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Introduction

The recent recognition of intravascular amyloid 
formation with deposition of insoluble microthrombi 
throughout the circulatory system in primary COVID-19 
infection or following administration of mRNA vaccines is 
a pivotal discovery that alters conventional notions about 
the nature of the underlying pathologic process at play in 
SARS-CoV-2 infection. 

Since early in the pandemic researchers have ascribed the 
cascade of pathology to intravascular coagulation induced 
by the so-called cytokine storm and related immune 
system dysfunction. Alongside the web of deterioration, 
studies chronicle a range of autoantibodies, a dozen or 
more in some individuals, directed against proteins like 
cytokines, chemokines, cell surface proteins as well as 
RNA and DNA. Antibodies to platelet factor 4, for example, 
are believed to play a key role in the propagation of clot 
within the vascular system. While such reports must be 
regarded as factual, they are merely descriptions that 
do not, in and of themselves, explain the progressively 
widening arc of intravascular pathology. The presence 
of amyloid, however, compels one to fundamentally 
reconsider the nature of the problem. 

Amyloid deposition can occur in any organ of the body 
and is associated with an increasing number of pathologic 
states including diseases like Alzheimer's, Parkinson's as 
well as type II diabetes. Amyloid is composed of single-
stranded protein fibrils held together by hydrogen bonds 
to form the characteristic birefringent β-sheet structure. 
At least 30-40 proteins have been identified as precursors 
to the amyloid state but in any given patient or disease 
condition the amyloid usually derives from but a single 
type. Protein misfolding is widely regarded to be the 
primary cause of amyloid aggregation and deposition. 

Protein misfolding is now regarded as a leading cause 
of chronic disease and has been associated with the 
neurodegenerative diseases, diabetes, cystic fibrosis, 
sickle cell anemia, as well as various cancers. All functional 
activities in the body – movement, nerve transmission, 
molecular transport, secretion, cellular division, enzyme 
activities and more – are effected by conformational 
changes in folded proteins. Even the appearance of 
autoantibodies in the blood during COVID-19 infections 
can be explained on the basis of protein misfolding. 

But the folding of proteins into their three-dimensional 
functional structure is an energy-dependent process and 
disruption of intracellular energy availability necessarily 
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impacts folding. Conversely, accumulation of amyloid 
as well as the characteristic intracellular aggregates in 
disease states such as Alzheimer's or Parkinson's reflect 
impairment of lysosomal function and intracellular 
digestive pathways, i.e., autophagy, which are also 
dependent upon sustained energy flow. 

In recent decades there has been increasing focus on a rare 
class of disorder known as the prion diseases, progressive 
and invariably fatal neurodegenerative conditions. 
The pathologic chain of events in the central nervous 
system (CNS) are a result of protein misfolding caused by 
propagation a pathogenic misfolded form of a naturally 
occurring protein inside the body. 

While little is known of how prion particles propagate 
through nerve cells or induce misfolding of native 
proteins, the prion concept itself is extremely useful and 
would seem to account for how a wide range of protein 
misfolding conditions ultimately develop and progress. 
Prion-like mechanisms have increasingly been invoked 
to explain the origins of Alzheimer's and Parkinson's 
diseases as well as other conditions including amyloid 
deposition. Not surprisingly, some have suggested that 
the SARS-CoV-2 spike protein produces its pathological 
sequelae through prion-like mechanisms. 

In this article we focus on the disturbed energy milieu 
associated with COVID-19 infection and show how 
all manifestations of the syndrome, from the earliest 
prodromal constitutional symptoms such as fever, malaise 
and lethargy, to more advanced morbid alterations such 
as intravascular thrombosis and organ dysfunction, can 
be explained on the basis of a mounting energy debt. 
Moreover, functional alterations such as autoantibodies, 
clotting disturbances, and organ failure ultimately 
trace back to protein misfolding and impairment of 
conformational change in affected proteins. 

Cardiovascular Energy Dynamics

One of the most far-reaching and impactful conceptual 
turn of events in 20th century medicine occurred in the 
1980s without most medical scientists or physicians 
even recognizing that the ground beneath their feet had 
begun to crumble. A decisive reshaping of ideas was 
underway that, ultimately, would render the molecular and 
cellular framework obsolete. This profound intellectual 
transformation constitutes what science historian Thomas 
Kuhn, in his insightful work The Structure of Scientific 

Revolutions (1962), described as a paradigm shift [1]. 

For much of the 20th century scientists conceived the 
heart to function in the manner of a mechanical pump, 
with blood propelled forward through the arteries during 
the systolic (contraction) phase of the cardiac cycle. The 
diastolic phase of the cycle, conversely, was believed 
to represent a period of passive relaxation. This notion 
was originally advanced by William Harvey in 1628 in 
his seminal work On the Motions of the Heart in which he 
describes his discovery of the circulation of the blood 
[2]. Harvey’s model was uncritically adopted by English 
physiologist Ernest Starling in the early 20th century and 
thereafter became accepted as fact. The problem with 
Starling’s so-called ‘law of the heart’ is that it couldn’t 
explain how blood returned from the veins to the right 
side of the heart. 

In the early 1980s physiologists discovered negative 
intraventricular pressures, i.e., a suction force, in the 
early diastolic phase indicating that diastole was not a 
period of passive relaxation but, instead, a period in which 
blood was actively drawn forward through the veins into 
the ventricular chamber [3-6]. In order for the ventricle 
to pump blood through the arteries it first has to contain 
blood. A handful of studies later found the presence of 
spiral flow currents in arteries and veins which can only 
be explained on the basis of a suctional force [7-20]. 

By the late 1980s numerous studies had established the 
primacy of diastole in the cardiac cycle and, intriguingly, 
found that impaired outward movement of the ventricular 
and arterial walls, known as ‘diastolic dysfunction,’ 
was the defining feature of a wide range of chronic 
conditions: hypertension, diabetes, obesity, depression, 
cancers autoimmune diseases, as well as organ failure 
syndromes like chronic kidney disease and chronic heart 
failure among others [21, 22]. To date scientists have no 
satisfying explanation for this clustering. The outward 
motion of the heart and arterial walls, on the other hand, 
can only be explained on the basis of a mechanical force. 

