
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 18, April 2015

11

Review on Fault Tolerance Techniques in Cloud

Computing

Zeeshan Amin

Lovely Professional
University, Phagwara, Punjab,

India

Nisha Sethi
Lovely Professional

University, Phagwara, Punjab,
India

Harshpreet Singh
Lovely Professional

University, Phagwara, Punjab,
India

ABSTRACT
With the immense growth of internet and its users, Cloud

computing, with its incredible possibilities in ease, Quality

of service and on-interest administrations, has turned into a

guaranteeing figuring stage for both business and non-

business computation customers. It is an adoptable

technology as it provides integration of software and

resources which are dynamically scalable. The dynamic

environment of cloud results in various unexpected faults

and failures. The ability of a system to react gracefully to

an unexpected equipment or programming malfunction is

known as fault tolerance. In order to achieve robustness and

dependability in cloud computing, failure should be

assessed and handled effectively. Various fault detection

methods and architectural models have been proposed to

increase fault tolerance ability of cloud. The objective of

this paper is to propose an algorithm using Artificial Neural

Network for fault detection which will overcome the gaps

of previously implemented algorithms and provide a fault

tolerant model.

Keywords
Cloud Computing, Fault Tolerance, Failure Detector.

1. INTRODUCTION TO CLOUD

COMPUTING
Cloud computing alludes to the delivery of computing

resources over the Internet. As opposed to keeping

information on our own hard drive or upgrading

applications for our needs, we can utilize a service over the

Internet, at an alternate area, to store our data and Use its

applications. The thought of cloud computing is focused

around a basic idea of reusability of IT abilities [1, 3].

Cloud computing is built upon virtualization, distributed

computing, utility computing, and more recently

networking, web and software services. Individuals and

organizations use hardware and software managed by third

parties at remote location. Online file storage, social

networking sites, webmail, and online business applications

are some common cloud services. User can use these

services without knowing the underlying hardware and

software details [2].

A real time system can utilize the immense computing

capabilities and virtualized environment of cloud for the

execution of tasks. On the other side, most of these are

safety critical systems which require high reliability and

high level of fault tolerance for their execution.

The objectives of paper are as follows:

i. Introduction to various fault tolerance and fault

detection techniques in cloud computing.

ii. Review of various types of fault detectors used

for fault detection are reviewed.

iii. A theoretical foundation of artificial neural

networkbased approach for detecting the faults in

cloud computing.

1.1 Cloud Components
Cloud computing is made up of several elements. Each

element has a purpose which plays specific roles which can

be classified as clients, Distributed servers, data centers.

 Clients: These are typically the computers which are

used by the end users i.e. the devices which can be used

by the end user to manage the information on cloud

(laptops, mobile phones, PADs etc.)

 Data center: These are collection of servers where the

service is hosted. In order to create number of virtual

server on one physical server in data center,

virtualization is used.

 Distributed servers: These are servers which are

located in different geographical place. It provides

better accessibility, security to the user.

1.2 Characteristics of Cloud Computing
There are ten characteristics of cloud computing in their

sum up: device and location independence, scalability, on-

demand services, guaranteed Quality of Service (QOS),

pricing, virtualization, multi-tenancy, security and fault

tolerant [4].

 Scalability and on-demand services: users are given

on-demand resources and services over cloud.

Moreover the resources provided are scalable over

several data centers

 User-centric interface:cloud interfaces are not

dependent on location of user. They can be accessed

by well-established interfaces such as web services

and internet browsers.

 Guaranteed Quality of Service (QOS): Cloud

computing assures Quality of service for users by

guaranteed performance, bandwidth and memory

capacity.

 Autonomous system:users can reconfigure and

combine software and information according to their

requirements.

 Cost: No capital expenditure or any up-form

investment is required in cloud. Payment for services

is made on the basis of need.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 18, April 2015

12

 Virtualization:Utilization of resources is increased by

sharing the server and storage devices.

