

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.1, May 2016 – www.caeaccess.org

28

Survey on Concurrency Control Techniques

Marwa Mohamed
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.,
Menoufia University, Menouf

32952, Egypt

Mohammed Badawy
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.,
Menoufia University, Menouf

32952, Egypt

Ayman El-Sayed
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.,
Menoufia University, Menouf

32952, Egypt

ABSTRACT

The coordination of the simultaneous execution of

transactions in a multiuser database system may violates with

consistency, performance and correctness of whole database.

Data must maintain in consistency with correctness

concurrency control techniques try to make balance between

these characteristics and take in account time and performance

of transactions. In this paper we had discussed various

concurrency techniques, their advantages and disadvantages

and make comparative study between them

General Terms

Concurrency, Algorithms

Keywords

Concurrency, locking, optimistic, multi version, performance

1. INTRODUCTION
When user begins its transaction for specific request the

database state is changed. In any individual transaction, which

is running in isolation, is assumed to be correct [11]. or when

there are several transactions are executing on different data

items at the same time also it is assumed to be correct while in

shared database several transactions are executes concurrently

in the database specified in same data item and at the same

time the isolation property may no longer be preserved [11].

If transactions are executed serially, i.e., sequentially with no

overlap in time, no transaction concurrency exists [3].

However, if concurrent transactions with interleaving

operations are allowed in an uncontrolled manner, some

unexpected, undesirable result may occur, such as The lost

update problem, The dirty read problem and The incorrect

summary problem [3], The lost update problem occurs when

two concurrent transactions are updating the same data

element and one of the updates is lost (overwritten by the

other transaction) [21], The dirty read problem Transactions

read a value written by a transaction that has been later

aborted. This value disappears from the database upon abort,

and should not have been read by any transaction ("dirty

read"). The reading transactions end with incorrect results [3],

and the incorrect summary problem [3]. While one transaction

takes a summary over the values of all the instances of a

repeated data-item, a second transaction updates some

instances of that data-item. The resulting summary does not

reflect a correct result for any (usually needed for correctness)

precedence order between the two transactions (if one is

executed before the other), but rather some random result,

depending on the timing of the updates, and whether certain

update results have been included in the summary or not.

Process of managing simultaneous execution of transactions

in a shared database, to ensure the Serializability of

transactions, is known as concurrency control [17]. To ensure

that the system must control the interaction among the

concurrent transactions; this control is achieved through one

of a variety of mechanisms called concurrency control

techniques such locking based methods, timestamp based

method, multi version based methods and optimistic method.

The serializable transactions are executed one at a time, or

serially, rather than concurrently [20].

In order to evaluate the performance of concurrency control

techniques, there are some evaluation metrics such as:

1. Accuracy
Defines the percent at which correctness of data can be

achieved, after commitment of transaction updates that may

violates correctness of data.

2. Serializability

[21] Ensures that the schedule for the concurrent execution of

the transactions yields consistent results and transaction can

be executed in the same order of sending their request.

3. Number of Committed, Wait and Rollback

Transactions

Defines number of committed transactions (transactions that

executed successfully and commit their updates), number of

wait transactions (transactions that still wait their order to

commit their updates) and number of rollback transactions (

transactions that aborted from system due to occurrence of

conflict with committed one) good technique should provide

high number of committed transactions than wait one and

lowest number of rollback transactions.

4. Deadlock

[21] Occurs when two transactions wait indefinitely for each

other to unlock data [11].

5. Storage

Memory and RAM requirements for database storage and

versions created from it.

This paper is organized as follow: we provide taxonomy of

concurrency control techniques, and the advantages and

disadvantages for each class of solution for concurrency

problem. In section III, we discuss the open points. Finally,

we conclude this survey in section IV.