During its cycles of contraction and dilation the heart 
generates a large magnetic field which is responsible 
for diastolic expansion. In a series of earlier articles, we 
describe mechanisms at play in this phenomenon [23-
25]. For over a century it has been recognized that the 
heart and blood contain large iron stores and, while iron’s 
role in various chemical reactions has been exhaustively 
detailed, there has been little discussion as to whether 
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iron might play a broader role. 

Equally the question arises as to the function served 
by nerves that course over the surface of the heart. 
Cardiologists claim these nerves cause the heart to 
contract but is this correct? As early as the 2nd century AD 
Roman physician Galen observed in animal experiments 
that when the heart was cut out and placed in fluid it 
continued to dilate and contract, what is called cardiac 
automaticity. By the same token, transplanted hearts 
continue to function in recipients even though nerve 
conduction has been interrupted. 

What happens during systolic contraction of the ventricle 
is identical to what happens during the induction of 
an external magnetic field by electrification of ferrous 
objects. As the ventricle contracts and iron stores are 
brought into closer apposition iron nuclei in the heart 
muscle and blood align and precess synchronously on the 
basis of field interactions. The flow of electrical currents 
through nerves saturates the field and induces formation 
of an external three-dimensional magnetic field within 
the ventricular chamber causing its expansion. A similar 
mechanism is at play with magnetic resonance imaging 
(MRI) in which images are generated by saturation of a 
magnetic field with radiofrequency pulses. 

It cannot be said that recognition of this organized energy 
field generated by the motions of the heart constitutes 
a new discovery. Such dynamics were first described by 
Roman physician Galen around 200 AD and accepted as 
fact by physicians for over 1500 years until chemically 
oriented scientists in the 17th and 18th centuries discarded 
the concept without ever disproving it. Galen’s system 
of humoral medicine was premised on the existence of 
a blood-borne energy field that gave rise to all bodily 
functions [26]. Medicine, it seems, has come full circle 
back to its roots. 

While medical scientists acknowledge the centrality of 
active dilation in cardiovascular dynamics, they advanced 
the concept of ‘endothelial-dependent dilation’ to 
explain such phenomena. They claim that intra-arterial 
pressure and blood flow induce synthesis and release of 
the free radical substance nitric oxide which is responsible 
for vascular dilation. While this may be factually correct it 
sidesteps the phenomenon of active energy generation, the 
most significant causal event in the economy of living bodies. 
To ascribe energy and mechanical forces to molecular causes 
is like trying to ascribe a thunderstorm to cloud formation: it 

is a necessary but not sufficient condition. 

COVID-19 Energy Deficiency

One of the most unexpected revelations related to 
COVID-19 infection has been the degree to which the 
cardiovascular system is involved in its pathogenesis. 
Studies indicate that SARS-CoV-2 infects vascular 
endothelial cells early in the course of the illness leading to 
inflammation, i.e., endothelitis, which, in advanced cases, 
extends diffusely throughout the circulatory system. The 
inflammatory state, in turn, induces further diastolic 
dysfunction and impairment of energy generation. 
Some researchers have thus questioned whether the 
cardiovascular system plays the primary role in mediating 
the COVID-19 syndrome [27-34]. 

Endothelial cells form the boundary between blood and 
the vascular wall and orchestrate energy-dependent 
processes like smooth muscle contraction and elongation, 
vessel permeability, coagulation and fibrinolysis. 
Diastolic and endothelial dysfunction is widely believed 
to not only impair organ perfusion but augment the pro-
thrombotic state resulting in formation of large and small 
clots throughout arterial and venous channels. 

The ubiquitous distribution of the vascular system 
explains the diverse range of symptoms and functional 
disturbances from person to person with apparent random 
involvement of organs like the lungs, heart, kidneys and 
brain [35-46]. As indicated above, diastolic dysfunction 
is the common link among such diverse states as old 
age, obesity, hypertension, diabetes, chronic heart and 
kidney disease, all of which increase the risk for severe 
COVID-19 and mortality. This is to say that pre-existing 
diastolic dysfunction is the leading prognosticator for 
poor outcomes. 

Diffuse endothelial inflammation in large and small 
vessels points to a more than coincidental relationship 
between inflammation and impaired energy-generation. 
Inflammation is an adaptive cellular response to deficient 
energy flow across the cell membrane. Diminished 
intracellular energy induces mitochondrial dysfunction 
with a shift from aerobic to less efficient metabolic 
pathways resulting in generation of reactive oxygen 
species, accumulation of acidic by-products and altered 
voltage potentials across intracellular membranes [47-
53]. 
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Reactive oxygen species cause structural damage by 
inducing denaturation of proteins, i.e., protein misfolding, 
as well as formation of the stress-related structure 
known as the NLRP3 inflammasome which initiates 
the cytokine storm that accompanies inflammation in 
COVID-19. Numerous studies link the cytokine storm to 
both COVID-19 severity and higher mortality rates [54-
67]. Blood analysis of COVID-19-infected patients has 
shown increased TNF-α and pro-inflammatory cytokines 
including IL-1β, IL-2, IL-6, and IL-10 which amplify 
already existing endothelial dysfunction. There is not one 
but two storms, the cytokine storm and a primary, equally 
impactful reactive oxygen species storm, which inflicts 
widespread damage upon intracellular proteins [68-76]. 

For decades clinicians have speculated on a possible 
relationship between viral infection and subsequent 
development of autoimmune disease. This association has 
come to the forefront in the SARS-CoV-2 pandemic with 
numerous reports of viral-induced effects mimicking 
various autoimmune syndromes [77-86]. In both cases 
pathologic events are associated with altered protein 
dynamics. The common link is seen in phenomena 
like autoantibodies (autoAbs), NLRP3 inflammasome 
formation and neutrophil extracellular traps (NETS). 

