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ABSTRACT
Multiplicative speckle noise which is inherently present in med-
ical ultrasound images degrades the important clinical informa-
tions and badly affects the quality of the diagnosis. It is neces-
sary to reduce the speckle noise to improve the visual quality of
ultrasound images for better diagnoses. In this paper, a wavelet
based method for despeckling of the ultrasound images is intro-
duced where a local Wiener filter along with speckle reducing
anisotropic diffusion (SRAD) filter are employed in a homomor-
phic framework. The signal variance in the local wiener filter is
estimated from the output image of the SRAD filter. Since the
size and shape of the locally adaptive window is an important
issue in estimating the signal variance, nearly arbitrarily shaped
windows are used for better performance. The experimental re-
sults using synthetically speckled ultrasound images show that
the speckle noise is reduced to a great extent while preserving
the important clinical information. In order to demonstrate the
effectiveness of the proposed method, the method is compared
with several other existing methods in terms of peak signal to
noise ratio (PSNR), structural similarity index (SSIM), edge preser-
vation index (β), and standard deviation to mean (S/M) ratio.
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1. INTRODUCTION
Medical ultrasound images are usually contaminated with a kind of
noise called speckle noise. The speckle noise degrades the quality
of the medical ultrasound images significantly and therefore makes
the discrimination of the fine details in the images for medical di-
agnostic examinations very difficult. It is necessary to reduce the
speckle noise from the medical ultrasound images while preserv-
ing the important features in order to improve the visual quality for
better diagnoses.
Several methods have been proposed in the literature for reduc-
ing speckle noise from medical ultrasound images. The conven-
tional methods described in [10], [5] and [9] often oversmooths the
important details while reducing the speckle noise. The adaptive
weighted median filter (AWMF) proposed by Loupas et al. [11]
also reduces speckle noise but the edges in the images also gets
blurred in the process. In homomorphic wiener filtering frame-
work discussed in [8], logarithmic transformation is used before
the Wiener filter, in order to obtain a approximately speckle noise
free image. Over the past few years, 2D discrete wavelet trans-
forms (DWT) have been popularly used for medical image denois-
ing. Pizurica et al. [14] used a shrinkage function in order to obtain
the noise free wavelet coefficients of the medical ultrasound image.
Many denoising algorithms in homomorphic framework have been
proposed. Achim et al. [1] proposed a wavelet based method to es-
timate the noise free coefficients using a Bayesian estimator that
employs the alpha-stable pdf. The authors in [17] combined homo-
morphic filtering principle along with elliptical thresholding con-
cept in complex discrete wavelet transform domain. The authors in
[7] employed a maximum a posteriori (MAP) estimator in wavelet
domain to estimate the noise free coefficients. The authors used
Rayleigh statistical distribution to model the magnitude of speckle
in the log domain and Gaussian distribution to model the wavelet
coefficients of log transformed reflectivity of medical ultrasound
images.
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Few wavelet based noise filtering schemes often requires the esti-
mation of signal variance in wavelet domain. Various methods are
reported such as [2] and [4] where the signal variance is estimated
using noisy neighborhood with square shaped windows. In [16] the
authors proposed a concept of doubly local Wiener filtering algo-
rithm to suppress additive white Gaussian noise where directional
windows are used to estimate the signal variance. The authors, in
their work used a pilot image which is a denoised image obtained
by the first local wiener filter with directional window to estimate
the signal variance. The estimated signal variance is used in the
second local wiener filter which is applied to the noisy image.
In this paper, a algorithm is proposed which uses both SRAD and
wavelet domain local Wiener filtering to reduce speckle noise from
ultrasound images in homomorphic framework. In wavelet domain
local Wiener filtering, the quality of the signal variance estima-
tion is highly important. Therefore, we use efficient SRAD filter
[20] output as the pilot image to estimate the signal variance. The
SRAD is a spatial filter which performs well both at the edges and
homogeneous regions in speckled images. Hence the quality of the
estimated signal variance is much better and the local wiener filter
performs well to reduce the speckle from the ultrasound image.
The paper is organized as follows. In section II the review of SRAD
filter and the arbitrarily shaped window based local wiener filter is
presented. In section III the proposed algorithm is demonstrated.
Then in section IV the results of our method is compared with some
other methods of denoising. At last the conclusion is given in sec-
tion V.

