Lo, H. S. Chang, K. C. Wang, and C. Y. Lu, Proc. IEEE 11th International Memory Workshop (IMW) (IEEE, Monterey, CA, USA, 2019) pp. 1-4. [DOI: https://doi.org/10.1109/IMW.2019.8739692]
  15. D. C. Ahn, M. L. Seol, J. Hur, D. I. Moon, B. H. Lee, J. W. Han, J. Y. Park, S. B. Jeon, and Y. K. Choi, IEEE Electron Device Letters, 37, 190 (2016). [DOI: https://doi.org/10.1109/LED.2015.2512280]