COVID-19 patients have marked increases in autoAb 
levels compared with non-infected individuals. As with 
autoimmune disease, an array of autoAbs have been found 
directed against endogenous cytokines, chemokines, 
cell surface proteins as well as RNA and DNA. AutoAbs, 
depending on the type, may be found in 10%-50% of 
COVID-19 patients. Since the mid-20th century scientists 
have claimed that autoAbs were a result of spontaneous 
genetic mutations that gave rise to ‘forbidden clones’ of 
autoAb-producing lymphocytes but evidence surfacing 
during the pandemic challenges this notion. Studies 
find that autoAb levels track directly with rising levels of 
antibodies against SARS-CoV-2 and with disease severity 
suggesting they form spontaneously during the course 
of the illness. It is more likely that autoAbs result from 
protein misfolding related to energy deficiency which, 
in turn, leads to loss of antigenic specificity and cross-
reactions with native structures [87-97]. 

The NLRP3 inflammasome is a complex protein aggregate 
that forms in the cytoplasm secondary to impaired energy 
generation by mitochondria. In response to oxidative 
stress the inflammasome releases pro-inflammatory 
cytokines into the extracellular fluid (ECF) space initiating 

the cytokine storm and, as a coup de grâce, activates 
cell death (apoptosis) pathways. The NLRP3 complex 
is found in a host of inflammatory states including 
autoimmune disorders, Alzheimer’s disease, diabetes and 
atherosclerosis [98-105]. 

In further support of the energy hypothesis, studies 
indicate that inflammasome formation is directly 
related to diastolic and endothelial dysfunction [106-
110]. Inflammasomes likely represent the energy-
depleted state of a normally folded protein, much like 
the ventricle at the end of systolic contraction. In the 
case of the inflammasome, however, energy repletion 
(repolarization) cannot occur and, instead, the proteins 
undergo spontaneous aggregation with activation of cell 
death pathways [111]. 

Neutrophils (PMNs) are phagocytic cells capable of 
assimilating and digesting both endogenous and foreign 
materials. Under conditions of energy depletion, i.e., 
oxidative stress, the digestive capacity of phagocytic 
cells is impaired and, as a result, denatured biomolecules 
accumulate both in cells and in the ECF space. NET release 
typically occurs during PMN cell death. NETs are large 
web-like structures containing materials like DNA and 
a variety of proteins that have spilled into the ECF space 
following cell injury and death. NETs likely represent 
energy-depleted proteins that undergo spontaneous 
aggregation. NETs, found in a variety of autoimmune 
and inflammatory disorders, are abundant in COVID-19 
patients [112-129]. 

Some scientists claim the purpose of NETs is to trap 
extracellular materials like bacteria and viruses but this 
doesn’t make sense. NETs, especially DNA, are highly pro-
inflammatory and, instead, likely induce conformational 
change and aggregation of biomolecules in the ECF 
space. In addition to triggering autoAb formation, NETS 
serve as scaffolding for thrombus formation and their 
presence increases the risk for lung injury, multi-organ 
damage, and mortality in COVID-19 disease. Formation 
and accumulation of NETs appears to be primarily due to 
failure of clearance mechanisms by functionally impaired 
phagocytic cells. 

In the early 1950s cell biologist Christian de Duve 
described an intracellular membrane-bound organelle he 
called the lysosome. Later, under the electron microscope, 
he observed delivery of cellular materials into lysosomes 
and coined the term autophagy, meaning ‘self-eating,’ to 
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designate intracellular digestion [130, 131]. In autophagy 
acid is concentrated in lysosomes and catabolic enzymes 
activated not unlike that which occurs in the stomach. 
Now widely recognized as a function critical to cellular 
homeostasis, autophagy culls aging and damaged cell 
structures as well as generating energy through auxiliary 
pathways during periods of nutrient deficiency [132]. Such 
orchestrated body-wide autophagic activities constitute 
what we call the internal digestive system. 

As concentration of acid within lysosomal membranes 
is energy-dependent, impaired mitochondrial function 
inevitably leads to lysosomal dysfunction and diminished 
breakdown of defunct cellular structures thus leading to 
accumulation of undigested material inside and outside 
of cells. While autophagy plays a key role in all cells, it 
forms the raison d’être for phagocytic cells of the immune 
system and thus during periods of energy depletion, such 
as in advanced COVID-19 infection, deterioration of 
phagocytic functions is common [133-138]. 

Evidence we have presented thus points to widespread 
disruptions in energy generation originating in the 
cardiovascular system as a hallmark of COVID-19 
infection which, secondarily, impairs mitochondrial 
function and intracellular energy production. Intracellular 
energy deficits, in  turn, induce disturbances in protein  
metabolism and function, namely, impaired 
conformational change, i.e., depolarization and 
repolarization- of normally folded proteins and/or 
misfolding in newly-synthesized proteins. A related aspect 
of energy depletion and inflammation, accumulation 
of intra- and extracellular deposits due to impaired 
autophagy, can also be ascribed to similar origins. 

Proteomics

The discovery of intravascular amyloid in COVID-19 
patients ties into one of the most protracted and 
circuitous scientific investigations in search of causality, 
one that stretches from the early years of the 20th century 
to the present, and still has yet to fully resolve. The 
Alzheimer’s saga vividly capsulizes the shortcomings of 
the experimental method. 

In 1907 Alöis Alzheimer reported the case of a 51-year-old 
demented woman at a local asylum in Frankfurt, Germany, 
constituting the first known description of the disease. 
Symptoms included loss of memory for recent events 
along with a cluster of verbal and visual impairments. 

After the woman died Alzheimer examined her brain 
microscopically and observed the typical amyloid deposits 
and neurofibrillary tangles [139]. Thereafter aggregates 
became the subject of on-again, off-again investigations 
but, from the onset, scientists were unable to agree 
on whether they were cause or effect. Much of the 20th 
century was spent chasing leads that went nowhere. And 
yet the solution to the dilemma had been articulated in the 
early decades of the 20th century but roundly ignored. 