2. BRIEF OVERVIEW ON SPECKLE REDUCING
ANISOTROPIC DIFFUSION (SRAD) AND
LOCAL WIENER FILTER

For speckle reduction, Yu and Acton [20] proposed an improved
approach of anisotropic diffusion concept proposed by Perona and
Malik [13]. The partial derivative equations is given by [20],{

∂I(x, y; t)/∂t = div[a(q)∇I(x, y; t)]

I(x, y; 0) = I0(x, y), (∂I(x, y; t)/∂
−→
f |δω= 0

(1)

where I0(x, y) is the intensity image having finite power and no
zero values over the image, t is the diffusion time, δω denotes the
border of ω, −→f is the outer normal to δω given by [20],

a(q) =
1

1 + [q2(x, y; t)− q20(t)]/q20(t)(1 + q20(t))]
(2)

or

a(q) = exp−[q2(x, y; t)− q20(t)]/[q20(t)(1 + q20(t))] (3)

where q(x,y;t) represents the instantaneous coefficient of variation
at position (x,y) which is given by [20],

q(x, y; t) =

√
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)2

[1 + ( 1
4
)(∇

2I
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)]2
(4)

and q0(t) is the scale factor of speckle and for ultrasonic images it
is given by [20],

q0(t) = q0 exp[−ψt] (5)

where ψ is a constant and q0 is the speckle coefficient of variation
in the input image.

The SRAD algorithm has shown very good results in the literature
and exhibits excellent performance in terms of smoothing homo-
geneous regions and preserving edges compared to conventional
anisotropic diffusion, Lee and frost filter.

2.1 Local Wiener filtering using arbitrary shaped
windows

Michak et al. [12] proposed a locally adaptive window based max-
imum likelihood (LAWML) estimate for signal variance estima-
tion. It is a low-complexity, but powerful method, which shows the
dependency of the local wavelet coefficients within each scale. A
wavelet domain noisy image can be modeled as,

z = s+ n (6)

where z is the noisy image wavelet coefficients, s are the original
image coefficients in wavelet domain and n is assumed to be an
independent and identically distributed white Gaussian noise with
zero mean and variance σ̂2

n. To estimate s from noisy coefficients
z, the minimum mean square estimator of s(m) is given by [12],

ŝ(m) =
σ̂2
m

σ̂2
m + σ̂2

n

z(m) (7)

where σ̂2
m is the signal variance. The signal variance estimator used

in LAWML method is given by [12],

σ̂2
m = max ( 0,

1

|W |

∑
ziεW

z2i − σn2) (8)

where W is the number of coefficients in the local window. It is to
be noted that the performance of the (7) depends highly on the qual-
ity of variance estimation. The LAWML focuses only on a fixed
window size for the noisy neighborhood.
K. Eom and Y.S. Kim developed a wavelet based denoising scheme
with nearly arbitrarily shaped windows [3]. Fig.1 shows various
types of arbitrarily shaped windows. They assumed gm,0, ..gm,P−1
to be the arbitrarily shaped windows. The signal variance for each
wavelet coefficient is calculated using these arbitrarily shaped win-
dows until the homogeneity of the variance is achieved. The mea-
sure of homogeneity is defined as the normalized difference of vari-
ances, that is [3],

Nm,p =
| σ2

m,p − σ2
m,0 |

σ2
m,0

, p = 0, 1, 2, .....P − 1 (9)

where σ2
m,p is the local variance of the region gm,p which is ap-

proximately calculated by [3]

