
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

18

Outlier Detection Techniques for SQL and ETL Tuning

Saptarsi Goswami
AKCSIT

 Calcutta University,

 Kolkata, India

Samiran Ghosh
AKCSIT

 Calcutta University,

 Kolkata, India

Amlan Chakrabarti
AKCSIT

 Calcutta University,

 Kolkata, India

ABSTRACT

RDBMS is the heart for both OLTP and OLAP types of

applications. For both types of applications thousands of queries

expressed in terms of SQL are executed on daily basis. All the
commercial DBMS engines capture various attributes in system

tables about these executed queries. These queries need to

conform to best practices and need to be tuned to ensure optimal

performance. While we use checklists, often tools to enforce the

same, a black box technique on the queries for profiling, outlier
detection is not employed for a summary level understanding.

This is the motivation of the paper, as this not only points out to

inefficiencies built in the system, but also has the potential to

point evolving best practices and inappropriate usage. Certainly

this can reduce latency in information flow and optimal
utilization of hardware and software capacity. In this paper we

start with formulating the problem. We explore four outlier

detection techniques. We apply these techniques over rich

corpora of production queries and analyze the results. We also

explore benefit of an ensemble approach. We conclude with
future courses of action. The same philosophy we have used for

optimization of extraction, transform, load (ETL) jobs in one of

our previous work. We give a brief introduction of the same in

section four.

General Terms

Data Mining,

Keywords

Outlier Detection, ETL Tuning, Query Tuning

1. INTRODUCTION
DBMS is center-piece for both Online Analytical (OLAP) as

well as Online Transactional Processing system (OLTP). We

would focus more an OLAP queries as the volume of the data
and diversity of workload is much richer in a Data warehouse

centric environment i.e. an OLAP system. Ref. [1] observes a

small sized data warehouse can have five terabytes (TB) of data.

There are as many as sixteen major proven DBMS vendors

(Oracle, Teradata, Microsoft, IBM, Asterdata, SAP/Sybase etc.).
Datawarehouse has evolved from a traditional business

intelligence platform to encompass Operational BI (Business

Intelligence), operational analytics and performance

management. There has been increased importance to near real

time data. There have been emerging trends like emphasis on
appliance based solution; column based stores and massively

parallel architecture, in Memory etc. However, still increased

demand for optimization techniques and performance

enhancement remain top of primary forces to impact DW

DBMS markets in 2011[1]. Another important force is ability to
support mixed workloads. Both of this motivates outlier

detection technique on the SQL queries for a better
understanding as well as optimization.

 There are very standard ways to optimize loading and retrieval

of data. First part of it depends on database engine; as example,

some database engines rely on hash based data distribution

(Teradata) resulting in as “shared nothing” architecture, where a
traditional DBMS engine will focus more on query rewrite,

materialized views, various kind of partitioning and indexing

strategy. A column based data base again seeks to leverage high

rate of compression because of similar domain of values. The

second part is underlying software and hardware (A RAID
solution, multi-processor etc.). The third part depends on the

database designers as they decide on the indexing and

partitioning strategies. The fourth part is more dependent on the

basic and advanced users. Their adherence to standard best

practices has lot to do with optimal performance of a query.

The scope of the paper is certainly addressing the third and more

specifically the fourth part of the optimization. There are

plethora of checklists, tools, and review processes present to

enforce the same. There are three issues with the same, one,

often they are so subjective and commonsensical it is hard to get
them validated. While validating against a rule like usage of

functions in a where clause is trivial a best practice like using as

many as temporary tables as possible for a large data processing

job is impossible to validate. Two, because of the above reason

it becomes manual, hence time consuming and error-prone. We
refer the above way of validation as „White Box Technique‟

simply because we need to inspect how it is done? Thirdly,

standards are continuously evolving because of both a product

version upgrade as well as increased understanding of best
practices with time. As a result, there might be inefficient

processes running in production which are inappropriately using

both the hardware and software. Its effect can be manifested in

two ways, one in increased information delivery latency, two in

taking incorrect and untimely decision on capacity.

We seek to address this very area in this paper. All this DBMS

engines stores execution related attributes in system tables. We

take a black-box view and try to look at the queries as groups.

We observe the general patterns, behaviors of the queries and

look at the queries which are outlying from the crowd. We
explore them further to identify corrective action. It can also

provide guidance on the optimal scheduling of parallel/serial,

dependent/independent queries by studying the temporal

behavior. However we have not covered the same in the scope

of the paper.