In 1984 pathologist George Glenner isolated amyloid-β 
(Aβ) and showed that it was derived from a cell membrane 
protein later called amyloid precursor protein (APP) 
[140]. With little additional evidence Glenner seized on 
the notion that Aβ was the cause of Alzheimer’s disease 
(AD). In 1991 a mutation in the gene that codes for APP 
was discovered in individuals with the familial form of 
AD leading geneticist John Hardy to advance the amyloid 
hypothesis imputing that Aβ deposits represent the 
primary disease pathology [141]. He argued that Aβ fibrils 
gradually coalesce into larger strands which morph into 
the characteristic sheet-like plaques. Such plaques were 
claimed to trigger pathologic sequelae like synaptic 
dysfunction, neurofibrillary tangles, inflammation and 
cell death, all of which invariably progressed to dementia 
[142]. 

From the beginning the amyloid hypothesis was on thin 
ice. Not only did the presence of Aβ plaques not correlate 
well with cognitive impairment in AD but geneticists 
were left trying to explain the presence of plaques in the 
brains of cognitively normal elderly adults who had died 
from other causes. Equally problematic was how such 
aggregates produced cellular injury. Originally it was 
assumed that plaques were toxic but given that they are 
insoluble and non-reactive the basis for such toxicity was 
never established [143].

Most cases of AD are not familial but, instead, spontaneous 
and not associated with mutations involving APP [144-
146]. Dozens of genetic markers have been associated 
with AD (as well as the other neurodegenerative diseases) 
but almost none involve precursor proteins to the 
characteristic deposits. Instead, gene analysis points 
squarely to impaired autophagy and associated protein 
degradation pathways [147-153]. Geneticists assumed 
that since genes code for protein synthesis all protein 
disorders must have a genetic origin. But protein folding 
and misfolding is a cytoplasmic function dependent on 
energy availability.
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Proteins possess a complex three-dimensional 
arrangement. Primary structure, which is genetically 
coded, refers to the sequence of amino acids that 
forms the backbone of the chain. Secondary structure 
comprises a regularly repeating pattern such as the 
α-helix characteristic of DNA or the β-sheet form typical 
of amyloid. Such secondary attributes are generated by 
intermolecular forces like hydrogen bonds and dipole-
dipole interactions. The tertiary structure represents 
the overall 3D conformation of the protein which also is 
stabilized by non-covalent intermolecular forces [154-
157].

Tertiary structure, known as the native fold, is responsible 
for the functional properties of a protein. While 
effecting their functions proteins continually undergo 
spatial rearrangement, alternating between related 
conformations as seen, for example, in contraction 
and dilation of heart muscle. Such changes represent 
transitions between discrete energy states. In the cardiac 
cycle, for example, systole represents a period of energy 
discharge (depolarization) while diastole represents the 
phase of energy repletion (repolarization).

During or after synthesis most proteins are converted 
into compactly folded 3D structures many of which 
are astonishingly complex. Living organisms possess 
elaborate mechanisms by which to ensure proper folding. 

Under certain conditions, as in the congelation of egg 
white by heat, for example, even normally folded proteins 
may revert to a misfolded state. By whatever mechanism 
misfolding occurs, such conformational alterations 
diminish function. Because of the import of maintaining 
native conformation, intracellular processes exist to 
either refold misfolded proteins or to break them into 
smaller parts for either reassembly or elimination.

The majority of proteins fold in the cytoplasm or 
endoplasmic reticulum. Both compartments provide 
not only a proper folding milieu but quality control 
mechanisms by which to maintain natively folded 
proteins. A specialized class of macromolecules. i.e., 
chaperones, discriminate between native and non-
native conformations. If misfolded proteins cannot be 
properly refolded, they are earmarked for degradation, 
i.e., intracellular digestion, through a second set of 
processes known as the ubiquitin-proteasome system. 
During periods of energy depletion and oxidative stress 
coordination between various internal processes is 
impaired and misfolding more likely to occur. Once a 
critical concentration of misfolded protein is reached, they 
become prone to the kind of aggregate and inclusion body 
formation typical of the neurodegenerative disorders and 
now recognized to play a role in COVID-19 infection [158-
162] (Figure 1).

Figure 1. Proper 3D conformation of a protein is dependent on available energy in the cellular milieu. Protein mis-
folding is more likely to occur during periods of impaired mitochondrial function and oxidative stress.
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Based on unknown factors amyloid aggregates assume a 
common secondary structure, the β-sheet pattern, which 
likely represents a common energetically stable form 
accessible by a wide range of polypeptides independent 
of amino acid sequence. This provision is critical since 
most of the disease related proteins do not share obvious 
sequence homologies in their native state [163].

Whatever mechanism drives the formation of the β-sheet 
architecture it is clear that aggregates develop from a 
series of intermediates beginning with smaller chains, 

i.e., oligomers, that gradually self-assemble into larger 
units. A key feature in the aggregation process is the 
transition from water-soluble oligomers to insoluble 
deposits. In the late 1980s pathologists described a 
peripheral halo surrounding Aβ aggregates [164]. More 
recently such halos have been shown to contain soluble Aβ 
oligomers suggesting that aggregation bears resemblance 
to a crystallization process and is driven primarily by 
dynamics in the surrounding fluid medium [165] (Figure 
2). Such recognition opens the door to an entirely new 
concept of energy flow in living bodies.

Figure 2. Proper 3D conformation is dependent on the expansionary magnetic component of the energy field which 
enables component domains and strands to repel one another. Oxidative stress, conversely, with its generation of 
acid by-products, impairs magnetic field strength and augments the contractionary force.  This, in turn, leads to 
protein misfolding and aggregation of susceptible pathologic proteins and oligomers.
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Water Dynamics
 
As impactful as the revolution in proteomics has been 
it could not have occurred without an equally profound 
transformation in the conception of water. The 
recognition of dozens of anomalous properties of water 
not explainable on the basis of its chemical properties 
now challenges conventional notions as to its true nature. 
Emerging evidence substantiates ancient notions of 
water as a distinct element. Perhaps the most significant 
contributions have come from biologist Gerald Pollack 
whose work, The Fourth Phase of Water, has triggered yet 
another decisive paradigm shift [166]. 