 Multi-tenancy: Sharing of resource and cost among

large number of users increase efficiency and allows

for

Centralization and peek lock capacity.

 Loose coupling:The resources are loosely coupled as

one resource functionality hardly affects the

functioning of another resource.

 Reliable Delivery: TCP/IP is used for delivery of

information between resources. Private network

protocols are used within the cloud infrastructure but

most of the user are connected using HTTP protocol.

 High Security: This is maintained on the above

discussed characteristics. Loose coupling enables the

jobs to execute run well,even if part of cloud is

destroyed. Virtualization and abstraction of cloud

provider avoid exposing the detailing of

implementation.

1.3 Cloud Computing Benefits
Cloud computing reduces the response time and running

time of job, also minimizes the risk in deploying

application, lowered cost of deployment, and decreasing

the effort and increasing innovation [5].

 Increased Throughput: Cloudmakes use of

thousands of servers to finish an assignment in

reduced time unit verses the time required by a

solitary server.

 Minimize infrastructure risk: Cloud can be used by

organizations to reduce the load of purchasing

physical servers. The issues of highinvestment and

deployment of servers depending upon the workload

can be resolved considering investment on

infrastructure for those application’s whose

attainment is short-lived.

 Lower cost of entry: Various characteristics outlined

in previous section of cloud reduces the cost for

organizations to enter new markets:

o The capital investment is reduced to zero by

renting the infrastructure instead of purchasing it

and hence controls the cost.

o The rapid application development helps to reduce

the time to market, possibly giving organizations

an edge against the competition.

 Focus on innovation:Organization relived with the

issue to infrastructure deployment can focus in

innovating items.

1.4 Cloud Computing Model

Services offered by the cloud providers can be grouped into

three categories [6]:

 Software as a Service (SaaS): In this model, a

complete application is provided on demand to the

user.

 Multiple end users are serviced while at the back end

a single instance of service is executed. Customers

need not to go for any upfront investments, since just a

single application is to be facilitated & kept up.

Google, Salesforce, Microsoft, Zoho etc are the

providers of Saas.

 Platform as a Service (Paas):In this model, software

or development environment is offered as a service.

The customer is given with the option to construct his

own particular applications, which run on the

suppliers’ base. A predefined combination of OS and

application servers is provided to the user.Google’s

App Engine, Force.com are providing a platform to

users.

 Infrastructure as a Service (Iaas): Standardized

services that are provided are Fundamental storage

and computing capabilities. Various resources are

made available and shared among users in order to

manage workload. The customer has to deploy his

own software on the infrastructure. Amazon, GoGrid,

3 Tera are examples of Iaas.

1.5 Types of Cloud
On the bases of access to clouds, they can be classified into

following types [6]:

 Public Cloud: Usersconnected to internet and having

access to the cloud space can use public cloud. It

refers to availability of computing resources to anyone

on “Pay As You Go Basis”. Public clouds are owned

and operated by third parties; they deliver superior

economies of scale to customers. All customers share

the same infrastructure pool with limited

configuration, security protections, and availability

variances.

 Private Cloud: A private cloud in an organization is

specific and limited access to a particular group. It can

be referred as computing services delivered

exclusively for the use of a particular organization or a

group. It utilizes the same architecture for scalability

and availability as the public cloud but it is limited to

a single organization. Two major concerns on data

security and control are addressed which are not there

in public cloud.

 Hybrid Cloud: A combination of public and private

cloud is named as hybrid cloud. With a Hybrid Cloud,

service providers can expand the adaptability of

computing byutilizingother Cloud Providers in full or

partial manner. The Hybrid cloud environment is

capable for providing on-demand, externally

provisioned scale with the capacity to enlarge a private

cloud to deal with any sudden surges in workload.

 Community Cloud: The organization with common

prerequisites share the cloud functionality making it

a hybrid cloud.It reduces the capital consumption by

imparting the cost among the associations. The

operation may be in-house or with an outsider on the

premises.

