
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

41

Using Treaps for Optimization of Graph Storage

Dharya Arora

Student (ME)
Department of CSE
Thapar University

Patiala, India

Shalini Batra
Assistant Professor
Department of CSE
Thapar University

Patiala, India

ABSTRACT
Adjacency matrix is an effective technique used to represent a

graph or a Social network comprising of large number of

vertices and edges. The intent is of this paper is to optimize

the graph storage and mapping without using a large

adjacency matrix to represent a large graph. A special data

structure Treap, a combination of binary search tree and heaps

has been used as a replacement to a large adjacency matrix. It

has been experimentally evaluated that the proposed approach

significantly improves the space occupied by adjacency

matrix and helps the graph to grow dynamically without

affecting the current data structure.

General Terms

 Treaps, Adjacency matrix

Keywords

Storage optimization, Graph mapping, Treap data structure,

Adjacency matrix

1. INTRODUCTION
The enormous growth of Internet and the development of new

applications and services have dramatically increased the

number of users, resulting in increased storage size [14].

Although the size of the social networks has grown

exponentially, no standard method has been designed for

efficient mapping of a graph or social network onto a

compatible data structure. As internet in itself is a social

network graph comprises of nodes and edges so with the

increased size of graph day by day directly affect the storage

being used such as adjacency matrix [1, 11]. Data structures

used for adjacency matrices usually have two components: (i)

an array that stores all the entries of the matrix, (ii) pointer to

an array which would take care of increased size of entries in

it [2].

Major problem associated with the use of adjacency matrix is

that it has static array allocation and fixed entries for

increased size of network creates problem during insertion.

Secondly, dynamic array allocation requires more time to

create a new array of increase size and then move the entries

from previous array to new array and then deallocating the

previous array [19, 20]. Finally, although the adjacency matrix

for a graph is sparse, every null entry would take space. For

dynamically increased network and efficient storage

optimization [3, 10, 16, 17] this paper proposes the use of

Treaps to store a graph with its mapping information in an

efficient manner [4, 15, 18].

1.1 Treaps
A treap is a binary search tree in which each node has both a

key and a priority [22, 23, 24]. Nodes are ordered in an in-

order fashion by their keys and are heap-ordered by their

priorities [5, 21]. The idea behind Treaps is to use

randomness, to balance binary search trees [6, 13]. The Treap

and the randomized binary search tree are two closely related

forms of binary search tree data structures that maintain a

dynamic set of ordered keys and allow binary searches among

the keys. After any sequence of insertions and deletions of

keys, the shape of the tree is a random variable with the same

probability distribution as a random binary tree; in particular,

with high probability its height is proportional to the

logarithm of the number of keys, so that each search,

insertion, or deletion operation takes logarithmic time to

perform [7, 9].

2. PROPOSED DATA STRUCTURE:

TREAPS
This paper proposes creation of Treaps for storing and

mapping graph which can be a friendship network, a railway

network, a chemical compound structure etc [12]. Various

operations in a Treap can be performed such as insert new

node, delete a node, traverse a node.

2.1 Algorithm for insertion of a node
To insert a node in a Treap:

Input:

 Key value of node as „key‟

 Priority of node as „pr‟

 Root node of Treap as „root‟

Output:

 Insert the new node to its appropriate position by

treap rotations.

1. Set new ← Getnode() // Create an empty new node

2. Set new→key=key

3. Set new→pr=pr

4. if root = NULL then

5. Set root=new

6. return

7. Set ptr=root

8. Repeat while ptr ≠ NULL do

9. Set prev=ptr

10. if new→key > ptr→key then

11. ptr=ptr→right

12. side=right

13. else

14. ptr=ptr→left

15. side=left

16. Set prev→side=new

17. Set ptr=new→parent

18. Repeat while new→pr < ptr→pr do

19. temp=ptr

20. ptr=new

21. if temp→key < ptr→key then

22. prev=ptr→left

file:\\wiki\Binary_search_tree
file:\\wiki\Data_structure
file:\\wiki\Binary_search
file:\\wiki\Random_variable
file:\\wiki\Random_binary_tree
file:\\wiki\Logarithm

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

42

23. ptr→left=temp

24. if prev→key < temp→key then

25. temp→left=prev

26. else

27. temp→right=prev

28. else

29. prev=ptr→right

30. ptr→right=temp

31. if prev→key < temp→key then

32. temp→left=prev

33. else

34. temp→right=prev

35. go to step 16 until new→key < new→parent→key

36. return

Algorithm 1: Insert a node in a Treap

3. IMPLEMENTATION DETAILS
Let G be a graph comprises of two main components (V, E)

where V contains a set of vertices of graph and E contains a

set of edges of graph [8]. To store the whole graph

corresponds to its mapping information; consider a graph

having few nodes as shown in figure 1;

Figure 1: A Random Graph

The corresponding adjacency matrix for the above graph as

shown in figure 1 would be given as in figure 2. If the given

adjacency matrix is used to store and map the graph

information then it is clear from the figure 2 that the storage

schema used is not scalable for dynamic graph approach. But

as the applications are increasing day by day where graph has

a strong impact to represent a problem domain, in that case

using static allocation pays no attention and cause problems

during dynamic allocation.