Most significant among the so-called anomalous 
behaviors of water is its ability to undergo phase 
transitions between three distinct states—ice, liquid, 
and vapor—each reflective of its energy content. In 
experiments Pollack observed that water often underwent 
spontaneous reorganization and formed a clear zone 
of variable thickness along the surface of many objects 
with which it came into contact. Such behaviors had 
been described by other scientists as early as 1949 but 
never investigated further. Based on such properties 
Pollack called the clear layer 'exclusion zone' (EZ) water 
based upon its tendency to repel solute particles into the 
adjacent fluid which, in turn, he called 'bulk water'.

Pollack's team found that the EZ tended to form along 
hydrophilic surfaces and required a molecular template. 
This explains the peripheral halo researchers observed 
surrounding Aβ oligomers. Using microelectrodes 
Pollack et al found significant differences between EZ 
and bulk water: the EZ was negatively-charged, more 
alkaline, dense and viscous; bulk water was positively-
charged, acidic, with pH often as low as 1-2 suggesting 
accumulation of protons. As the two phases of water 
formed, a charge separation took place. The presence of 
current flow suggested to Pollack that water functions 
like a battery to generate and conduct energy. 

His team deduced that as the EZ acquired spatial order 
(and physical force) it pushed solute particles into the 
adjacent bulk water similar to how glaciers extrude rocks. 
Studies by physical scientists suggest that EZ water has a 
quasi-crystalline structure and arranges itself in stacked 
honeycomb sheets, hence the term 'structured water'. 
Pollack regards it as a distinct fourth phase beyond the 
traditional solid, liquid and vapor states. As the battery 

metaphor implies, structured water appears to play a 
central role in energy flow. Evidence suggests the fourth 
phase of water represents a resonant energy state.

In recent decades there has been an explosion of research 
in the physical sciences using x-ray scattering, NMR 
spectroscopy, and x-ray crystallography to study protein 
structure and folding dynamics all of which substantiate 
the vital role water plays in proteomics [167-171]. To 
be biologically active proteins must acquire a so-called 
hydration shell consisting of multiple layers of water 
molecules sometimes extending up to 25Å from the protein 
surface. The hydration shell appears to be instrumental in 
determining not only 3D protein structure but the folding 
process itself.

The hydration shell, which surrounds hydrophilic 
domains of most intracellular proteins and membranes, 
spontaneously organizes into a complex hexagonal 
lattice-type arrangement, which researchers have 
compared to a semi-crystalline state. The protein-water 
complex spontaneously develops structure and assumes 
gel-like consistency. Hydration shell water surrounding 
proteins, like the EZ, has physical properties distinct 
from that of bulk water in the adjacent fluid spaces. Such 
changes in water state, both in the intracellular and 
extracellular fluid spaces, would seem to provide an ideal 
energy source for the many protein-mediated biological 
processes.

The conjoined role of proteins and water in the energy 
economy of the body formed a recurrent motif throughout 
the 20th century. Swedish physical chemist Svante 
Arrhenius published the first work on the electrical 
conductivity of ionic solutions, Investigations on the 
Galvanic Conductivity of Electrolytes, in 1894 [172]. He noted 
that salts dissolved in water split into electrically positive 
and negative ions that transmit electrical currents in 
the fluid medium. Based on its tendency to undergo 
polarization into two opposing species, we refer to this 
water-mediated energetic component as the dielectric 
field [173]. Arrhenius conducted studies showing the 
biological importance of electrolyte dynamics in the 
interactions between antigens and antibodies.

Arrhenius' work formed the basis for what became known 
as 'colloid theory' which, simply stated, asserted that ion-
containing intracellular water interacts with cell proteins 
to produce complex three-dimensional structures which, 
under specific conditions, assume gel-like consistency. In 
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that bound water conducts electrical currents, changes in 
energy flux through cells induce conformational changes 
in the colloid matrix resulting in 'work,' i.e., functional 
activities like muscle contraction or glandular secretion.

Viennese physician and immunologist Karl Landsteiner, 
discoverer of the ABO blood groups, was an early 
proponent of colloid theory. He argued that colloid 
dynamics and electrochemical forces mediated antigen-
antibody interactions. It seems, he wrote, 'that this 
extraordinary type of reaction plays a particularly large 
part in living organisms; living substance is mostly made 
up of colloids' [174]. Landsteiner and co-workers found 
that charged acidic and basic colloids not only moved 
in opposite directions in electrolysis experiments but 
precipitated each other. Interactions were based less on 
chemical constitution than on physical phenomena like 
pH, solubility and temperature.

Beginning in the 1950s cell biologist Gilbert Ling 
emphasized the central role of water and colloid dynamics 
in all cell functions. The cytoplasm, Ling argued, is an 
integrated system of proteins, water, ions and molecules 
like ATP that drive all functional processes in the body. All 
structural elements are linked together by electromagnetic 
interactions, what he called 'ferromagnetic cooperativity' 
[175].

In 1962 Ling advanced the association-induction 
hypothesis based on the notion that electrical 
polarizations and depolarizations, i.e., induction, were 
at play in such conformational dynamics [94]. Close-
contact interactions among protein chains link them 
into an organized nexus with secondary, tertiary and 
even quaternary structure. All colloids exist in open and 
closed states and undergo reversible transitions based 
on energy flux. In the years following introduction of his 
theory Ling's lab was forced to shut down due to inability 
to secure research grants from funding agencies like the 
National Institutes of Health.

A recurrent question concerns the nature of the processes 
that drive protein folding: do amino acid chains randomly 
generate secondary and tertiary conformations or are 
conformations determined by the energy state? In the late 
1960s Christian Anfinsen called attention to the intricacies 
of protein folding, particularly the phenomenon of 
reversibility, which necessarily involves transitional 
kinetic states. Folding, he argued, is related more to the 
disposition of electromagnetic forces than to covalent 
chemical bonding [176].

Cyrus Levinthal pointed out the sheer improbability 
of protein chains searching randomly through an 
infinitely large pool of potential configurations to attain 
native fold [177]. The extreme rapidity with which such 
folding occurs, on the order of milliseconds, implicates 
preordained folding pathways related to specific energy 
states. In 1995 Bryngelson et al showed that in various 
protein families, like lysozyme for example, polypeptides 
fold into identical 3D conformations despite extreme 
disparities in amino acid sequence [178]. They argued in 
favor of a dynamic energy landscape in which proteins are 
'funneled' into their functional energy states [179-183].