2. FAULT TOLERANCE IN CLOUD

COMPUTING
Fault Tolerance alludes to a methodology to system design

that permits a system to keep performing actually when one

of its parts falls flat or it can be defined as capacity of a

system to react nimbly to an unexpected equipment or

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 18, April 2015

13

programming break down. If not fully operational, fault

tolerance solutions may allow a system to continue

operating at reduced capacity rather than shutting down

completely following a failure [7].

2.1 Metrics for Fault Tolerance in Cloud

Computing

The existing fault tolerance technique in cloud computing

considers various parameters: throughput,response-time,

scalability, performance, availability, usability,reliability,

security and associated over-head. [8]

 Throughput–It defines the number of tasks whose

execution has been completed. Throughput of a

system should be high.

 Response Time- Time taken by an algorithm to

respond and its value should be made minimized.

 Scalability– Number of nodes in a system does not

affect the fault tolerance capacity of the algorithm.

 Performance– This parameter checks the

effectiveness of the system. Performance of the system

has to be enhanced at a sensible cost e.g. by allowing

acceptable delays the response time can be reduced.

 Availability: Availability of a system is directly

proportional to its reliability. It is the possibility that

an item is functioning at a given instance of time

under defined circumstances.

 Usability: The extent to which a product can be used

by a user to achieve goals with effectiveness,

efficiency, and satisfaction.

 Reliability: This aspect aims to give correct or

acceptable result within a time bounded environment.

 Overhead Associated: It is the overhead associated

while implementing an algorithm. Overheads can be

imposed because of task movements, inter process or

inter-processor communication. For the efficiency of

fault tolerance technique the overheads should be

minimized.

 Cost effectiveness: Here the cost is only defined as a

monitorial cost.

2.2 Fault Taxonomy
Cloud is prone to faults and they can be of different types.

Various fault tolerance techniques can be used at either task

level or workflow level to resolve the faults [9].

i) Reactive fault tolerance

Reactive fault tolerance techniques are used to reduce the

impact of failures on a system when the failures have

actually occurred. Techniques based on this policy are

checkpoint/Restart and retry and so on.

 Check pointing/Restart- The failed task is restarted

from the recent checkpoint rather than from the

beginning. It is an efficient technique for large

applications.

 Replication: In order to make the execution succeed,

various replicas of task are run on different

resourcesuntil the whole replicated task is not crashed.

HAProxy, Haddop and AmazonEc2 are used for

implementing replication.

 Job migration: On the occurrence of failure, the job

is migrated to a new machine. HAProxy can be used

for migrating the jobs to other machines.

Fig 1 Fault Tolerance Techniques

 SGuard:It isbased on rollback recoveryand can be

executed in HADOOP, Amazon Ec2.

 Retry: This task level technique is simplest among all.

The user resubmits the task on the same cloud

resource.

 Task Resubmission:The failed task is submitted

again either to the same machine on which it was

operating or to some other machine.

 User defined exception handling: Here the user

defines the specific action of a task failure for

workflows.

 Rescue workflow: It allows the system to keep

functioningafter failure of any task until it will not be

able to proceed without rectifying the fault.

ii) Proactive Fault Tolerance:

Proactive fault tolerance predicts the faults proactively and

replace the suspected components by other working

components thus avoiding recovery from faults and errors.

Preemptive migration, software rejuvenation etc. follow

this policy.

 Software Rejuvenation-the system is planned for

periodic reboots and every time the system starts with

a new state.

 Proactive Fault Tolerance using self-healing:
Failure of an instance of an application running on

multiple virtual machines is controlled automatically.