2. TAXONOMY OF CONCURRENCY

CONTROL TECHNIQUES
The serializable transactions are executed one at a time, or

serially, rather than concurrently [4]. In this paper we intent to

compare the following concurrency control techniques: (1)

Lock-Based Protocols, (2) Two-Phase Locking Protocol, (3)

Timestamp-Based Protocols, (4) Multi version Schemes, (5)

Optimistic Protocols.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.1, May 2016 – www.caeaccess.org

29

2.1 Lock-Based Protocols
Principles- A lock guarantees exclusive use of a data item to a

current transaction. Lock-Based Protocols maintain lock of

data item to only one transaction while others prevented from

access to locked item until current transaction release its lock

from data item then it becomes free for others. Data items can

be locked in two modes; either exclusive (X) mode or shared

mode (S). [1] For transactions that can both read and write

from the data item X, exclusive-mode lock is given. For

transactions that can read, but cannot write on item S, shared-

mode lock is given to data item. Transaction can proceed only

after request is granted. [11] N number of transactions can

hold shared locks (S) on an item. But if any transaction holds

an exclusive lock (X) on the item, no other transaction may

hold any lock on that item. In this condition, a lock cannot be

granted and the requesting transaction has to wait until all

incompatible locks held by other transactions are released.

The lock is then granted. [1], [8], [14], [19].

Discussion- there are two problems of lock based protocols

are the resulting transaction schedule might not be serializable

and the schedule might create deadlock.

2.2 Two-Phase Locking Protocol
Principles- This Protocol used to ensure seriabilzability by

forcing some restriction on transaction as Any transaction is

not allowed to obtain new locks till it had released a lock this

restriction called two phase locking(2pl). This protocol called

2pl because it has two principal phases as in figure (1). The

first phase is known as the growing phase; in which a

transaction acquires all the locks it needs. The second phase is

known as the shrinking phase, where the process releases the

locks. [1] If a process fails to acquire all the locks during the

first phase, then it is obligated to release all of them, wait, and

then start over. [12] This protocol ensures conflict–

serializable schedules. Such described in [1], [2], [3], [14-15].

Discussion- This protocol may be good in case of absence of

any information about the transactions or the database. There

are two types of two phase locking protocol as in figure (1):

strict two-phase locking and rigorous two-phase locking.

2.2.1 Strict two-phase Locking
In this protocol any transaction does not release any of its

exclusive write lock until after it commits or aborts. Other

transactions cannot access to locked item until current

transaction has committed. Transaction must hold all its

exclusive locks till it commits or aborts and no cascading

rollback takes place. Read lock of transaction can be released

when transaction terminates (commits its results) but write

must be maintained until after commitment or abortion of

transaction.

2.2.2 Rigorous two-phase Locking
It is more restrictive variation of strict 2PL. all locks (read and

write) are held until after transaction commits or aborts.

Drawbacks of these protocols are starvation which occurs

when a transaction cannot proceed for an indefinite period of

time while other transactions in the system continue normally.

2.3 Timestamp-Based Protocols
Principles- This protocol is used to keep information about

the precise of the order of arrival of execution. Locking

algorithms are ignored for this protocol instead this algorithm

is implemented using timestamps. Timestamp is a unique

value that is assigned to transaction when it begins. Also each

data item has write timestamp (WTS) and read timestamp

(RTS). WTS is the largest time stamp of transaction that

execute write operation successfully. RTS is the largest time

stamp of transaction that execute read operation successfully.

The protocol manages concurrent execution using time-

stamps to determine the Serializability order. Try to ensure

Serializability by taking priority to transaction with lower

timestamp (older transaction) to access data before other

transactions with higher timestamp. when process wants to

access data, timestamp protocol checks transaction’s

timestamp and read and write timestamp for data item, if RTS

and WTS of data older than it for transaction, transaction read

or write process complete successfully, else transaction has to

abort. Such discussed in [4], [5], [14-16].

Discussion- From advantage of This protocol is that it solves

problem of appearance of deadlock .as in this protocol each

data item in database has two values for timestamp, one for

the last time the field was read and one for the last update, this

increases memory needs and the database’s processing

overhead.

2.4 Multi version concurrency control

Schemes
Principles- This protocol keeps the old values of a data item

when the item is updated, there are number of versions of data

item assigned for transaction for write operation and right

version is maintained for read operation. when transaction

issue write operation, it writes a new version and old version

is retained. In this paper we will discuss two multi version

protocols (Multi version Two-Phase Locking, Multi version

Timestamp Ordering) as in figure 2 such discussed in [7],

[14], and [18-19].

Discussion- An obvious drawback of multi version

concurrency techniques is that more storage is needed for

multiple versions of data.