For much of the 20th century biological causation was 
held to be determined by processes originating at the 
molecular and cellular levels. These assertions are 
unfounded. Protein folding and misfolding, now widely 
recognized to drive all functional processes in the body, 
and to be a leading cause of disease including COVID-19 
infection, demand the presence of an organized energy 
landscape.

Even mainstream medicine seems to be wavering in its 
century-long infatuation with molecular reductionism. 
Concerning the relationship between Aβ and AD science 
writer Simon Makin, in an influential 2018 Nature 
editorial, raises the critical question 'is it time to look 
beyond amyloid-β as the root cause of the condition'? 
Neuroscientist Michael Murphy comments, 'the time to 
cast a wider net is now—we need a bigger base of ideas' 
[184]. Another dramatic paradigm shift is underway. 

The Prion Connection
 
Beyond an association between SARS-CoV-2 infection and 
amyloid deposition, studies emerging during the pandemic 
found striking similarities between patterns of COVID-19 
propagation and that of classic neurodegenerative 
diseases like AD and Parkinson's (PD), now recognized to 
operate on the basis of prion-like mechanisms. Protein 
misfolding in the nervous system behaves entirely in line 
with principles we have just established.

The prion diseases are progressive, transmissible 
neurodegenerative disorders seen in higher vertebrate 
species: scrapie in sheep, chronic wasting disease in deer, 
mad cow disease in cattle, and in humans like kuru and 
Creutzfeldt-Jacob disease [185-187]. The causal agent is a 
neuronal protein that undergoes pathological misfolding 
and propagates along nerve tracts in cell-to-cell fashion 
[188, 189]. Beyond such pathologic descriptions, however, 
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researchers have never explained exactly how they induce 
disease. The term prion, rather than denoting a particular 
disease entity, designates the means by which protein 
misfolding disorders propagate throughout the nervous 
system.

During the pandemic it was observed that patients with 
neurodegenerative disorders like AD and PD were not 
only more susceptible to severe COVID-19 infection but 
more likely to experience worsening of their underlying 
symptoms. Such trends are especially pronounced in AD 
with multiple reports describing rapid cognitive decline 
during COVID-19 infection. Moreover, spontaneous cases 
of AD and PD as well as Creutzfeld-Jacob disease have 
been described both after SARS-CoV-19 infection as well 
as COVID-19 vaccination [190-202]. Such phenomena 
have corollaries at the molecular level.

Injection of purified Aβ material into AD-prone mice 
induces accelerated deposition of Aβ and intracellular 
aggregation of tau-protein with neurofibrillary tangle 
formation in surrounding brain tissue of the mice [203-
204]. Based on such behaviors it is suggested that Aβ 
possesses prion-like behaviors. By the same token, the 
presence of the SARS-CoV-2 protein in the serum has 
been found to enhance amyloid formation [205-206]. 
In laboratory studies the SARS-CoV-2 protein interacts 
with α-synuclein to induce Lewy body formation in PD-
prone cell lines [207]. Other studies find that interactions 
between the SARS-CoV-2 protein and α-synuclein also 
accelerate amyloid formation [208]. Such intertwined 
phenomena constitute what researchers refer to as prion-
like transmission.

To explain such behaviors on a cellular and molecular 
basis scientists describe four attributes of prion-like 
propagation: intracellular conversion of a natively-folded 
protein into a misfolded form; extrusion of misfolded 
protein into the ECF space with uptake by neighboring 
cells; the ability of misfolded species to induce misfolding 
in other similar proteins; and the tendency of misfolded 
proteins to induce misfolding at distant sites [209, 210]. 
Based on such spurious criteria, a misfolded protein 
must somehow exit one cell, travel through the ECF 
space, enter another cell and, by some vague 'template' 
mechanism, induce protein misfolding in other cells. 
This is pure science fiction. A far simpler explanation is 
that introduction of pathogenic protein material into the 
system places additional stress on degradation pathways 
with subsequent accumulation of aggregates.

From an energetic standpoint such physical mechanisms 
aren't necessary. Only three phenomena must be accounted 
for in all the related disorders: Why do proteins misfold? 
Why do they accumulate in cells or the ECF space? And, 
importantly, what is the basis for this tendency toward 
aggregation? The aggregation question will be addressed 
in the final section.

We have already established that deficient energy flow 
into cells and impaired mitochondrial function are 
responsible for all of the disturbances. The fact that 
proteins in nearby cells undergo subsequent misfolding 
and aggregation can only indicate an expanding energy 
debt. In that mitochondrial dysfunction and oxidative 
stress impair lysosomal function, the accumulation of 
Aβ oligomers, Lewy bodies, neurofibrillary tangles and 
other misfolded proteins can only be ascribed to deficient 
autophagy. Not only is direct contact between proteins 
not necessary to induce misfolding, there is no plausible 
mechanism by which this should even occur. Protein 
conformation is purely related to energy status. End of 
story. It is surprising that cell biologists have failed to 
reach consensus on such a critical issue.

It goes without saying that the brain and nervous system 
do not represent the primary route of infection for 
SARS-CoV-2. While CNS manifestations such as stroke, 
hemorrhage, or inflammation can be attributed to the 
vascular system, other manifestations take origin by 
a distinctly different route. Of great relevance to the 
spread of so-called prion disease in the nervous system is 
recognition of early functional disturbances which point 
with inerrant accuracy to where the pathogenic action 
unfolds.

