
International Journal of Computer Applications (0975 – 8887)

Volume 76– No.8, August 2013

33

Secured Hash2 based Message Authentication Code

using GUI Controls

V R Kulkarni
Department of Computer
Science And Engineering

KLS Gogte Institute of
Technology, Belgaum, India

Saneet Kalmani
Department of Computer
Science And Engineering

KLS Gogte Institute of
Technology, Belgaum, India

Shashank Vernekar
Department of Computer
Science And Engineering

KLS Gogte Institute of
Technology, Belgaum, India

ABSTRACT
The message that originated from an authorized user is

defined as User Authentication and is provided by Message

Authentication codes (MAC). The provision of assurance that

the message is not been modified is defined as Message

Authentication and is provided by Hash functions.

Authenticated code is generated when MAC uses Hash

function it is called Hash based MAC (HMAC). In this paper

an algorithm is proposed for HMAC which uses SHA-2 as

cryptographic hash function. The algorithm is implemented

using GUI based controls in MATLAB toolbox which enables

the algorithm to be friendly with the user. Theoretical analysis

and experimentation show that this hash function is with high

plaintext sensitivity and low collision resistance, and secure

against birthday attacks or meet-in-the-middle attacks. These

properties make it a suitable choice for data signature or

authentication.

Keywords
MAC, HMAC, SHA2, Plaintext Sensitivity, Collision

Resistance

1. INTRODUCTION

In cryptography, a message authentication code (often MAC)

is a short piece of information used to authenticate a message.

A MAC algorithm, sometimes called a keyed (cryptographic)

hash function[7], accepts as input a secret key and an

arbitrary-length message to be authenticated, and outputs a

MAC (sometimes known as a tag). The MAC value protects

both a message's data integrity as well as its authenticity, by

allowing verifiers (who also possess the secret key) to detect

any changes to the message content.

While MAC functions are similar to cryptographic hash

functions, they possess different security requirements. To be

considered secure, a MAC function must resist existential

forgery under chosen-plaintext attacks. This means that even

if an attacker has access to an oracle which possesses the

secret key and generates MACs for messages of the attacker's

choosing, the attacker cannot guess the MAC for other

messages (which were not used to query the oracle) without

performing infeasible amounts of computation.

MACs differ from digital signatures as MAC values are both

generated and verified using the same secret key. This implies

that the sender and receiver of a message must agree on the

same key before initiating communications, as is the case with

symmetric encryption. For the same reason, MACs do not
provide the property of non-repudiation offered by signatures

specifically in the case of a network-wide shared secret key:

any user who can verify a MAC is also capable of generating

MACs for other messages. In contrast, a digital signature is

generated using the private key of a key pair, which is

asymmetric encryption. Since this private key is only

accessible to its holder, a digital signature proves that a

document was signed by none other than that holder. Thus,
digital signatures do offer non-repudiation.

Figure 1: Working of MAC

 In Figure 1, the sender of a message runs it through a MAC

algorithm to produce a MAC data tag. The message and the

MAC tag are then sent to the receiver. The receiver in turn

runs the message portion of the transmission through the same

MAC algorithm using the same key, producing a second

MAC data tag. The receiver then compares the first MAC tag

received in the transmission to the second generated MAC

tag. If they are identical, the receiver can safely assume that

the integrity of the message was not compromised, and the

message was not altered or tampered with during

transmission.

Essentially, the message authentication code[1] is a small

fixed-size block of data that is generated based on a message

M of variable length using secret key K as follows. It is also

called cryptographic checksum.

 MAC = C(K,M)

If A wishes to send B a message M, and protects it via a

MAC, they first need to share a secret key K. Then A

calculates code MAC as a function of M and K. Then the

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.8, August 2013

34

message M plus the code MAC are transmitted to B. B

performs the same calculation on M, using K to generate a

new code MAC’. The received code MAC is compared to the

calculated code MAC_ to verify the data integrity. As only A

is able to generate MAC, source authentication is also

achieved.

2. HMAC ALGORITHM
 Providing a way to check the integrity of information

transmitted over or stored in an unreliable medium is a prime

necessity in the world of open computing and

communications. Message authentication codes are used

between two parties that share a secret key in order to

authenticate information transmitted between these parties.