The organization of the paper is as follows: Section II briefs the

related works in this area. Section III introduces basic concepts

on Outlier Detection, and Section IV discusses on summary of

our work in ETL optimization. Section V provides a brief

mailto:samiranghosh@hotmail.com

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

19

overview on query optimization. Section VI details on the

experiment setup and results and Section VII discusses on

challenges, future course of work and conclusion.

2. RELATED WORK
There are two domains of work related to the paper. One,

various query optimization techniques Two, different outlier
detection techniques and their applications. [2], [3] refers in

details of outlier detection taxonomy in terms of application

domain, algorithms, input data, output, level of supervision,

evaluation techniques etc. There has been research work

addressing specific problems in the domain like high
dimensionality applying principal component analysis (PCA) [4]

or online detection from sensor data [5]. Application of outlier

detection techniques are in fraud detection [6], network intrusion

detection [7], medical health to name a few.

Extensive work in Query optimization has started form 1970.
[8],[9] can be referred for a detailed understanding on the query

optimization especially for a DBMS system. This is a well

developed and researched area and now recent works are more

specific like a „Query Hint Framework‟ in [10] or in

optimization of XML Queries [11].

While Query optimization takes place during and pre execution,

result of the queries in terms of various cost components is not

analyzed. We take this actual execution costs and use various

outlier detection techniques to find out outlying queries. We

have done similar outlier detection on ETL Execution traces in
[12]. We give a brief overview on the same in section four.

3. OUTLIER
[13] Defines an outlying observation, or outlier, is one that
appears to deviate considerably from other members of the

sample in which it occurs. Another definition as observed in

[14] is, it is an observation that deviates so much from other

observations as to arouse suspicion that it was generated by a

different mechanism. In Figure 1 we can perceive N1 and N2 are
normal regions where as O1 is an outlier.

Outliers can be classified in two major ways one where a

particular instance is an outlier. Alternatively a sequence of

observations can also be an outlier. Further, for individual

outlier an additional notion of context can be introduced by
looking at spatial and temporal attributes. The input data is

similar to any regular data mining task and can have binary,

categorical (nominal and ordinal), discrete and continuous data

types. The output of an outlier detection task would be either a

level (Outlier or normal) or a score. The later is more preferable
as it gives an idea on level of outlyingness. The methods can be

supervised, semi-supervised and unsupervised. Problem with

supervised and semi-supervised data is availability of labeled

data for training and normal behavior can evolve over time.

Unsupervised technique is better-off due to this, however,
suffers from relatively higher false alarm rate.

There are different ways of detecting outlier namely

classification based, Nearest Neighbor based, clustering based

and statistics based etc.. Nearest Neighbor can be further

classified in distance based and density based techniques. The
statistics based techniques will be either parametric (assumes a

data distribution model) or non-parametric. They are applied in

various domains like fraud detection, intrusion detection,

medical data, sports, novel topic detection etc. For a detailed

overview on the outlier we can refer [2]. Outliers are also

referred as anomaly, novelty, exception, surprise etc.

Fig. 1 Outlier in 2D Space

4. ETL OPTIMIZATION
ETL (Extract, Transform, and Load) layer is one of the most

important layers in the Data warehousing (DW) Scheme of

things. Companies spend billions of dollars in getting clean,
unambiguous data in their data warehouse. [15] Observes 70%

of the effort and time building a data warehouse goes into this

extracting, cleaning, conforming, transforming and loading data.

Basic philosophy of our work in [12] have been expressing ETL

jobs as vectors in multi dimensional space and determine the
jobs which are furthest from the group. There was a need of

information extraction module as the ETL logs are text files with

unstructured data. We followed the following steps:

1. We conducted a survey among a group of developers,

architects to shortlist few priority parameters of an
execution trace.

2. We construct information extract module for obtaining the

parameters from the log files.

3. We apply clustering algorithm on a set of 500 + production

logs.

4. We identify the ones in smaller clusters as outliers.

Below is the summary of the result

To summarize, our algorithm helped us to narrow down our

investigation scope from 530 to 44, which is 8% of the overall.

Between them 2 clusters with minimum population are the
actual outliers because of the connection type or the inefficient

source query, where as the other 3 are outliers because of huge

number of rows than the rest.