σ2
m,p =

1

|Wp |

∑
yiεWp

y2i (10)

where | Wp | is the number of coefficients and Wp are the coeffi-
cients within gm,p. The binary factor bm,p which indicates whether
the variance σ2

m,p is homogeneous with σ2
m,0, or not, is defined as

[3]

bm,p = { 1, ifNm,p<th

0, otherwise (11)

where ‘th’ is the theshold which is defined as [3]
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Fig. 1. Various types of arbitrarily shaped windows

th = λ2(K−k), k = 0, .....K (12)

where, λ is a scaling constant which was taken as 0.1, k = 0 for
finest scale and k = K for coarsest scale of the wavelet decompo-
sition.Then the signal variance estimation is [3]

σ̂2
m = max ( 0,

∑P−1
p=0

σ2
m,p . bm,p∑P−1

p=0
bm,p

− σ2
n) (13)

Employing (7) with the above estimated signal variance, image de-
noising can be achieved.

3. THE PROPOSED METHOD
3.1 The frame work:
The speckle noise in the medical ultrasound image can be modeled
as [8],

r(m) = l(m)ηm + ηa (14)

where, l(m) is the clean image, r(m) is the noisy image and ηm
and ηa are the multiplicative and additive noise respectively. The
additive noise can be neglected as the effect of this noise is small,
i.e ηa ≈ 0. Therefore the equation can be written as,

r(m) = l(m)ηm (15)

Logarithmic transformation is used to make this multiplicative
noise into the additive one. i.e,

log r(m) = log l(m) + log ηm (16)

ηm is assumed to be additive white Gaussian noise in this paper.
The standard noise suppression techniques can be used on this log-
arithmically transformed image in order to reduce speckle noise. A
denoised image can be obtained after applying denoising scheme
and by applying the inverse of logarithmic transform. This frame-
work of denoising is known as homomorphic filtering.

3.2 The proposed algorithm:
In this work, we use local Wiener filtering based algorithm in
the homomorphic framework for denoising of ultrasound images.
Since the performance of the filtering highly depends on the quality
of the signal variance estimation, the estimation is obtained using a
pilot image which is a denoised output by SRAD filter and calcu-
lated using arbitrarily shaped windows. The block diagram for the
proposed method is given in the Figure 2 and the algorithm is given
below.
Step 1: The noisy image is processed with SRAD to get the pilot
image.

Table 1. No of iterations for
different variances

Variance No. of iteration
.04 6

.07 8

.11 10

.15 12

Step 2: The logarithmic transform of the pilot image is taken.
Step 3: Apply 2D discrete wavelet transform (DWT) on the pilot
image.
Step 4: After decomposition the signal variance is estimated using
arbitrarily shaped window and calculated using (17).

σ̂2
m =

∑P−1
p=0

σ2
m,p . bm,p∑P−1

p=0
bm,p

(17)

There are 2P−1 differently shaped windows as obtained in [3].For
the simplicity of computation we take nine such windows i.e
P = 9.
Step 5: The logarithmic transform of the noisy image is taken.
Step 6: The discrete wavelet transform (DWT) of the log trans-
formed noisy image taken.
Step 7: The noisy wavelet coefficients are modified using equ. (7)
according to the local wiener filtering algorithm as discussed in
section II. Here the signal variance estimator σ̂2

m is obtained from
Step 3.
Step 8: After local wiener filtering of the noisy coefficients inverse
discrete wavelet transform (IDWT) is carried out.
Step 9: The ”adjust mean” is carried out after 2D IDWT. Since in
wavelet denoising algorithms, the noise reduction is carried out
only in the detail subbands and the approximation subband is not
subjected to any change. In such cases it is important to correct
the biased mean in the approximation subband as proposed in
[19].This biased mean is introduced by the logarithmic transform
and it is corrected by subtracting the mean value of the logarithmic
transformed speckle from the output image of “IDWT”.
Step 10: The inverse logarithmic transform is taken after the “mean
adjust” and the denoised image is obtained.

