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ABSTRACT 
Adjacency matrix is an effective technique used to represent a 

graph or a Social network comprising of large number of 

vertices and edges. The intent is of this paper is to optimize 

the graph storage and mapping without using a large 

adjacency matrix to represent a large graph. A special data 

structure Treap, a combination of binary search tree and heaps 

has been used as a replacement to a large adjacency matrix. It 

has been experimentally evaluated that the proposed approach 

significantly improves the space occupied by adjacency 

matrix and helps the graph to grow dynamically without 

affecting the current data structure. 
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1. INTRODUCTION 
The enormous growth of Internet and the development of new 

applications and services have dramatically increased the 

number of users, resulting in increased storage size [14]. 

Although the size of the social networks has grown 

exponentially, no standard method has been designed for 

efficient mapping of a graph or social network onto a 

compatible data structure. As internet in itself is a social 

network graph comprises of nodes and edges so with the 

increased size of graph day by day directly affect the storage 

being used such as adjacency matrix [1, 11]. Data structures 

used for adjacency matrices usually have two components: (i) 

an array that stores all the entries of the matrix, (ii) pointer to 

an array which would take care of increased size of entries in 

it [2]. 

Major problem associated with the use of adjacency matrix is 

that it has static array allocation and fixed entries for 

increased size of network creates problem during insertion.  

Secondly, dynamic array allocation requires more time to 

create a new array of increase size and then move the entries 

from previous array to new array and then deallocating the 

previous array [19, 20]. Finally, although the adjacency matrix 

for a graph is sparse, every null entry would take space. For 

dynamically increased network and efficient storage 

optimization [3, 10, 16, 17] this paper proposes the use of 

Treaps to store a graph with its mapping information in an 

efficient manner [4, 15, 18]. 

1.1 Treaps 
A treap is a binary search tree in which each node has both a 

key and a priority [22, 23, 24]. Nodes are ordered in an in-

order fashion by their keys and are heap-ordered by their 

priorities [5, 21]. The idea behind Treaps is to use 

randomness, to balance binary search trees [6, 13]. The Treap 

and the randomized binary search tree are two closely related 

forms of binary search tree data structures that maintain a 

dynamic set of ordered keys and allow binary searches among 

the keys. After any sequence of insertions and deletions of 

keys, the shape of the tree is a random variable with the same 

probability distribution as a random binary tree; in particular, 

with high probability its height is proportional to the 

logarithm of the number of keys, so that each search, 

insertion, or deletion operation takes logarithmic time to 

perform [7, 9]. 

2. PROPOSED DATA STRUCTURE: 

TREAPS  
This paper proposes creation of Treaps for storing and 

mapping graph which can be a friendship network, a railway 

network, a chemical compound structure etc [12]. Various 

operations in a Treap can be performed such as insert new 

node, delete a node, traverse a node. 

2.1 Algorithm for insertion of a node 
To insert a node in a Treap:  

Input: 

 Key value of node as „key‟ 

 Priority of node as „pr‟ 

 Root node of Treap as „root‟  

Output: 

 Insert the new node to its appropriate position by 

treap rotations. 

1. Set new ← Getnode() // Create an empty new node 

2. Set new→key=key 

3. Set new→pr=pr  

4. if root = NULL then 

5.   Set root=new 

6.   return 

7. Set ptr=root 

8.   Repeat  while ptr ≠ NULL do 

9.    Set prev=ptr 

10.    if new→key > ptr→key then 

11.        ptr=ptr→right 

12.     side=right 

13.    else 

14.     ptr=ptr→left 

15.     side=left 

16.  Set prev→side=new 

17.  Set ptr=new→parent 

18.  Repeat while new→pr < ptr→pr do 

19.   temp=ptr 

20.   ptr=new 

21.   if temp→key < ptr→key then 

22.      prev=ptr→left 
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23.      ptr→left=temp 