Our approach of extracting metrics from ETL log was very

simple yet immediate benefits can be achieved from the same.
This does not really need any significant additional investment

from the organization. All this information is already captured.

Neither the text parsing application nor the data mining

application involves noticeable cost. [16] Discusses on outlier

detection for process logs, however the focus is on finding the
structural pattern, the relationship among the activities and then

finding outlier. Output of the clustering algorithm is shown

below in Fig 2.

N

1

N2
O1

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

20

Fig. 2: Cluster of ETL jobs

In our current work we look at SQL Queries. We normalize the

data values and we propose to use an ensemble method rather
than a single method.

5. QUERY OPTIMIZATION
In this section we take a look at various ways of obtaining
optimal performance from a query. While much of it depends on

the optimizer and underlying hardware and software, a

significant part can be attributed to a proper database design and

correctly formulated queries. Query optimization is one of the

major steps in query processing. For a particular query there can
be variety of methods to get the results. Each method will have

different query cost. The task of optimization is picking up the

one with lowest cost. As there can be numerous numbers of

ways to obtain the result, heuristics is employed for pruning.

The cost can be broadly classified in the following five areas. A)
Access cost to Secondary Storage B) Storage cost (for

intermediate files) C) CPU or computation cost D) Memory

usage E) Communication cost. From a practical point of view

the major emphasis is on minimizing the access cost to

secondary storage. The costs are calculated on the basis of
statistics on relations and indexes (Number of data pages in a

relation, number of data pages in an index), selectivity of

predicates etc. Because of inaccurate information an

inappropriate plan might get selected. To avoid the same, query

hints can be used. This part is mostly taken care of by optimizer,
and most of the commercial optimizers are matured enough to

handle different kind of work loads. Another part of query

optimization is dependent on the designer decision in the way

he/she selects indexing, partitioning strategy etc. Certainly the

query performance can be augmented by using more memory or
processor. The next part is conformance to best practices by the

individual developer.

Now this is the part we see scope of inefficiencies as often

standards are evolving, as well as the validation part is mostly

manual hence error prone and time consuming and often the
existing queries are resource heavy which never comes under

the scanner. We address this particular area in our paper, where

we examine the execution characteristics of the queries and try

and find the anomalous or the outlying queries. The reason

might be varied like, incorrect query formulation, improper
statistics etc. While our method does not pinpoint the problem it

prunes the corpora significantly for an action.

6. OUR EXPERIMENTS AND RESULTS
We have used corpora of 26000+ database queries.

The different features that we have taken are SQLtext of the

query, CPU Cost, IO Cost, Memory required for intermediate

results and Number of records impacted. The basis of the same

are major cost components of a query cost model as discussed in

section five. The execution characteristics of the queries are
generally stored in system log tables for all major databases. So

formulating the query to get the same is a trivial task and should

be achievable for all vendors. Appropriate actual columns can be

found out by refereeing the product manual and technical

documentations.

We adapt a battery of methods approach as both the cost of false

negative and false positive might very high. Where the cost of

false positive (Actually normal but classified as outlier) is

higher, we can use an intersection of the results to ensure lesser

miss. Whereas when the cost of false negative (Actually an
outlier but classified as normal) is high, we can use union of the

results. The success of the combination will depend on the

diversity of the detectors. Needless to say all the techniques we

used are unsupervised as we do not have any labeled data.

6.1 Distance Based Approach
We picked up the five attributes as discussed in the previous

section. As a first step we normalized the data points. As

otherwise different attributes would have got different
importance. For normalizing, we have used median and inter-

quartile range, rather than mean and standard deviation, as the

former two are more robust with higher breakdown point. The

steps are as below

Step 1: Compute median and quartiles for each of the
dimensions or features

Step 2: Normalize the feature value for all the data instances.

Step 3: Compute Euclidian distance for each of the points.

Step 4: Sort by distance in descending order

Step 5: Pick up top r %

As an improvement point we can use Mahalnabis distance to

factor interdependence among the attributes. Also a precise

definition of r is elusive. Following is a summary of the

distribution in table 1.

Needless to say, we need to concentrate on 50+ populations.
While we examined the queries we saw complete cross-

products, usage of functions in where, use of derived tables, use

of analytical functions, usage of not in or not exists predicate

etc. Some of the queries looked inexpensive yet had high

distance necessitating introspection on the data distribution and
accuracy of statistics.

