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Abstract
In an attempt to speed up sample processing and minimize taxonomic identification errors, the use of higher taxa is a common 
strategy in biomonitoring programs. Because phytoplankton and zooplankton respond rapidly to aquatic pollution and are often 
used as indicators of eutrophication, in this study we tested the use of phytoplankton and zooplankton genera, families, orders 
and classes as surrogates for species level data. Data gathered in nine urban artificial lakes were used to test if higher-taxa 
were able to recover patterns of ordination generated by the phytoplankton and zooplankton species data. For phytoplankton 
and zooplankton, genera datasets produced ordination diagrams similar to those produced by species level. Thus, the use of 
higher taxa appears to be advisable for phytoplankton and zooplankton based assessments of eutrophication in urban lakes.
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Introduction

Only limited resources are available for biodiversity 
assessments (Curry et al. 2012). Therefore, many studies 
investigate ways to minimize the costs of biomonitoring 
programs (Carneiro et al. 2010; Heino & Soininen 2007; 
Padial et al. 2012; Wilson & Bayley 2012). In addition to the 
paucity of financial resources, comprehensive and inclusive 
biodiversity surveys are limited by the lack of taxonomists 
(Wheeler et al. 2004) and by the amount of time needed 
to process samples (Kallimanis et al. 2012). For instance, 
in environmental-impact assessments or biomonitoring 
programs, at least in Brazil, it is common to wait a long 
period to obtain a matrix of species abundance by sites. 
These problems make it worthwhile to examine the use of 
surrogates or alternatives that are not based on species-level 
identifications (Carneiro et al. 2010).

The use of the higher-taxa approach can make bioassessments 
more cost-effective and reduce taxonomist dependence 
(Marshall et al. 2006). However, the reliability of this approach 
depends on finding a strong relationship between the 
patterns depicted by the species and higher-taxa data (Khan 
2006; Heino & Soininen 2007). Previous studies with algae 
(Carneiro et al. 2010), chironomids (Greffard et al. 2011), 
ants (Andersen 1995), spiders (Cardoso et al. 2004), vascular 
plants (Villaseñor et al. 2005) and birds (Kallimanis et al. 
2012) have not found large differences between the results 
provided by data with different taxonomic resolutions (in 
most cases, genera).

Owing to the ever-growing human impacts on freshwater 
ecosystems, cost-effective ways of monitoring these systems 
are becoming increasingly important. Man-made urban 
lakes provide different ecological (e.g., refuges, carbon 
sequestration) and economic (e.g., recreation) services 
(Downing et al. 2008). Thus, the development of strategies 
to monitor these systems efficiently is as important as it is in 
natural lakes. Here, using data gathered in nine urban lakes 
with different trophic levels, we tested whether plankton 
datasets with lower levels of taxonomic resolution (genera, 
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100 individuals per subsample were counted (see Lodi et al. 
2011) . Similarly to phytoplankton, different matrices, with 
decreasing taxonomic resolution, were created.

Data analysis

For each group (phytoplankton and zooplankton), five 
data matrices were created, using different taxonomic 
resolutions (species, genus, family, order and class). All 
data were log(X + 1) transformed prior to analyses. We 
used the Bray-Curtis coefficient to calculate dissimilarities 
between the lakes for each matrix. The correlation between 
the Bray-Curtis distance matrix generated with the species 
data and the distance matrices generated with the lower 
taxonomic-resolution datasets was tested by the Mantel 
procedure. High r-values indicate that the Bray-Curtis 
distance matrices generated by the datasets with low 
taxonomic resolutions are highly correlated with the distance 
patterns generated by the species datasets.

Although the Mantel test is the most common method used 
to identify the association between two biological distance 
matrices, we also used a Procrustean analysis for this 
purpose (Jackson 1995). The Procrustean analysis is more 
powerful than the Mantel test to detect matrix association 
(Peres-Neto & Jackson 2001). Prior to the Procrustean 
analysis, we performed a Principal Coordinate Analysis 
(PCoA) to ordinate the lakes (Legendre & Legendre 1998). In 
the Procrustean analysis, a pair of data matrices (the scores 
from two ordinations generated, for example, by species 
and genera) is compared by using a rotational-fit algorithm 
that minimizes the sum of squared residuals between the 
two matrices (resulting in a badness-of-fit statistic called 
m2-value). The m2 statistic reflects the lack of overlap 
between two ordinations. As we used a transformation 
of the m2 statistic value ( ) 

= 
 

2r 1– m , values of 1 indicate 
total overlap between the matrices (e.g., the results of two 
ordinations are the same) and values closer to 0 indicate a 
greater difference between ordination patterns. P-values were 
evaluated after 1,000 random permutations. A schematic 
representation of the analyses used in our study is given 
in Figure 1.