The main objective behind the HMAC construction[10] are:

 Without modification using the available hash

function

 Maintaining the performance

 Handling the keys in a simple way

 Knowledge about cryptographic analysis

 Underlying hash function should allow easy

replacing facility

2.1 Parameters used in HMAC Algorithm
It uses the following parameters:

b Input block size

H Hash function approved

k Secret key between sender and receiver

k0
Key k after pre-processing to form b-byte

key

ipad Byte x‟36‟ repeated b times i.e inner pad

opad Byte x‟5C‟ repeated b times i.e outer pad

l Output block size

t Number of bytes of HMAC

text Data on which HMAC is calculated

2.2 Steps for implementing HMAC Algorithm:

1. Check the length of k, if k=b then set k0=k and

proceed to step 4

2. If length of k>b then hash k that gives a l byte string

and then append it to (b-l) zeros that will create a b-

byte string k0.Proceed to step 4

3. Check if k<b, if true then append zeros at the end of

k to create a b-byte string k0

4. In this step exclusively-or is carried between k0 and

ipad to produce a b-byte string

5. Append the stream of data „text‟ to the result of step

4

6. Apply hash(H) to the entire stream of result from

previous step

7. This step is used to exclusively-or the k0 value with

the opad

8. Append the result from step 6 to 7

9. Applying the hash function(H) to entire result

obtained

10. Leftmost t bytes of the result of step 9 are selected

as MAC

3. SYSTEM ARCHITECTURE DESIGN

3.1 Source Side Architecture

Figure 2: Source Side

 First accept the plaintext to be encrypted using the

hash algorithm

 Apply the Hash algorithm and generate HMAC

 Concatenate the message digest with data and using

java class security method, get the instance of the

SHA-2 algorithm

 The Ciphertext is then sent to the receiver

3.2 Destination Side Architecture

Figure 3: Destination Side

HMAC

Algorithm

Message

Digest Plaintext

SHA2

Algorithm

Plaintext

+

Message

Digest

SHA2

Algorithm

Plaintext

+

Message Digest

HMAC

Algorith

m

Separate

Plaintext

Verification
Separate

Message Digest

Message

Digest

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.8, August 2013

35

 The receiver which is connected to the sender

via a LAN cable receives the Ciphertext

 SHA2 algorithm is applied to obtain the

plaintext and digest

 Plaintext and the digest are separated

 Hash algorithm is again applied to the plaintext

to obtain the digest

 This digest is compared to the previously

generated digest and the data is verified

4. IMPLEMENTATION OF SHA2

4.1 General description
SHA-256 (secure hash algorithm, FIPS 182-2) is a

cryptographic hash function with digest length of 256 bits. It

is a keyless hash function; that is, an MDC (Manipulation

Detection Code). A message is processed by blocks of 512 =

16 × 32 bits, each block requiring 64 rounds.

4.2 Basic operations
The basic operations are:

 Boolean operations AND and XOR are denoted by

∧ and ⊕ respectively

 Bitwise complement, denoted by 

 Integer addition modulo 232, denoted by A + B

 Also operation like bitwise rightrotate(rr) and

rightshift(rs) which takes the bit that was shifted

out from the right end of a word and rotates it back

to be inserted into the last bit position on the left

(rightrotate) and shifts the bits positions to the right

(rightshift)

Each of them operates on 32-bit words. For the last operation,

binary words are interpreted as integers written in base 2. The

algorithm uses the 64 binary words Ki given by the 32 first

bits of the fractional parts of the cube roots of the first64

prime numbers:

0x428a2f98 0x71374491 0xb5c0fbcf 0xe9b5dba5

0x3956c25b 0x59f111f1 0x923f82a4 0xab1c5ed5

0xd807aa98 0x12835b01 0x243185be 0x550c7dc3

0x72be5d74 0x80deb1fe 0x9bdc06a7 0xc19bf174

0xe49b69c1 0xefbe4786 0x0fc19dc6 0x240ca1cc

 0x2de92c6f 0x4a7484aa 0x5cb0a9dc 0x76f988da

0x983e5152 0xa831c66d 0xb00327c8 0xbf597fc7

0xc6e00bf3 0xd5a79147 0x06ca6351 0x14292967

0x27b70a85 0x2e1b2138 0x4d2c6dfc 0x53380d13

0x650a7354 0x766a0abb 0x81c2c92e 0x92722c85

0xa2bfe8a1 0xa81a664b 0xc24b8b70 0xc76c51a3

0xd192e819 0xd6990624 0xf40e3585 0x106aa070

0x19a4c116 0x1e376c08 0x2748774c 0x34b0bcb5

0x391c0cb3 0x4ed8aa4a 0x5b9cca4f 0x682e6ff3

0x748f82ee 0x78a5636f 0x84c87814 0x8cc70208

 0x90befffa 0xa4506ceb 0xbef9a3f7 0xc67178f2

Message is processed in 512-bit blocks sequentially,

• Message digest is 256 bits instead of SHA-1‟s 160-

bits

• 64 rounds instead of 80 rounds of compression

• Algorithm structure of SHA-2

– Step 1: Padding bits

– Step 2: Appending length as 64 bit

unsigned

– Step 3: Buffer initiation

– Step 4: Processing of message

– Step 5: Output

Buffer initiation: Eight 32-bit words instead of five in SHA-1

H0 = 0x6a09e667 H1 = 0xbb67ae85

 H2 = 0x3c6ef372 H3 = 0xa54ff53a

 H4 = 0x510e527f H5 = 0x9b05688c

 H6 = 0x1f83d9ab H7 = 0x5be0cd19

 Each step t (0 ≤ t ≤ 63): Word expansion for Wt

 If t < 16 Wt = tth 32-bit word of

Mj

o If 16 ≤ t ≤ 63

 S0 = (Wt-15 rr 7)  (Wt-15 rr 18)

 (Wt-15 rs 3)

 S1 = (Wt-2 rr 17)  (Wt-2 rr 19)

 (Wt-2 rs 10)

 Wt = Wt-16 + S0 + Wt-7 + S1

 Each step t (0 ≤ t ≤ 63):

S0 = (A rr 2)  (A rr 13)  (A rr 22)

ini = (A ^ B)  (A ^ B)  (B ^ C)

t2 = S0 + ini

S1 = (E rr 6)  (E rr 11)  (E rr 25)

cha = (E ^ F)  (( E) ^ G)

t1 = H + S1 + cha + Kt + Wt (A, B, C, D,

E, F, G, H) = (t1 + t2, A, B, C, D + t1, E, F,

G)

5. PERFORMANCE ANALYSIS OF

SHA2

5.1 Plaintext Sensitivity
Plaintext Sensitivity is the percentage of change in bits of

cipher text obtained after encryption of plaintext, which is

derived by changing single bit from the original plaintext

from the bits of cipher text obtained after encryption of

original plaintext. It is required for a hash function, to

generate different hash value for different plaintext. This

property in turn depends on the hash function‟s plaintext

sensitivity. Slight difference in the plaintext will cause greater

changes in the Hash value, which makes the Hash function

have high plaintext sensitivity. This property is important to

keep it secure against statistical attacks. To carry out the

analysis of hash function‟s plaintext sensitivity as an example,

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.8, August 2013

36

plaintext selected “The first step in model building consists of

observing the real systems and the interaction among their

various components and of collecting data on their behavior.

But observations alone seldom yields sufficient understanding

of system behavior. Persons familiar with the system or any

subsystem should be questioned to gain advantage of their

superior knowledge. Operators, technicians, repair persons,

engineers, supervisors and managers understand certain aspect

of the system that is unfamiliar to others.”. The generated

Hash value for the selected paragraph is,

Ho=506D04780A414E396118695A186306320B69404F

Then only first bit of the plaintext is changed, the according

hash value is,

H1=7324407E3E0663074C5C582F1E1D540572337839

If the second one is changed, the according hash value is,

H2=317C291A72020F0A770C1F6B70207F4B1750365B

And if the i-th one is changed, then the according Hash value

is Hi, Then the Hash value Change rate is computed by

r(i)= (Diff (H0,Hi) X 100) / 256

Where Dif (H0,Hi) means the number of the different bits

between Ho and Hi. With implementation of SHA2, for the

proposed plaintext, the change rate is shown in screenshot

below and the change rate can be about 50% (64 bits) when

neural networks is used. This shows that the Hash function is

of high plaintext sensitivity.