Table 1. Data Distribution

Distance Band No. of Observation

1-50 26141

51-100 265

101-150 53

151-200 33

201-250 8

250+ 8

Grand Total 26508

0

50

100

150

200

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

169

44 41
25 31 34 22 21 10 10

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

21

Two important observations here are, firstly there can be some

queries as outliers because of the sheer volume of the underlying

relations. Secondly the ones within the vicinity of origin cannot
be conclusively said to be conforming to best practice. Rather

the adverse effect of these queries is not so high so can be

temporarily ignored. There are two terms known as masking and

swamping with respective to outlier. Often so happens, one

point gets classified as an outlier only when another outlier is
removed. In this case, the former point is said to be masked by

the second point. Swamping is just the other way round; a point

is classified as an outlier on the presence of an outlying

observation. For more details [17] can be referred. So basically

even some outliers are masked. First we can remove the outliers
with highest outlyingness and these masked outliers with

relatively lesser outlyingness will be pronounced.

6.2 Clustering Based Approach
In this approach, we use the traditional K-Means. However a big

challenge here is determination of K. We can refer to [18] for a

solution of the same. Though objective of clustering is

partitioning data set in similar groups we can identify

observations as outliers by identifying clusters with minimal
population. The below is the frequency distribution of the

clusters. (By Default setting we have taken K as 10). Figure 3 is

a bar chart with the clusters and their corresponding count.

Figure 3: Cluster wise Distribution

The arrow in figure 3 is more of a slider which will be
requirement driven. Clustering is one of very popular methods

for data mining tasks. Some of the popular algorithms are K-

Means, Nearest Neighbor, PAM etc. For larger data sets,

sampling based approaches like CLARA or CLARANS are

used. For a detailed overview we can refer to [19].

6.3 Average Distance Based approach
The basic philosophy is if an instance is on average at a distance

higher than the other points then it is an outlier.

Step 1: Start with normalizing the values of all the features.

Step 2: Find distance between all points. (The problem of this

approach is time complexity.)

Step 3: Calculate average distance with neighbors.

Step 4: Pick up the top n%, sorting by the average distance.

Table 2 shows the distribution as per distance band.

Table 2: Data distribution as per average distance

Average Distance Band No. of Observation

0-50 26309

51-100 144

101-150 40

151-200 9

200+ 6

0-50 26309

Grand Total 26508

6.4 Density Based Approach
There can be a dense population away from the center of the

data. Distance based outliers will end up classifying them as

outliers. A density based approach attempt to overcome the
same. A density based approach looks at regions as a dense or a

sparse region. The population at a sparse region is identified as

outliers. We use local outlier factor (LOF) for the same, details

of the same can be found in [20]. It observes the global view

taken is meaningful and adequate under certain condition but not
satisfactory for general condition where clusters of different

density exist. So this is optimized for not only identifying global

outliers but local outliers as well. We give a simplified account

of the algorithm by taking K as 10.

Step 1: For each object find a distance D, such that there are at
least 10 neighbors within that distance.

Step 2: Find the neighbors of each point such that their distance

with the point is less than or equal to D. Cardinality of such a set

can be more 10. As example from a point O, there can be 8

points within a distance of 5 and then 3 points at distance 6. In
this case D is 6 and the cardinality of the set is 11, rather than

10.

Step 3: Local reachability density for each point is calculated

which is nothing but the inverse of average reachability distance

with its neighbors. An average reachability distance is a distance
metric which is calculated using the following basis

If it is less than d, then d. Else the actual distance

Step 4: A Local Outlier Factor (LOF) for each point is

determined, which is average of the ratio between the neighbors‟
reachability index with its own.

We broke this in multiple tables and analyzed the results. The K

taken in this case was 10. Interestingly query Id 26507, which

we elaborate in further details in the result section was no more

detected as an outlier as it has many neighbors with similar local
reachability density. Hence „K‟ can play a big role in this

algorithm. As an improvement we can think of normalizing the

local reachability density before calculating the local outlier

factor. Because of the not so encouraging results we do not

consider this method for further combination.