 Proactive Fault Tolerance using Preemptive

Migration:In this technique an application is

constantly observed and analyzed. Preemptive

migration of a task depends upon feed-back-loop

control mechanism.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 18, April 2015

14

2.3 Failure Detector
A failure detector is an application or a system that is used

to detect node failures or crashes. Failure detector can be

classified as reliable or unreliable on the basis of result it

produces. If the output of failure detector is always accurate

it is called as reliable failure detector. An unreliable failure

detector is one that provides information that is not

necessarily accurate and it may take very long time for

detection of faulty process and produce false results by

suspecting the processes that have not crashed. Most of the

failure detectors fall in this category.

Correctness properties of failure detectors:

 Completeness: when a process fails that process is

eventually detected by at least one other non-faulty

process.Completeness describes the capability of failure

detector of suspecting every failed process

permanently.

 Accuracy: There are no mistaken failure detections i.e.

when a process is detected as failed, it has actually

failed. Less number of false positives result in high

accuracy.

It is impossible to build a failure detector over a

realistic network that is 100% accurate and complete.

Real life failure detectors guarantee 100% completeness

but the accuracy is either partial or probabilistic. There

is a trade-off between completeness and accuracy

 Speed: Time for the detection of failure should be as

less as possible. In other words, time between

occurrence of a failure and its prediction must be small.

 Scale:There should be low and equally distributed load

on each process in a group and also low overall network

load.

 A failure detector should guarantee all of these

properties in spite of the fact that there can be arbitrary

simultaneous multiple process failures. In addition to

these properties Chandra and Toug[15] proposed a set

of metrics that specify Quality of service (QOS) of a

failure detector.

o Detection time (TD): Time that elapses from

crashing of a process p to the time when another

process q starts suspecting process p

permanently.

o Mistake recurrence time (TMR): Time between

two successive mistakes.

o Mistake Duration (TM): Time taken by a failure

detector to correct the mistake.

Failure detectors that adapt themselves to the changing

network conditions and application requirements are named

as adaptive failure Detectors [11]. Most adaptive failures

are based on heartbeat protocol where previous information

is used for the prediction of arrival time of next heartbeat.

2.4 Heartbeat Strategy for failure

detection
Heartbeat isa widely implemented strategy for failure

detectors. After a fixed interval of time every process p

send “I am alive” message to a process q. q waits for the

message from p till the expiration of timeout from p and if

the message is not received it adds p to list of suspected

processes. If q later receives “I am alive” message from p,

it will remove the process p from list of suspected

processes.

Chandra and Toug [15] proposed an improvement of this

classic heartbeat implementation. In the proposed

algorithm, the process q (monitoring process) uses a

sequence of fixed time points T1, T2, T3…called freshness

points in order to determine whether to suspect the process

p. The freshness point Ti is an estimation of arrival time of

heartbeat from p.

 The advantage of this algorithm is that detection time is

independent from the last heartbeat message, thus

increasing accuracy of the failure detector as it avoids

premature timeout.

2.5 Existing Strategies using Heartbeat
Chen FD [12]:

To figure out the estimation of the arrival time of the next

heartbeat, Chen FD uses arrival times sampled in the recent

past [15]. The expected time is set according to this

estimation along with a safety margin and the value is

recomputed for every interval.

Bertier FD[13, 14]:

Bertier introduced a failure detector principally intended

for LAN environments. Their proposed algorithm uses the

same mechanism as Chen for estimating expected arrival

times, but a dynamic way of computing freshness points

based on Jacobson’s estimation [17, 18]. Bertier FD adapts

the safety margin every time it receives a message. The

adaptation of the margin α is based on the variable error in

the last estimation.

The φ FD [15]:

Instead of providing information having a conventional

binary nature i.e. true or suspect, the φ-FD gives a

suspicion level on a continuous scale which makes it

different from Chen and Bertier- FD[11]. InφFD, the

suspicion level is given by a value called φ, expressed on a

scale that is dynamically adjusted to reflect current network

conditions.