4. EXPERIMENTAL RESULTS
To compare the performance of proposed method with other de-
noising schemes such as median filter, Gaussian average filter, ho-
momorphic wiener filter, frost filter, AWMF, and SRAD we have
used two ultrasound images, which are of thyroid and liver. Since
original noise free images are not available, the images are first
processed with state of the art GenLink [14] method. The denois-
ing software is obtained from “http://telin.ugent.be/ sanja/”. The
resulting images are considered to be the noise free images. After
getting the noise free images the images are synthetically speckled
with different variances.
For signal variance estimation the noisy images are first processed
with SRAD filter. Different number of iterations is used for differ-
ent noise variance which is given in the table no 1.
The filtered image is considered as pilot image. The 2D DWT with
five level decomposition is performed on the log transformed pilot
image and the log transformed noisy image, with wavelet ‘db8’.
The signal variance is calculated from coefficients of the pilot im-
age using arbitrarily shaped windows in which for simplicity of
calculation we take nine varying shaped windows, i.e. P = 9. The
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Fig. 2. Block diagram of proposed algorithm

proposed method is compared with other existing methods using
the following metrics.

(1) Peak signal to noise ratio (PSNR): The PSNR is calculated
using the following standard expression :

PSNR = 10 log(
2552

MSE
) (18)

Where,

MSE =
1

X × Y

X∑
x=1

Y∑
y=1

[I(x, y)− Î(x, y)]2 (19)

Where I(x, y) and Î(x, y) are the reference and filtered images
respectively and X × Y is size of the image.

(2) Mean structural similarity index (MSSIM): The SSIM index
[18] is a measure of similarity between two images and in-
dicates perceived image quality. Higher the MSSIM between
original and denoised image indicates better perceived image
quality. For calculating the SSIM index, the matlab code, pro-
vided by the authors in their official website, is used.

(3) Edge preservation index (β): It is a measure of edge preserva-
tion. For optimal edge preservation cases, β should be close to
unity. It is defined as [1],

β =
Γ(∆I −∆I), (∆̂I − ∆̂I)√

Γ(∆I −∆I,∆I −∆I).Γ(∆̂I − ∆̂I, ∆̂I − ∆̂I)

(20)
where I and Î are the clean and denoised image respectively.
∆I and ∆̂I are the high pass-filtered versions of I and Î re-
spectively, obtained with a 3× 3 pixel standard approximation
of the Laplacian operator, the over line operator indicates the
mean value, and

Γ(I1, I2) =

K∑
i=1

(I1i .I2i) (21)

(4) S/M ratio: It is a measure of speckle reduction performance
[6].

(5) Coefficient of correlation (COC): It is a measure of noise sup-
pression which is based on correlation [15]. It is defined as,

COC =
Γ(I − I), (Î − Î)√

Γ(I − I, I − I).Γ(Î − Î , Î − Î)

(22)

where I and Î are the clean and denoised image respectively
and the over line operator denotes the mean value, and

Γ(I1, I2) =

K∑
i=1

(I1i .I2i) (23)

The simulated results are given in Table no. 2 and 3. In Figure 3 and
Figure 4, the output images obtained from various other existing
methods and proposed method, for synthetically speckled Liver ul-
trasound image (variance=0.11) and synthetically speckled Thyroid
ultrasound image (variance=0.11) respectively, is shown. From the
tables it is observed that the proposed method outperforms all other
methods in terms of PSNR, S/M ratio, SSIM and β for all the tested
ultrasound images. The proposed method reduces the speckle noise
very efficiently which is evident from the S/M ratio results and the
edges are well preserved in the output images as compared to other
schemes including SRAD filter which can be verified from the β
values.

5. CONCLUSION
In this paper, a wavelet domain local Wiener filtering based algo-
rithm in a homomorphic framework is proposed where the sig-
nal variance is calculated from the SRAD filter output. The pro-
posed method takes the advantage of excellent despeckling capa-
bility of SRAD filter to improve the final despeckling performance
of wavelet domain local Wiener filter. We have tested our method
with five different synthetically speckled ultrasound images and
with different noise variance. The experimental results show that
the proposed method performs better than all other existing meth-
ods including SRAD filter in terms of PSNR, SSIM index, S/M
ratio and β results.
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Table 2. Experimental results for thyroid ultrasound image
methods σ2 = .04 σ2 = .07