6.5 Combining the Approaches
[19] Describes an ensemble of outliers as different outliers are

specialized for different kind of data. Various kinds of
combination techniques can be employed like weighted sum,

majority voting or weighted majority voting. A challenge is

combining level based outliers with score based outliers. The

0

5000

10000

15000

20000

25000

30000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

25603

433
129

75
69

46
49

55
39 10

Outlier

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

22

paper [19] shows a combination gives better result on real

datasets. We propose a very simple combination framework of

taking either the union or intersection, depending on the
availability of IT Budget at this point of time. Needless to say a

union would be more robust as far as false negatives are

concerned. At the same time it will take more effort which

translates to a higher dollar value. Our approach suffers from

lack of calibration and any other combining function can be
used, however that will be at the cost of additional computing

power.

We start with a simple setting of taking first 1% as outlier, as

both method one and method three produces distances. For the

third one we start with the lowest populated cluster and go on
taking the next cluster until the sum is more than 1%.

Step 1: Sort the cluster by population ascending

Step2: Sum = sum +Population (Clust i)

Step 3: Check if Sum > n% * Total Population

Step 4: If yes continue from Step 2 with the next cluster.

Using the same we pick-up cluster 6 to 10. The combined

population is 268. We can further refine it to make it exact n%

by ranking populations in the last included cluster by its distance

from the cluster center. Higher the distance from the center,

higher is the rank.

When we combine & analyze, the combination gives a total of

278 observations, as shown in Table 3.

Table 3: Combination of methods

No. of Methods No. of Observation

1 15

2 15

3 248

Grand Total 278

So if we take the union method we would be dealing with all
278, where as if we take an intersection we would go with 248.

There can‟t be confidence attached with the detectors as firstly

this is an unsupervised method and secondly verification of its

outlyingness is time consuming & dependent on technical

experts.

6.6 Analyzing the Results
We inspect and sight the cases that we have seen. The exact

relation names are confidential; hence we will be using fictions
aliases. We start examining the query with highest distance from

origin.

SELECT SRC.A , TGT.A FROM (SELECT A FROM T1

WHERE Batch = 1678) SRC

INNER JOIN (SELECT A FROM T2 WHERE Batch = 1668

) TGT

ON SRC.A <> TGT.B ;

The above query is surely incorrectly formulated. Looking at the

same we can understand the objective is to find out values of

Column A which exist only in one table. However the above

query will result in almost a cross join. Hence the cost of the

same is very high. Next five observations are instances of the

same query. The same query is topping in the average distance.
The same query is also appearing in the cluster with the lowest

population that is cluster 10.

We examine the next one and following is the query.

SELECT

COALESCE((ADD_MONTHS(a.Some_date , (C.Vrsn -

Vrsn) * - 12)

(FORMAT 'MMDDYYYY') (CHAR (8))) , ' ')

FROM T1 a , T2 b ,T3 c

WHERE SUBSTR (TRIM (A.Field) , 1 , 1) IN

'4' ;

At a first look we might feel, this is a case where the query is not

hitting the index and going for a full table scan because a
function is used on the column. However a careful inspection

reveals three tables are being used without any join condition.

As the earlier case the same query is appearing in cluster 10 and

in top ranks of average distance.

The detectors that we use are more of similar nature hence the
intersection is high, the diverse the detectors the more benefit

we achieve as there is a cost involved in using more than one

detectors and then combining them.

A very important understanding here is though LOF has a much

sounder foundation it did not seem to give correct result, which
reinforces the view of choosing detection methods which are

suited for the particular application domain. As example there

can be a query which is very infrequent and rare in its kind and

can be identified as an outlier by LOF. However this are not of

the interest as far as resource consumption and query
optimization is concerned. As mentioned in the motivation

profiling of queries are also going to be very important and here

approaches like LOF will be beneficial, however as here our

focus is more to find costlier queries, this method did not

produce good results.

7. CONCLUSION
In this paper we have taken a very different approach to query

optimization. While standard techniques are applied while
formulating the query, in reality the cost of queries changes

significantly because of various reasons. We propose a

framework here for identifying queries with highest distance

from the group and then taking corrective action. We have
proposed three methods for the same and suggested very simple

way of combining them however even individually all three

methods are effective.

As a next step, we plan to study the temporal behavior of the

queries as well. We would like to find best performing queries
for an imitable best practice. We would also work on making

our combining framework more robust and formal. We would

also like to use it for a better insight in the executed queries as

understanding of workloads is getting prominence [1]. This will

enable an optimal planning for capacity as well as scheduling.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

23

In this paper, we take a unique approach towards query tuning.