3. RELATED WORK

WENBING ZHAO et al. (2010) proposed Low Latency

Fault Tolerance (LLFT) Model that utilizes

leader/follower replication approach and provides fault

tolerance for distributed applications deployed within a

cloud computing environment. The novel commitments of

the LLFT middleware incorporate the low Latency

Messaging Protocol, the leader-determined membership

protocol and the virtual determinizer Framework.

DAWEI SUNet al. (2013) put forward a dynamic adaptive

fault tolerance strategy (DAFT) that is focused around the

standards and semantics of cloud fault tolerance. An

analysis on relationship between different failure rates and

two different fault tolerance techniques, check-pointing and

replication has been carried out. A dynamic adaptive model

has been built by combining the two fault tolerance models

which helps to increase the serviceability.

ANJU BALA et al. (2014) put forward an idea of designing

an intelligent task failure detection models for facilitating

proactive fault tolerance by predicting task failures for

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 18, April 2015

15

scientific workflow applications. The working of model is

distributed in two modules. In first module task failures are

predicted with machine learning approaches and in second

module the actual failures are located after executing

workflow execution in cloud test-bed. Machine learning

approaches such as naïve Bayes, ANN, logistic regression

and random forest are implemented to predict the task

failures intelligently from the dataset of scientific

workflows.

HWAMIN LEE et al. (2009) proposed a fault tolerant and

recovery system called FRAS system (Fault Tolerant and

recovery Agent System). This is an agent based system

consisting of four types of agents. Recovery agent performs

roll back recovery after occurrence of failure. Information

agent hypothesis domain knowledge and information

during a failure free operation. Facilitator controls the

communication between agents and garbage collection

agent performs garbage collection of data.Agent recovery

algorithm is proposed to maintain a consistent state of a

system and prevent domino effect.

NAIXUE XIONG et al. (2007) Given that networks are

dynamic and unexpected, Naixue-Xiong, investigates

Failure detector properties with connection to real and

programmed fault-tolerant cloud based network systems, in

order to discover a general non-manual investigation

strategy to self-tune corresponding parameters to fulfill

user requirements. Based on this general self-tuning

method, they propose a dynamic and programmed Self-

tuning Failure Detector scheme, called SFD, as an

improvement over existing schemes.

ANJALI MESHRAM et al. (2013) proposed fault tolerance

model for cloud (FTMC). This model accesses the

reliability of computing nodes and choses the node for the

computation on the basis of reliability. The node can be

removed if it does not perform well.

RAVI JAWAHAR et al. (2012): provided a new dimension

for applications deployed in a cloud computing

infrastructure which can obtain required fault tolerance

properties from a third party. The model straightforwardly

work fault tolerance solution to user’s applications by

combining selective fault tolerance mechanisms and

discovers the properties of a fault tolerance solution by

method of runtime monitoring.

SAGAR C JOSHI et al (2014) proposed a fault tolerance

mechanism to handle server failures by migrating the

virtual machines hosted on the failed server to a new

location. Virtualization has been applied for data centers

giving rise to the concept of virtual Data Centers (VDC)

which have virtual Machine (VM) as the basic unit of

allocation. Using appropriate resource allocation

algorithms, multiple VDCs can be hosted on a physical data

center.

SHIVAM NAGPAL et al (2013) proposed a fault tolerant

model that takes decisions. Reliability of a node is

estimated on the basis of 2 parameters; accuracy and time.

If any of the nodes does not achieve the level then

backward recovery is performed by the system. This model

focuses on adaptive behavior of processing nodes and the

nodes are removed or added on the basis of reliability.

SHUN-SHENG et al (2010) proposed Dual Agreement

Protocol of Cloud Computing (DAPCC), keeping in

consideration the scalable and virtual nature of cloud.

DAPCC is proposed to tackle the agreement problem

caused by faulty nodes which send wrong messages, it tells

how the system achieves agreement in a cloud computing

environment.