PSNR MSSIM β S/M COC PSNR MSSIM β S/M COC
noisy 26.95 .8561 .7035 .7728 .9611 24.51 .7907 .6208 .7912 .9346

Median 27.06 .8594 .7045 .7317 .9698 26.10 .7920 .6214 .7130 .9372

Gaussian 29.84 .8639 .7088 .7341 .9712 26.80 .8164 .6244 .7411 .9544

Average
Frost 28.30 .8711 .7112 .6015 .9765 27.61 .8400 .6288 .6395 .9641

AWMF 28.96 .8745 .7125 .5991 .9791 27.82 .8410 .6297 .6386 .9678

wiener 29.65 .8872 .7136 .5987 .9816 28.01 .8598 .6345 .5887 .9714

SRAD 30.29 .9042 .7146 .5945 .9823 28.25 .8618 .6565 .5787 .9744

Proposed 30.53 .9189 .7142 .5905 .9837 28.75 .8846 .6386 .5777 .9759

method
Methods σ2 = .11 σ2 = .15

PSNR MSSIM β S/M COC PSNR MSSIM β S/M COC
noisy 22.56 .7272 .5459 .7634 .9026 21.26 .6791 .4966 .6215 .8739

Median 25.17 .7278 .5468 .7216 .9145 24.37 .6849 .4968 .6889 .8862

Gaussian 26.10 .7421 .5495 .6831 .9346 24.77 .7192 .4974 .5837 .9164

Average
Frost 26.93 .7560 .5543 .5880 .9535 25.09 .7500 .4999 .5368 .9464

AWMF 27.06 .7588 .5549 .5868 .9572 25.47 .7623 .5016 .5338 .9476

wiener 27.13 .8166 .5573 .5814 .9615 25.60 .7715 .5035 .5281 .9536

SRAD 27.24 .8245 .5619 .5714 .9633 26.24 .8167 .5045 .5046 .9565

Proposed 27.52 .8575 .5638 .5779 .9675 26.67 .8308 .5041 .4737 .9594
method

Table 3. Experimental results for liver ultrasound image
methods σ2 = .04 σ2 = .07

PSNR MSSIM β S/M COC PSNR MSSIM β S/M COC
noisy 27.54 .8013 .4771 .3561 .9546 25.12 .8496 .3800 .3891 .9244

Median 29.38 .8908 .4786 .2785 .9547 28.28 .8505 .3825 .2670 .9269

Gaussian 30.91 .8192 .4799 .3498 .9579 28.43 .8834 .3856 .3992 .9349
Average

Frost 31.43 .9321 .4860 .3135 .9648 29.84 .8990 .3946 .3539 .9466

AWMF 32.20 .9345 .4883 .2965 .9683 30.42 8965 .3991 .3102 .9487

wiener 32.43 .9366 .4909 .2706 .9622 30.99 .9125 .4145 .2713 .9564

SRAD 32.94 .9398 .5409 .2699 .9725 31.27 .9146 .4199 .2743 .9610

Proposed 33.14 .9412 .5994 .2690 .9793 31.40 .9174 .5188 .2612 .9647
method

Methods σ2 = .11 σ2 = .15
PSNR MSSIM β S/M COC PSNR MSSIM β S/M COC

noisy 23.21 .7916 .3346 .4519 .8877 21.84 .7503 .2817 .4868 .8555

Median 27.05 .8074 .3340 .3171 .8895 26.08 .7663 .2815 .3086 .8595

Gaussian 27.79 .8189 .3356 .4203 .9064 26.54 .8025 .2832 .4735 .9268
Average

Frost 28.62 .8558 .3394 .3660 .9361 .2811 .8381 .2851 .2981 .9356

AWMF 28.95 .8643 .3410 .3428 .9466 28.54 .8415 .2961 .2850 .9365

wiener 29.24 .8736 .3626 .2813 .9498 27.86 .8401 .3675 .2656 .9388

SRAD 29.99 .8816 .3721 .2647 .9508 28.84 .8528 .4466 .2598 .9384

Proposed 30.29 .8867 .3958 .2598 .9551 29.11 .8643 .4881 .2310 .9397

method
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