Though this is a much matured space, our approach is very

different from the existing ones. The focus of the paper is also
completely aligned with the major trends as reckoned by Gartner

[1].This offers immediate benefits in terms of reduction of

information latency as well as an optimal use of hardware and

software.

8. REFERENCES
[1] Donald Feinberg, Mark A. Beyer , Gartner RAS Core

Research Note G00209623, 28 January 2011

[2] J. Hodge (vicky@cs.york.ac.uk)∗ and Jim Austin , “A

Survey of Outlier Detection Methodologies” Victoria

Artificial Intelligence Review, 2004

[3] V Chandola, A Banerjee, B Kuman, Anomaly Detection: A

Survey, ACM Computing Survey 2009

[4] P. Filzmoser, R. Maronna, and M. Werner, “Outlier
identification in high dimensions”, Computational Statistics

and Data Analysis , Volume 52, Issue 3, 1 January 2008,

Pages 1694-1711

[5] S. Subramaniam et. al, “Online outlier detection in sensor

data using non-parametric models”, VLDB '06 Proceedings

of the 32nd international conference on Very large data

bases

[6] Clifton Phua, Vincent Lee, Kate Smith, Ross Gayler, “A
Comprehensive Survey of Data Mining-based Fraud

Detection Research”, arXiv:1009.6119v1

[7] Wenke Lee and Salvatore J. Stolfo ,“Learning Patterns

from Unix Process Execution Traces for Intrusion

Detection” AAAI Workshop on AI Approaches to Fraud

Detection, 1997

[8] Surajit Chaudhuri , “An overview of query optimization in

relational systems” , PODS '98 Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database system

[9] Matthias Jarke and Jurgen Koch, “Query Optimization in

Database Systems” , ACM Computing Surveys (CSUR)

Surveys Homepage archive Volume 16 Issue 2, June 1984

[10] Nicolas Bruno, Surajit Chaudhuri and Ravi Ramamurthy,

“Power Hints for Query Optimization”, Data Engineering,

2009. ICDE '09. IEEE 25th International Conference

[11] Yuqing Wu, Jignesh M. Patel and H. V. Jagadish,

“Structural Join Order Selection for XML Query

Optimization”, 19th International Conference on Data

Engineering (ICDE'03)

[12] Samiran Ghosh, Saptarsi Goswami, Amlan Chakrabarti ,
“Outlier detection from ETL Execution trace”, 2011

International Conference on Network and Computer

Science (ICNCS 2011)

[13] Barnett, V. and Lewis, T.: 1994, “Outliers in Statistical

Data.” John Wiley and Sons.,3 edition.

[14] Hawkins D, ”Identification of Outliers”, Chapman and

Hall, 1980

[15] Kimbal, Ralph and Caserata, Joe,”The Datawarehouses

ETL Tool Kit.” 1. s.l. : Wiley. p. 528. 978-0764567575.

[16] Lucantonio Ghionna et. al ,”Outlier detection techniques

for process mining applications,” ISMIS'08: Proceedings of
the 17th international conference on Foundations of

intelligent systems”

[17] Irad Ben-Gal, “Outlier Detection”, Data Mining and

Knowledge Discovery Handbook, 2010

[18] Ujjwal Das Gupta, Vinay Menon, Uday Babbar.,

“Detecting the number of clusters during Expectation-

Maximization clustering using Information Criterion”,

2010 Second International Conference on Machine

Learning and Computing

[19] Rui Xu; Wunsch, D., II, “Survey of clustering

algorithms”, IEEE Transactions on Neural Networks

[20] Markus M. Breunig et. al , “LOF: identifying density-based
local outliers”, SIGMOD '00 Proceedings of the 2000 ACM

SIGMOD international conference on Management of data

[21] Hoang Vu Nguyen, Hock Hee Ang and Vivekanand

Gopalkrishnan, “Mining Outliers with Ensemble of

Heterogeneous Detectors on Random Subspaces”, Database

Systems for Advanced Applications, 2010.

http://www.springerlink.com/content/?Author=Hoang+Vu+Nguyen
http://www.springerlink.com/content/?Author=Hock+Hee+Ang
http://www.springerlink.com/content/?Author=Vivekanand+Gopalkrishnan
http://www.springerlink.com/content/?Author=Vivekanand+Gopalkrishnan
http://www.springerlink.com/content/?Author=Vivekanand+Gopalkrishnan