HIEP NGUYEN (2013) proposes that one of the biggest

challenges for diagnosing an abnormal distributed

application is to pinpoint the faulty components. Black-Box

online fault localization system called F-chain has been

presented that can pinpoint faulty components immediately

after a performance anomaly is detected. F-chain is

presented as: a practical online fault localization system for

large scale Iaas clouds. This system does not depend upon

prior knowledge i.e. previously seen and unseen anomalies,

and is practical for Iaas clouds. To achieve higher

pinpointing accuracy, an integrated fault localization

scheme has been introduced that consider both fault

propagation patterns and inter component dependencies.

FABIO LIMA et al (2004) proposed adaptive failure

detectors that are adjustable to the changing

communication loads and use artificial neural networks for

predicting the arrival time of next heartbeat from a virtual

machine.

4. SCOPE OF STUDY

As per as the research gaps analyzed there is a potential

need for implementing autonomic fault tolerance by using

different parameters in cloud environment. During the

literature review the various challenges faced by

academicians in incorporating fault tolerance in cloud

computing is as follows:

 The heterogeneity of the cloud is the biggest hindrance

to localize the faults. There is a need to implement

efficient techniques for locating the faults.

 There are more chances of errors because processing

is done on remote computers.

 Failures occurring in the data centers are not in the

scope of the user’s organization necessitating the

implementation of an autonomous fault tolerance

technique for applications computing on cloud

environment.

 It is difficult to interpret the changing system state

because cloud environment are dynamically scalable,

unexpected and often virtualized resources are

provided as a service.

 Limited information is provided to the users because

of high system complexity, so it is difficult to design

an optimal fault tolerance solution.

 Fault Prediction and Monitoring framework needs to

be developed for real time applications that execute in

cloud environment.

5. METHODOLOGY
In order to achieve the objective “study and analyze various

fault tolerance and fault detection techniques in cloud

computing” a comprehensive literature survey was carried

out for cloud computing and various fault detection and

fault tolerance techniques implemented in cloud

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 18, April 2015

16

computing. An extensive literature review was carried out

for various models of artificial neural networkswhich can

be used for fault detection.

Our proposed failure detector is based on Heartbeat

strategy which uses Artificial Neural Network for the

estimation of expected arrival time from a virtual machine.

To implement the proposed algorithm using Cloudsim the

work is encompassed as:

i. The monitoring process q uses an estimated value

(TO) which conveys q how much time it has to

wait for the next heartbeat message from a

process p.

ii. If after TO, q does not receive the heartbeat

message from p, it will start suspecting p.

iii. TO is allowed to change over time to make it

adaptive with actual communication loads.

iv. Time interval (TO) comprise of two values: the

estimated time for the arrival of the next

heartbeat message (ET) and the safety margin (a).
The safety margin computed by ANN will help

the detector to avoid false detections.

TO=ET+ a

6. EXPECTED OUTCOMES
Expected outcomes of the algorithm will be:

 Pro-active fault tolerance mechanism designed for

dynamic clouds using Artificial Neural Network for

fault detection can prove more beneficial than

traditional models.

 The algorithm will provide detection time that is

independent from the last heartbeat message, thus

making the failure detector adaptive and increasing its

accuracy.

7. CONCLUSIONS
Cloud environment is dynamic which leads to unexpected

system behavior resulting in faults and failures. In order to

improve reliability and achieve robustness in cloud

computing, failures should be assessed and handled

effectively. Fault detection is one of the biggest challenges

in making a system fault tolerant.

This thesis proposes the use of artificial Neural Networks

for detecting the faults in cloud environment. The faults are

first detected and then suitable fault tolerance technique

(pre-emptive migration/ check-pointing) is applied to make

the system fault tolerant. The faults will be handled

proactively and this will help to resolve the problems

associated with fault tolerance techniques.

8. ACKNOWLEDGEMENTS
The author expresses his gratitude to Mr. HARSHPREET

SINGH Assistant Prof., School of Computer Science &

Engineering, LPU, India for his generous guidance,

continuous encouragement and estimated supervision.