To implement the concept, for easy understanding of graph

consider its corresponding adjacency matrix so that it can be

easy to understand how a graph can be stored and mapped to a

Treap.







































0 0 1 0 0 0 0 0 0 1

0 1 0 1 1 1 1 0 0 0

1 0 0 1 1 1 0 0 1 0

0 1 1 0 1 1 0 0 0 0

0 1 1 1 0 1 1 0 1 1

0 1 1 1 1 0 1 1 0 0

0 1 0 0 1 1 0 0 0 1

 0 0 0 0 0 1 0 0 0 0

0 0 1 0 1 0 0 0 0 1

1 0 0 0 1 0 1 0 1 0

Figure 2: Adjacency matrix of a graph

This is an adjacency matrix corresponding to a graph of 10

nodes. Each row of matrix depicts the adjacency information

of each node of graph respectively. Since Treap require a key

and a priority, key is taken from the unique name of a node

and priority would be the no. of links corresponding to a each

node i.e. no. of 1‟s to its row is its priority.

Table 1: Adjacency table

A B C D E F G H I J

4 3 1 4 6 7 4 5 5 2

3.1.1 Structure of a node
Each node of Treap has a specific internal representation.

Each node will store the information about its key and priority,

pointers to left and right child and a pointer to an array

containing the name of its adjacent node such as in figure 3:

Figure 3: Node representation of a Treap

3.1.2 Insertion of node
From Table 1, key value would be „A‟ and its priority is „4‟ so

initially there is no node in the Treap so new node inserted in

itself act as a root of the Treap such as:

Figure 4: First node of Treap

When another node from table 1, is inserted then the Treap

would be:

Figure 5: Insertion after new node

A

B
J

H

G

F

E

D

C
I

Key Value Priority

Pointer to an array of adj. nodes

Left child ptr Right Child ptr

 ……

A, 4

Root

A, 4

B, 3

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

43

Nodes are inserted according to BST based on their key value.

Here A is less and B is more so more value node comes at

right child. Now according to Treap rule, rotation would takes

place because priority of B is less than A and min heap is

being considered.

Figure 6: Treap after Rotation

Now B becomes the root of the Treap and A comes at left to B

because key value is less so according of BST rule, it becomes

left child. After inserting another node from table 1, structure

of Treap would be shown as in Figure 7.

Figure 7: Treap after insertion of new node

Again the same rotation would take place because priority of

C is less than B so after rotation treap formed would be shown

as in Figure 8:

Figure 8: Treap after rotation

Final structure of the Treap after insertion of series of nodes

from table 1, one by one would be shown in Figure 9:

Figure 9: Treap after insertion of last node

Since the newly inserted node makes the Treap unbalanced as

the priority of J is less than to its parent node as well as to its

ancestor nodes, so after performing a series of transformations

the final result which will be achieved is shown in Figure 10.

Figure 10: Final output

As seen in Figure 10, every sub-tree and sub-sub-tree in itself

satisfy the property of Treaps. Thus the graph which would be

actually stored in adjacency matrix can now be stored in

Treaps where it is easy to modify and scalable to large

networks which adjacency matrix fails for storing graphs of

dynamic nature.

4. CONCLUSIONS
The current work done has a strong impact on the storage

behavior of social network or graph. The approach used here

gives promising results and the storage schema in itself has a

A, 4

B, 3

B,3

A,4

B,3

A,4 C,1

B,3

A,4 C,1

C,1

B,3

A,4

C,1

B,3

A,4

D,4

G,4

H,5

I,5

J,2

E,6

F,7

D,4

G,4

H,5

I,5

E,6

F,7

C,1

B,3

A,4

J,2

Min Heap

+ BST

M
in

 H
ea

p

+
 B

S
T

Min Heap + BST

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

44

strong implementation impact for optimization of space and

query time. The technique discussed in this paper is easy to

implement and scalable to a large network. By using Treaps

the space used for storing a graph, as compared to an

adjacency matrix, is tremendously decreased because of the

use of linked list and pointers. Above all this technique can

work for other social network when there are less parameters

such as transport network, railway network, chemical

compounds, etc.