Results

We identified 127 species of phytoplankton and 53 species 
of zooplankton. Ratios between phytoplankton species 
richness and the number of other taxa considering lower 
taxonomic resolutions were: 1.98 (genus), 4.23 (family), 
7.93 (order) and 12.7 (class). Ratios between zooplankton 
species richness and the number of taxa considering lower 
taxonomic resolutions were 2.4 (genus), 2.8 (family), 8.8 
(order) and 13.2 (class).

For zooplankton, the ordination patterns generated from the 
genera, families, orders and classes datasets were significantly 
correlated with the ordination pattern generated from the 
species dataset. Similarly, the Bray-Curtis distance matrices 

families, orders or classes) are able to predict beta diversity 
patterns depicted by datasets with higher taxonomic 
resolution (species).

Material and Methods

Study area

We sampled nine artificial lakes in the city of Goiânia (16° 
40’ S and 49° 15’ W; Goiás, Brazil), which were created 
for landscaping and recreational purposes. The lakes are 
located in six municipal parks: Buriti Forest, Chico Mendes 
Botanical Garden and Flamboyant, each with two lakes; 
and Areião, Sullivan Silvestre and Liberdade, each with one 
lake. The lake area ranged from 1.76 to 29.2 km2 and the 
maximum depth from 0.95 to 2.75 m (see Lodi et al. 2011). 
The lakes varied widely in trophic status. For instance, they 
were classified from oligotrophic to eutrophic according 
to chlorophyll-a concentration, and from mesotrophic to 
eutrophic according to total phosphorus (see Lodi et al. 
2011; Table 1).

Data sampling

Subsurface phytoplankton samples (ca. 40 cm depth) were 
stored in 100-ml dark bottles and fixed with Lugol-acetic 
solution. Phytoplankton density was estimated according 
to the method of Utermöhl (1958), with a Zeiss inverted 
microscope, at a magnification of 400×. Members of the 
phytoplankton community were classified to species level, 
and subsequently these species were aggregated in genera, 
families, orders and class levels.

For zooplankton sampling, we used a water pump to filter 
ca. 500 L of water through a 64-µm plankton net. The 
filtered material was fixed in a 4% formaldehyde solution, 
buffered with calcium carbonate. Samples were examined 
microscopically in adapted Sedgwick-Rafter chambers for 
identification (to the lowest possible taxonomic level) and 
counting of microcrustaceans, rotifers and testate amoebae. 
Counting was undertaken by the analysis of three subsamples 
obtained with a Hensen-Stempel pipette (3 mL). At least 

Table 1. Limnological data of nine urban lakes in Goiânia City.

Variables Unity Mean Min Max
Area km2 13.2 1.76 29.2
Chlorophyll-a µg/L 5.67 0.00 11.52
Condutivity μS/cm 105.13 30.60 183.30
Depth m 1.57 0.95 2.75
pH 7.68 6.60 9.81
Temperature °C 29.10 26.90 30.70
TN µg/L 0.53 0.14 1.12
TP µg/L 31.44 12.96 85.73
Transparency m 0.66 0.35 1.05
Turbidity NTU 7.79 4.64 12.16
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Figure 1. Schematic representation of the analytical procedures used in this study (see details in methods).

calculated from the genera and families datasets were 
significantly correlated with the Bray-Curtis distance matrix 
generated with the species dataset. For phytoplankton, we 
found significant relationships only between ordination 
patterns generated from the species and genera datasets. 
In addition, for phytoplankton, the Bray-Curtis distance 
matrix generated with the species dataset and those distance 
matrices generated with genera, families, orders and classes 
datasets were significantly correlated (Table 2).

Discussion

Considering both analytical approaches (i.e., Procrustes 
and Mantel), our results suggest that the patterns of beta 
diversity depicted by plankton species-level data would 
be satisfactorily recovered by using genera datasets. 
Although other taxonomic levels also showed significant 
congruence values with the phytoplankton and zooplankton 
species-level patterns, the values of the statistics were low 
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and families datasets exhibited similar relationships with 
environmental predictors (Heino 2008).

In conclusion, our results support the use of genera to depict 
patterns of variation in community composition across 
eutrophication gradients, for instance, using unconstrained 
ordination analyses. Although some information would 
be lost, the use of genera might imply an increase in 
long-term data comparability and a reduction in the costs 
of biomonitoring programs. Also, the resources saved by 
adopting a higher taxa approach could be used to guarantee 
the continuity of these programs or their spatial extent.
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