9. REFERENCES
[1] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008,

November). Cloud computing and grid computing

360-degree compared. In Grid Computing

Environments Workshop, 2008. GCE'08 (pp. 1-10).

Ieee.

[2] Mell, P., & Grance, T. (2009). The NIST definition of

cloud computing. National Institute of Standards and

Technology, 53(6), 50.

[3] Plummer, D. C., Cearley, D. W., & Smith, D. M.

(2008). Cloud computing confusion leads to

opportunity. Gartner Report.

[4] Gong, C., Liu, J., Zhang, Q., Chen, H., & Gong, Z.

(2010, September). The characteristics of cloud

computing. In Parallel Processing Workshops

(ICPPW), 2010 39th International Conference on (pp.

275-279). IEEE.

[5] Carolan, S. J. (2009). Introduction to cloud

computing. Architecture. White Paper, 1st edn. Sun

Microsystems (June 2009).

[6] Furht, B. (2010). Cloud computing fundamentals.

In Handbook of cloud computing (pp. 3-19). Springer

US.

[7] Kaushal, V., & Bala, A. (2011). Autonomic fault

tolerance using haproxy in cloud environment. Int. J.

of Advanced Engineering Sciences and

Technologies, 7(2), 54-59.

[8] Patra, P. K., Singh, H., & Singh, G. (2013). Fault

Tolerance Techniques and Comparative

Implementation in Cloud Computing. International

Journal of Computer Applications, 64(14).

[9] Bala, A., & Chana, I. (2012). Fault Tolerance-

Challenges, Techniques and Implementation in Cloud

Computing. International Journal of Computer Science

Issues (IJCSI), 9(1).

[10] Tchana, A., Broto, L., & Hagimont, D. (2012, March).

Fault Tolerant Approaches in Cloud Computing

Infrastructures. In ICAS 2012, The Eighth

International Conference on Autonomic and

Autonomous Systems (pp. 42-48).

[11] Hayashibara, N., Defago, X., Yared, R., & Katayama,

T. (2004, October). The φ accrual failure detector.

In Reliable Distributed Systems, 2004. Proceedings of

the 23rd IEEE International Symposium on (pp. 66-

78). IEEE.

[12] Gupta, I., Chandra, T. D., & Goldszmidt, G. S. (2001,

August). On scalable and efficient distributed failure

detectors. In Proceedings of the twentieth annual ACM

symposium on Principles of distributed computing (pp.

170-179). ACM

[13] Maier, G., Sommer, R., Dreger, H., Feldmann, A.,

Paxson, V., & Schneider, F. (2008, August). Enriching

network security analysis with time travel. In ACM

SIGCOMM Computer Communication Review (Vol.

38, No. 4, pp. 183-194). ACM.

[14] Bahl, P., Chandra, R., Greenberg, A., Kandula, S.,

Maltz, D. A., & Zhang, M. (2007, August). Towards

highly reliable enterprise network services via

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 18, April 2015

17

inference of multi-level dependencies. In ACM

SIGCOMM Computer Communication Review (Vol.

37, No. 4, pp. 13-24). ACM.

[15] Chen, W., Toueg, S., & Aguilera, M. K. (2002). On

the quality of service of failure detectors. Computers,

IEEE Transactions on, 51(5), 561-580.

[16] Bertier, M., Marin, O., & Sens, P. (2002).

Implementation and performance evaluation of an

adaptable failure detector. In Dependable Systems and

Networks, 2002. DSN 2002. Proceedings.

International Conference on (pp. 354-363). IEEE.

[17] Bertier, M., Marin, O., & Sens, P. (2003, June).

Performance analysis of a hierarchical failure detector.

In 2013 43rd Annual IEEE/IFIP International

Conference on Dependable Systems and Networks

(DSN) (pp. 635-635). IEEE Computer Society.