24.      if prev→key < temp→key then 

25.    temp→left=prev 

26.      else 

27.    temp→right=prev 

28.   else 

29.      prev=ptr→right 

30.      ptr→right=temp 

31.      if prev→key < temp→key then 

32.    temp→left=prev 

33.      else 

34.    temp→right=prev 

35.  go to step 16 until new→key < new→parent→key 

36.  return 

Algorithm 1: Insert a node in a Treap 

3. IMPLEMENTATION DETAILS  
Let G be a graph comprises of two main components (V, E) 

where V contains a set of vertices of graph and E contains a 

set of edges of graph [8]. To store the whole graph 

corresponds to its mapping information; consider a graph 

having few nodes as shown in figure 1;  

 

 

Figure 1: A Random Graph 

The corresponding adjacency matrix for the above graph as 

shown in figure 1 would be given as in figure 2. If the given 

adjacency matrix is used to store and map the graph 

information then it is clear from the figure 2 that the storage 

schema used is not scalable for dynamic graph approach. But 

as the applications are increasing day by day where graph has 

a strong impact to represent a problem domain, in that case 

using static allocation pays no attention and cause problems 

during dynamic allocation. 

To implement the concept, for easy understanding of graph 

consider its corresponding adjacency matrix so that it can be 

easy to understand how a graph can be stored and mapped to a 

Treap. 
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Figure 2: Adjacency matrix of a graph 

This is an adjacency matrix corresponding to a graph of 10 

nodes. Each row of matrix depicts the adjacency information 

of each node of graph respectively. Since Treap require a key 

and a priority, key is taken from the unique name of a node 

and priority would be the no. of links corresponding to a each 

node i.e. no. of 1‟s to its row is its priority.  

Table 1: Adjacency table 

A B C D E F G H I J 

4 3 1 4 6 7 4 5 5 2 

3.1.1 Structure of a node 
Each node of Treap has a specific internal representation. 

Each node will store the information about its key and priority, 

pointers to left and right child and a pointer to an array 

containing the name of its adjacent node such as in figure 3: 

 

 

 

 

 

 

Figure 3: Node representation of a Treap 

3.1.2 Insertion of node 
From Table 1, key value would be „A‟ and its priority is „4‟ so 

initially there is no node in the Treap so new node inserted in 

itself act as a root of the Treap such as: 

 

 

 

 

 

 

Figure 4: First node of Treap 

When another node from table 1, is inserted then the Treap 

would be: 

 

 

 

 

 

 

 

Figure 5: Insertion after new node 
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Nodes are inserted according to BST based on their key value. 

Here A is less and B is more so more value node comes at 

right child. Now according to Treap rule, rotation would takes 

place because priority of B is less than A and min heap is 

being considered. 

 

 

 
 

 

 

 

Figure 6: Treap after Rotation 

Now B becomes the root of the Treap and A comes at left to B 

because key value is less so according of BST rule, it becomes 

left child. After inserting another node from table 1, structure 

of Treap would be shown as in Figure 7. 

 

 

 

 

 

 

 

Figure 7: Treap after insertion of new node 

Again the same rotation would take place because priority of 

C is less than B so after rotation treap formed would be shown 

as in Figure 8: 

 

 

 

 

 

 

 

 

 

 

Figure 8: Treap after rotation 

Final structure of the Treap after insertion of series of nodes 

from table 1, one by one would be shown in Figure 9: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Treap after insertion of last node 

Since the newly inserted node makes the Treap unbalanced as 

the priority of J is less than to its parent node as well as to its 

ancestor nodes, so after performing a series of transformations 

the final result which will be achieved is shown in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Final output 

As seen in Figure 10, every sub-tree and sub-sub-tree in itself 

satisfy the property of Treaps. Thus the graph which would be 

actually stored in adjacency matrix can now be stored in 

Treaps where it is easy to modify and scalable to large 

networks which adjacency matrix fails for storing graphs of 

dynamic nature. 

4. CONCLUSIONS 
The current work done has a strong impact on the storage 

behavior of social network or graph. The approach used here 

gives promising results and the storage schema in itself has a 
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strong implementation impact for optimization of space and 

query time. The technique discussed in this paper is easy to 

implement and scalable to a large network. By using Treaps 

the space used for storing a graph, as compared to an 

adjacency matrix, is tremendously decreased because of the 

use of linked list and pointers. Above all this technique can 

work for other social network when there are less parameters 

such as transport network, railway network, chemical 

compounds, etc.  
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