2.4.1 Multi version Timestamp Ordering
In this protocol the timestamps are used to label the version.

When a read operation is issued, an appropriate version of

data based on the timestamp of the transaction is selected, and

the value of the selected version is returned. Reads never have

to wait as an appropriate version is returned immediately [1].

When a transaction issues a write step on some entity Y, we

might choose not to overwrite the old value of Y by the new

one, but to keep both versions. If subsequently another

transaction reads Y, we have the option of supplying to it

either version, whichever serves Serializability best, as that is

the final accepted action. In this scheme, each data item Y has

a sequence of versions <Y1, Y2,...., Yn>.

Each version of data contains three data fields, one for data

value, one for write timestamp that equal to timestamp of

latest transaction that created wrote version of data

successfully, and one for read timestamp that equal to s

largest timestamp of a transaction that successfully read

version. Conflict will occur if transaction wants to write the

same version that is currently read by another transaction,

write operation cannot succeed. Such described in [10], [14],

[18-19].

2.4.2 Multi Version to Phase using Certify Lock
In this multiple-mode locking scheme, there are three locking

modes for an item: read, write, and certify, instead of just the

two modes (read, write) discussed previously. Hence, the state

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.1, May 2016 – www.caeaccess.org

30

of LOCK(X) for an item X can be one of read-locked, write-

locked, certify-locked, or unlocked [14].

In this multi-version 2PL scheme, reads can proceed

concurrently with a single write operation—an arrangement

not permitted under the standard 2PL schemes. The cost is

that a transaction may have to delay its commit until it obtains

exclusive certify locks on all the item sit has updated [14].

This scheme can be powerful as it avoids cascading aborts,

since transactions are only allowed to read the version X that

was written by a committed transaction. but deadlocks may

occur if upgrading of a read lock to a write lock is allowed.

Fig 1: Types of Two phase locking protocols

Fig 2: Classification of multi version concurrency control

2.5 Optimistic Protocols
Principles- In all previous concurrency control techniques,

checking is done before operation execution, as in locking

protocol check to determine if data item is locked also in

timestamp check transaction timestamp against read and write

timestamp of data item. In optimistic concurrency control, that

is also called validation based technique, check is done after

read phase and before write phase to minimize overhead

during transaction execution, with the effect of slowing down

the transactions. Here transaction passes with three phases,

read phase in which transaction can read committed data from

database, validation phase that check whether update done by

transaction will not affect database consistency, write phase if

validation success transaction updates are applied to database

else updates will be discarded and transaction is restarted,

such as [2], [3], [5], [6], [13], [14], and [19].

Discussion- This protocol may be good algorithm in the

situations that conflict will be rare to occur. Optimistic

scheme, we do not lock the records and therefore no

deadlocks occur.

3. OPEN POINTS AND DISCUSSION
We have so far described and compared a large variety of

proposals. Finally, this paper shows some points that help

researchers in this subject to improve and provide new and

good technique for solving concurrency problem.

This paper now discusses some key points that can be

modified according to the exact application requirements.

 TRANSACTION RATE: transaction can be defined as a

sequence of information exchange and related work that is

treated as a unit for the purposes of satisfying a request

and for ensuring database integrity. In concurrency control

subject. transaction rate can be defined as number of

transactions that sending request for data at the same time.

 USER_COMMITS_SEC: as user can execute several

operations and produce several change for data stored in

database, these change may take some time for

commitment, performance of system may depend on this

time as if time user take to commit its update is too small

this will improve from system performance so metric

called user_commits_sec means number of commitment

of updates applied by user per second.

USER_ROLLBACKS_TXN: as probability of conflict in

concurrency system may be high so there are number of

transactions should be aborted or rolled back to solve

conflict between two or more transactions this can be

measured using metric USER_ROLLBACKS_TXN that

represent number of times system aborts the same

transaction.

 Session logical reads: The sum of "db block gets" plus

"consistent gets". This includes logical reads of database

blocks from either the buffer cache or process private

memory. The metric SESS_LOGICAL_READS_TXN

measures this number of reads for each transaction, if this

number can be high per second this improve from

performance of system.