[18] Défago, X., Urbán, P., Hayashibara, N., & Katayama,

T. (2005, March). Definition and specification of

accrual failure detectors. In Dependable Systems and

Networks, 2005. DSN 2005. Proceedings.

International Conference on (pp. 206-215). IEEE.

[19] A Vouk, M. (2008). Cloud computing–issues, research

and implementations.CIT. Journal of Computing and

Information Technology, 16(4), 235-246.

[20] Jhawar, R., Piuri, V., & Santambrogio, M. (2013).

Fault tolerance management in cloud computing: A

system-level perspective. Systems Journal, IEEE, 7(2),

288-297.

[21] Huth, A., & Cebula, J. (2011). The Basics of Cloud

Computing. United States Computer.

[22] Brian, O., Brunschwiler, T., Dill, H., Christ, H.,

Falsafi, B., Fischer, M., ... & Zollinger, M. (2012).

Cloud Computing. White Paper SATW.

[23] Youssef, A. E. (2012). Exploring Cloud Computing

Services and Applications.Journal of Emerging

Trends in Computing and Information Sciences, 3(6),

838-847.

[24] Xiong, N., Vasilakos, A. V., Yang, Y. R., Qiao, C., &

Andy, Y. P. (2012). A class of practical self-tuning

failure detection schemes for cloud communication

networks. IEEE/ACM Transactions on Networking

(ToN), submitted.

[25] Deng, J., Huang, S. H., Han, Y. S., & Deng, J. H.

(2010, December). Fault-tolerant and reliable

computation in cloud computing. In GLOBECOM

Workshops (GC Wkshps), 2010 IEEE (pp. 1601-

1605). IEEE.

[26] Zhao, W., Melliar-Smith, P. M., & Moser, L. E. (2010,

July). Fault tolerance middleware for cloud

computing. In Cloud Computing (CLOUD), 2010

IEEE 3rd International Conference on (pp. 67-74).

IEEE.

[27] de Araújo Macêdo, R., & e Lima, F. R. L. (2004).

Improving the quality of service of failure detectors

with SNMP and artificial neural networks. In Anais do

22o. Simpósio Brasileiro de Redes de

Computadores (pp. 583-586)

[28] Sun, D. W., Chang, G. R., Gao, S., Jin, L. Z., & Wang,

X. W. (2012). Modeling a dynamic data replication

strategy to increase system availability in cloud

computing environments. Journal of computer science

and technology, 27(2), 256-272.

[29] Meshram, A. D., Sambare, A. S., & Zade, S. D.

(2013). Fault Tolerance Model for Reliable Cloud

Computing.

[30] Nguyen, H., Shen, Z., Tan, Y., & Gu, X. (2013, July).

FChain: Toward black-box online fault localization for

cloud systems. In Distributed Computing Systems

(ICDCS), 2013 IEEE 33rd International Conference

on (pp. 21-30). IEEE.

[31] Joshi, S. C., & Sivalingam, K. M. (2014). Fault

tolerance mechanisms for virtual data center

architectures. Photonic Network

Communications, 28(2), 154-164.

[32] Wang, S. S., Yan, K. Q., & Wang, S. C. (2011).

Achieving efficient agreement within a dual-failure

cloud-computing environment. Expert Systems with

Applications, 38(1), 906-915.

[33] Malik, S., & Huet, F. (2011, July). Adaptive Fault

Tolerance in Real Time Cloud Computing. In Services

(SERVICES), 2011 IEEE World Congress on (pp. 280-

287). IEEE.

[34] Bala, A., & Chana, I. (2014). Intelligent failure

prediction models for scientific workflows. Expert

Systems with Applications.

[35] Chandra, T. D., & Toueg, S. (1996). Unreliable failure

detectors for reliable distributed systems. Journal of

the ACM (JACM), 43(2), 225-267

IJCATM : www.ijcaonline.org