Given the well-established oral route for propagation of 
various prion diseases, it is not surprising that in recent 
years both AD and PD have been linked to this mechanism. 
Early in the course of PD misfolded proteins accumulate in 
gut lymphoid tissue and spread to organs like the spleen, 
tonsils, appendix and the enteric nervous system [211-
219]. A peripheral origin for PD is supported by the early 
appearance of autonomic dysfunction [220-224]. Subjects 
often develop symptoms like decreased saliva production, 
dysphagia, impaired gastric emptying or constipation. 
Of particular significance is the presence of disorders of 
smell in up to 90% of early-stage PD and 85% of early-
stage AD patients [225-229]. Such symptoms usually 
precede the onset of motor disturbances, cognitive decline 
and dementia.
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Based on such evidence it has been suggested that 
misfolded proteins, acting in prion-like fashion, gain 
access to the CNS via two routes: one through the nose 
into the olfactory nerve, and the second through the 
intestinal mucosa and into the vagus nerve. The nasal 
route would account for the high percentage of PD 
subjects with olfactory symptoms and, in more advanced 
cases, pathology in the forebrain. Retrograde propagation 
of α-synuclein misfolding along the vagus nerve not only 
explains various autonomic dysfunctions but involvement 
of the dorsal motor nucleus in the medulla [230-232].

Surprisingly few reports have commented on the well-
documented association between neurodegenerative 
disorders and autonomic dysfunction [233-236]. 
Autonomic dysfunction is a frequent accompaniment 
of all the dementias and includes postural hypotension, 
dizziness, gastrointestinal disturbances and urinary 
incontinence. Autonomic symptoms are associated with 
poorer disease outcomes. Such imbalances indicate altered 
nerve traffic patterns and trace directly to decreased 
energy flow in the ECF space which itself is secondary 
to diminished energy generation by the cardiovascular 
system.

The same early symptom patterns are observed in subjects 
with SARS-CoV-2 infection [237-244]. In various studies 
disorders of smell and taste range from 10% to as high as 
85% with a mean in the 60% range. Such chemosensory 
dysfunction has also been reported following COVID-19 
vaccination. Deficits may occur before or coincident with 
onset of other manifestations. Symptoms are generally 
self-limited and range from 3-4 days up to several 
months.

Autonomic dysfunction as detected by heart rate 
variability testing is a frequent accompaniment of 
COVID-19 infection. Of special interest is the recognition 
of widespread autonomic dysfunction in subjects with the 
long-COVID syndrome. Symptoms may include fatigue, 
palpitations, tachycardia, chest pain, shortness of breath, 
orthostatic hypotension, loss of smell and/or taste, 
exercise intolerance, headaches, 'brain fog' and difficulty 
concentrating, sleep disturbances as well as depression 
and/or anxiety [245-255]. The syndrome, believed to 
affect 10-20% of infected individuals, generally persists 
for weeks to months. How to reconcile the striking 
similarities between COVID-19 and early forms of the 
neurogenerative disorders?

To explain energy flow through nerves, early 20th 
century scientists posited that neurons functioned like 
tiny batteries and generated their own electrical currents. 
But this explanation doesn't fly in the face of dramatic 
events like sudden cardiac arrest in which there is 
immediate cessation of all neuronal functions and loss of 
consciousness the moment cardiac activity ceases. How 
to account for such a tight functional linkage between the 
two compartments?

Given the directionality of flow currents in nerves the 
question arises as to where peripheral sensory nerves, 
which course toward the brain and spinal axis, derive 
their currents. The unavoidable conclusion is that they 
originate in the ECF space just as Pollack's structured 
water concept would suggest. By the same token, given 
that the surface of the cerebral hemispheres is lined 
by dendrites, which convey currents directionally into 
the deeper brain structures, and which are in direct 
contact with cerebrospinal fluid, one must draw similar 
conclusions as to the origin of electrical currents in the 
hemispheres.

The flow of currents in the nervous system, necessarily, is 
driven by cardiac dynamics. Each systolic contraction of 
the heart creates a suctional force in nerves which draws 
currents forward into both peripheral sensory nerves 
and dendrites over the outer surface of the brain. When 
the heart dilates it moves fluids; when its contracts it 
moves energy currents. This substantiates the claim of 
Swedish radiologist Björn Nordenström in his pioneering 
(but overlooked) work Biologically Closed Electric 
Circuits (1983) that there is not one but two overlapping 
circulations, one consisting of the flow of fluids and the 
other of energy currents [256].

Such a model goes a long way in explaining early 
functional deficits such as loss of smell and taste as well 
as the plethora of autonomic imbalances that define both 
acute and long-haul COVID-19 syndromes as well as the 
early neurodegenerative disorders. It is axiomatic that 
therapeutic attempts must be aimed at restoration of 
energy deficits and correction of imbalances. 

Aggregation Dynamics
 
So, we return to the point at which our deliberations 
began: deposition of amyloid aggregates in the vascular 
compartment. It is established that accumulation 
of amyloid fibrils is the end result of mitochondrial 
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dysfunction and impaired intracellular digestion of 
misfolded proteins. But another question looms large: 
why are pathologic species prone to aggregation? What 
dynamics are in play that would precipitate such events?

Recently, scientists discovered that fibrinogen, precursor 
to the clot-forming protein fibrin, can, under certain 
circumstances, transform into a misfolded form of fibrin 
not unlike the β-sheet rich amyloids and prions [257-
259]. This pathologic isoform propagates intravascularly 
forming micro-clots which, in turn, entrap other proteins 
and propagate to form larger clots. Such thrombi persist 
in the vascular system indefinitely and, eventually, may 
occlude small and large arteries and veins with predictable 
consequences. It was further observed that such atypical 
clots are highly resistant to standard anticoagulant 
therapy and may require prolonged treatment with 
multiple agents if they first don't cause irreversible organ 
injury or death. 

By the same token, in lab experiments when the SARS-
CoV-2 protein was added to the blood it resulted in 
structural changes not only to fibrinogen but other blood 
proteins like prothrombin and complement [260-264]. 
The spike protein binds to a host of aggregation-prone 
proteins like heparin, the heparin binding proteins, Aβ, 
α-synuclein, tau and others to accelerate aggregation 
of pathological amyloid proteins. Reports describe 
multiple amyloidogenic and prion-like domains in the 
spike protein. How can such phenomena be explained? 
Examination of the prion protein provides further insight. 