5. REFERENCES
[1] J.B. Shearer and R. J. McEliece. 1977: “There is no Mac

Williams identity for convolutional codes”; IEEE Trans.

Inform. Theory, IT-23:775-776.

[2] Bernard Elspas and James Turner. 1970: “Graphs with

circulant adjacency matrices”, 297

[3] A. Cohen and V. Lefebvre. 1988: “Optimization of storage

mappings for graphs” Technical Report 1998/46, PRiSM,

U. of Versailles.

[4] H. Orsila, E. Salminen, M. H¨annik¨ainen, T.D.

H¨am¨al¨ainen. 2007: “Optimal Subset Mapping And

Convergence Evaluation of Mapping Algorithms for

Distributing Task Graphs on Multiprocessor”; SoC,

Symposium on SoC.

[5] Chris Lattner: “Heap Data Structure Analysis and

Optimization “, Ph.D. Thesis

[6] R. W. Irving and L. Love. 2003: “The suffix binary search

tree and suffix AVL tree”; J. Discrete Algorithms, 1(5-

6):387-408.

[7] G. D. Forney and M. D. Trott. 2004: “The Dynamics of

Group Codes: Dual Abelian Group Codes and Systems”;

IEEE Trans. Inform. Theory, IT-50:2935-2965.

[8] A. A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty,

K. Dasgupta, S. Mukherjee, A. Joshi. 2006: “On the

structural properties of massive telecom call graphs:

findings and implications”; In CIKM ‟06: Proceedings of

the 15th ACM international conference on Information

and knowledge management, New York, NY, USA,

ACM, 435–444

[9] M. Newman, A.-L. Barabasi, D. J. Watts. 2006: “The

Structure and Dynamics of Networks”

[10] G. Pike. 2002; “Reordering and Storage Optimizations

for graphs”; PhD thesis, University of California,

Berkeley.

[11] Frank O. 1981; “A Survey of Statistical Methods for

Graph Analysis. Sociological Methodology”, 110-155.

[12] Brewer, D.D., Webster, C.M.. 1999; “Forgetting of

friends and its effects on measuring friendship networks.

Social Networks” 21, 361–373.

[13] Pattison, P.E., Robins, G.L. 2002; “Neighbourhood-

based models for social networks. Sociological

Methodology” 32, 301–337.

[14] Watts, D.J. 1999; “Small Worlds: The Dynamics of

Networks between Order and Randomness”; Princeton

University Press, Princeton, NJ.

[15] Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau,

S.M., Morris, M. 2008. Statnet: “Software Tools for the

Representation, Visualization, Analysis and Simulation

of Network Data”; Journal of Statistical Software 24 (1),

URL, http://www.jstatsoft.org/v24/i01.

[16] A. Cohen. 1999; “Parallelization via constrained storage

mapping optimization”;

[17] A. Cohen and V. Lefebvre. 1988; “Optimization of

storage mappings for parallel programs”; Technical

Report 1998/46, PRiSM, U. of Versailles.

[18] P. Feautrier. 2001; “The use of farkas lemma in memory

optimization”.

[19] A. W. Lim, S.-W. 2001; “Liao, and M. S. Lam. Blocking

and array contraction across arbitrarily nested loops

using affine partitioning”; In Proceedings of the eighth

ACM SIGPLAN symposium on Principles and practices

of parallel programming, pages 103-112, ACM Press.

[20] W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe.

2001; “A unified framework for schedule and storage

optimization”; In Proceedings of the ACM SIGPLAN

2001 Conference on Programming Language Design and

Implementation, pages 232-242, ACM Press.

[21] Blelloch, Guy E, Reid-Miller, Margaret, (1998), "Fast set

operations using Treaps", Proc. 10th ACM Symp.

Parallel Algorithms and Architectures (SPAA 1998),

New York, NY, USA: ACM, pp. 16–26.

[22] Martinez, Conrado, Roura, Salvador. 1997, "Randomized

binary search trees", Journal of the ACM 45 (2): 288–

323

[23] R. Seidel and C. R. Aragon. 1996; “Randomized search

trees”; Algorithmica, 16:464-497.

[24] D. D. Sleator and R. E. Tarjan. 1985; “Self-adjusting

binary trees”; Journal of the Association for Computing

Machinery,

.

http://www.nondot.org/sabre/
http://en.wikipedia.org/wiki/Symposium_on_Parallel_Algorithms_and_Architectures
http://en.wikipedia.org/wiki/Symposium_on_Parallel_Algorithms_and_Architectures
http://en.wikipedia.org/wiki/Symposium_on_Parallel_Algorithms_and_Architectures
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.243
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.243
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.243