Figure 4: Snapshot of Plaintext Sensitivity

5.2 Collision Resistance
Collision resistance is a property of cryptographic hash

functions: a hash function is collision resistant if it is hard to

find two inputs that hash to the same output; that is, two

inputs a and b such that H(a) = H(b), and a ≠ b. The hash is

expected to provide a “unique” representation of the input

data, allowing another disparate input data to hash to the same

output does not serve the purpose. Collision resistance is

required in the following fields:

 Firstly for digital signature systems, a party attests

to a document by publishing a public key signature

on a hash of the document. If it is possible to

produce two documents with the same hash, an

intruder could get a party to attest to one, and then

claim that the party had attested to the other

 Also essential for distributed content systems,

where in parties compare cryptographic hashes of

files in order to make sure they have the same

version. An intruder who could produce two files

with the same hash could trick users into believing

they had the same version of a file but in reality

they did not have the same version

The following test has been performed analysis on Collision

resistance.

Firstly the Hash value is generated for a paragraph of message

which is randomly chosen and stored in ASCII format then a

bit in the message which is selected randomly is changed, and

a new Hash value is generated and stored in ASCII format.

Function to calculate the number of hits:

i. Count the number of hash values say n

ii. Repeat the following steps n times

iii. Read H(0) and H(0+i)

iv. Compare the 2 hash values and the number of

ASCII character with the same value at the same

location in the Hash value are counted then go step

2

v. Finally plot graph of number of equal entries versus

number of hits

Figure 5: Snapshot of Collision Resistance

https://en.wikipedia.org/wiki/Cryptographic_hash_functions
https://en.wikipedia.org/wiki/Cryptographic_hash_functions
https://en.wikipedia.org/wiki/Cryptographic_hash_functions

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.8, August 2013

37

6. USER INTERFACE SNAPSHOTS

6.1 Data as Input

Figure 6: Plaintext as Input

Figure 7: Receiver side response

7. CONCLUSION
The analysis and experiments shows that this hash function

satisfies requirements. The plaintext sensitivity graph and the

collision resistance graph help observe how efficient SHA2 is,

when compared to already existing hash functions like MD5,

SHA0, and SHA1 etc. It has played a significant part in

improving the security over internet. Another major merit of

SHA2 is it takes less time compared to existing methods. It‟s

the most employed hash function these days and the hash

value it computes is used to verify the integrity of copies of

the original data without providing any means to derive said

original data.

8. REFERENCES
[1] Deploying Modified Hash Based Message Authentication

Code HMAC in MATLAB Using GUI Controls,

B.Sridevi, Dr.S.Rajaram , 2011 International Conference

on Information and Network Technology IPCSIT vol.4

(2011) © (2011) IACSIT Press, Singapore.

[2] Hashing for Message Authentication Lecture Notes on

“Computer and Network Security” by Avi Kak

(kak@purdue.edu).

[3] Efficient HMAC Based Message Authentication System

for Mobile Environment, Kavitha Boppudi,Sathish

Vuyyala, International Journal Of Advanced Engineering

Sciences And Technologies Vol No. 11, Issue No. 1, 208

– 212.

[4] Implementation of the SHA-2 Hash Family Standard

Using FPGAs, The Journal of Supercomputing, 31, 227–

248, 2005 Springer Science + Business Media, Inc.

Manufactured in The Netherlands.

[5] "Schneier on Security: Cryptanalysis of SHA-1".

Schneier.com. Retrieved 2011-11-08.

[6] Marc Fischlin, Anja Lehmann, and Daniel Wagner Hash

Function Combiners in TLS and SSL, J.Pieprzyk (Ed.)

LNCS 5985, pp. 268–283, 2010., Springer-Verlag Berlin

Heidelberg 2010.

[7] American Bankers Association, Keyed Hash Message

Authentication Code, ANSI X9.71, Washington, D.C.,

2000.

[8] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-

Hashing for Message Authentication, Internet

Engineering Task Force, Request for Comments (RFC)

2104, February 1997.

[9] E.Biham and R.Chen “Near Collisions of SHA-0”,

Advances in Cryptology CRYPTO 2004, LNCS 3152,

Spriger-Verlag, pp 290-305, 2004.

[10] “The Keyed-Hash Message Authentication Code

(HMAC)” in Federal Information Processing Standards

Publication.

IJCATM : www.ijcaonline.org

http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html