The prion protein exists in two stable energy-dependent 
isoforms, i.e., natively folded and misfolded states. 
The functional domain of the protein consists of three 
α-helix and two β-sheet regions. In its natively-folded 
conformation α-helix-rich regions predominate while 
the pathogenic misfolded state is characterized by 
β-sheet dominance. This pathologically folded protein, 
considered 'toxic' by researchers, gives rise to the 
observed pathology. Breakdown of the misfolded prion 

protein generates Aβ oligomers. Like other misfolded 
proteins the prion protein tends to aggregate not only 
with itself but also other proteins [265-273]. 

It seems likely that when aggregation prone proteins 
undergo misfolding they revert to stable conformations 
like the β-sheet-dominant form which cannot expand 
fully into their 3D conformations. Such misfolding 
induces compaction of constituent chains and inability 
to repel nearby proteins. This mechanism has received 
increased attention  in recent years [274-278]. Crowded 
physiological environments, both intra- and extracellular, 
favor protein aggregation by promoting conformational 
instability, inhibiting breakdown of oligomers, 
accelerating seeding of amyloids, and promoting prion-
like replication. Such events, in turn, translate into 
pathological changes in the blood. 

During the pandemic studies found that SARS-CoV-2 
infected individuals had higher blood viscosity than non-
infected persons and, among the infected, higher viscosity 
measurements translated into higher mortality [279-
281]. Higher blood viscosity is associated with diastolic 
dysfunction, blood flow disturbances, increased shear 
stress, increased tendency for platelet and red blood cell 
aggregation, and, finally, increased blood coagulation. 
Energy deficiency, protein misfolding and water dynamics 
come full circle in the blood and must be explained on an 
entirely different basis than simply molecular factors. 

In an experiment intended to demonstrate the effects of 
electric fields in water Nordenström packed a U-shaped 
glass tube with cotton wool in its lower curved portion to 
simulate capillary resistance [282] (Figure 3). Both limbs 
of the tube were filled with water and metallic electrodes 
connected to a DC power source were placed on each side. 
After a variable period of time, depending on the size of the 
tube and strength of the battery, one observes differential 
water levels in the two limbs with the left (cathodic) side 
higher than the right (anodic) pole. What is happening 
here?
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Scientists would ascribe such results to electrically-
induced migration of charged species, including water, 
with differential accumulation at the two poles. Such 
differential levels are no more explainable on the basis of 
water and ion movement than are the oceanic tides. The 
spatial reorganization of water is purely a field-mediated 
effect. Real forces produce differential fluid levels and the 
migration of ion species. 

Electrical currents streaming through the electrode at 
the cathode generate a magnetic field around the wire 
which causes expansion of water. By the same token, 
currents drawn out by the anode induce contraction of 
the surrounding water which causes its level in the tube 
to drop. The dielectric field is composed of two opposing 
forces, the expansionary magnetic and a contractionary or 

counter spatial force. When we say water is polarizable, we 
mean that electrical currents cause the two components 
of the dielectric field to separate and assert their opposing 
effects. And as with an automotive battery aggregates 
tend to precipitate out at the anodic pole where the 
contractionary force is strongest. 

We can thus say with certainty that protein misfolding 
and aggregation reflect the energy content of the milieu 
in which they reside. In the cardiovascular system, as we 
have shown, the outward movement of the ventricular 
and arterial walls is related to generation of a magnetic 
force. Magnetism is  the only energy form possessing 3D  
spatiality. As the field weakens, as in diastolic 
dysfunction, the contractionary force gains strength 
thereby altering fluid dynamics within both in the 

Figure 3. A U-shaped glass tube is packed with cotton wool in its lower curved portion and filled with water. Metallic 
electrodes connected to a DC power source are introduced on each side. After a variable period of time one observes 
differential water levels in the two limbs with the cathodic side higher than the anodic pole, illustrating the con-
joined expansionary and contractionary forces within the dielectric field of the water medium.
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intravascular compartment and ECF giving rise to 
downstream pathologic carnage. As Galen’s functionally 
based humoral system of medicine asserts, quae incipit in 
sanguine: everything begins in the blood. 

Without a doubt such dynamics are in play during 
COVID-19 infections and account not only for protein 
misfolding and aggregation in the blood, resulting in 
atypical thrombi resistant to anticoagulant therapy, but 
in the peripheral nervous system giving rise to symptoms 
associated with autonomic dysfunction. Increasing 
evidence links such phenomena to the rising tide of 
long-COVID-19 cases [283-285]. Misfolding dynamics 
also explain in toto the proliferation of autoantibodies 
associated with primary SARS-CoV-2 infection as well 
as the COVID-19 vaccines, as seen in the well-described 
vaccine induced thrombotic thrombocytopenia (VITT) 

syndrome. None of the therapies currently employed 
by medical science effectively addresses a single one of 
these energy-related disturbances. As we pointed out in 
a previous piece, 80-90% of the COVID-19 pandemic-
related deaths were preventable had appropriate measures 
been implemented. 

We spoke with an embalmer, one who preserves bodies 
for ceremonial burial practices, who claims that since 
introduction of the vaccines he has encountered 
mortuarial phenomena he had never seen before in his 
career. After the COVID-19 pandemic and introduction 
of mRNA vaccines he began to encounter many cases 
with extensive arterial and venous clot formation. 
Other embalmers in the US and Europe describe similar 
phenomena. He sent pictures of clots he extracted from 
decedents (Figure 4). 

Figure 4. Variegated post-mortem clots typical of those embalmers have encountered with increasing 
frequency in the COVID-19 era. (Courtesy of Richard Hirschman)
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A colleague of ours who is in robust health received two 
doses of the Pfizer vaccine in April 2021.  Five months lat-
er, for no apparent reason, he developed extensive lower 
extremity deep vein thrombosis.  After months of antico-
agulant treatment, he continued to experience intermit-
tent swelling and pain.  How many latent arterial and ve-
nous thromboses, autoimmune phenomena, and chronic 
conditions like AD and PD are insidiously propagating 
in post-COVID-19-infected subjects or in those who re-
ceived the vaccine?  This looming catastrophe is all the 
more disturbing given that medical scientists mishandled 
the pandemic from the onset and have only magnified its 
detrimental impact.
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