4. CONCLUSION
This paper has discussed several proposals for building

balanced technique for concurrency control that enable

concurrent access to data items with keeping consistency of

database. Some proposals try to improve accuracy

(correctness) of data, others are designed to reduce execution

time and waiting time for read operations, finally some

provide read and write facility based on assumption that

conflict occurs rarely. As shown from this paper, lock based

algorithms cannot provide Serializability, also they create

deadlock but 2pl tries to ensure serializability but also it is not

deadlock free, then this paper describe timestamp algorithm

that ensure Serializability using the ordering of timestamps

generated by the DBMS, they also solve problem of deadlock

as there is no waiting for transaction, but it increases storage

requirements (memory needs and database’s processing

overhead), then we described multi-version that also ensure

serializability and avoid read rejection process as all read

operation can be performed successfully on old versions of

data, but it also may increase storage requirements to store

number of versions, finally this paper describe optimistic

technique that is based on assumption that conflict may occur

rarely, also it can save some execution time than other

techniques because lock can be done only at last phase(write),

but it may aborts many transaction to enable committed one

from completion of its process. We classify proposals into

several categories based on the theory of concurrency control,

we show that some proposals can differ widely but all discuss

same subject.

5. REFERENCES
[1] Carlos Cornol and Steven Morris, “Database Systems,

Design, Implementation and Management”, United

States of America,12th edition ,2016

[2] Samuel Kaspi and Sitalakshmi Venkatraman,

“Performance Analysis of Concurrency Control

Mechanisms for OLTP Databases”, International Journal

of Information and Education Technology, Vol. 4, No. 4,

August 2014.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.1, May 2016 – www.caeaccess.org

31

[3] Md. Anisur Rahman,” An Efficient Concurrency Control

Technique for Mobile Database Environment”, Global

Journal of Computer Science and Technology, Vol

13,No. 2,2013.

[4] D. Lomet et Al.,” Multi-version Concurrency via

Timestamp Range Conflict Management“, IEEE 28th

International Conference of Data Engineering (ICDE) ,1-

5 April 2012

[5] Avi Silberschartz, Henry F.Korth and S.Sudarshan,”

Database System Concepts" ,NewYork McGraw-Hill,

1997, , 4th edition, pp591-638

[6] Quazi Mamuan and hidenor Nakazato, "timestamp based

optimistic concurrency control", IEEE conference of

TENCON 2005, Crown Promenade HotelMelbourne,

Australia ,21 Nov - 24 Nov 2005.

[7] S. Shanwal and S. Kumar,” Secure concurrency control

algorithm for multilevel secure databases”, The Next

Generation Information Technology Summit (4th

International Conference) , Noida,26-27 Sept. 2013

[8] S.Sippu and Soisalon-Soininen,"Transaction Processing,

Data-Centric Systems and Applications", Springer

international publishing Switzerland, Nov. 2014.

[9] Mohammad Sadoghi et Al,” Reducing database locking

contention through multi-version concurrency”,

Proceedings of the VLDB Endowment, Volume 7 Issue

13, August 2014

[10] Priyanka Kumar, Sathya Peri and K. Vidyasankar," A

TimeStamp Based Multi-version STM Algorithm”,

Distributed Computing and Networking15th

International Conference, Coimbatore, India, January 4-

7, 2014

[11] Sonal Kanungo and Morena Rustom. D,"Analysis and

Comparison of Concurrency Control

Techniques",International Journal of Advanced Research

in Computer and Communication Engineering Vol. 4,

Issue 3, March 2015.

[12] Wolf Stephan et al. " In Memory Data Management and

Analysis" , Springer International Publishing

Switzerland 2015 , August 26, 2013, pp.82-93.‏

[13] Dahlia Malkhi and Jean-Philippe Martin,” Spanner's

concurrency control“,Newsletter ACM SIGACT News,

Volume 44, Issue 3, September 2013 ,Pages 73-77.

[14] Ramez Elmasri and Shamkant B. Navathep,”

Fundamentals of Database Systems”, Pearson,sixth

edition,2011,pp 776-800.

[15] Rashmi Srinivasa, Craig Williams and Paul F. Reynolds

Jr,” A New Look at Timestamp Ordering Concurrency

Control”, database and expert Systems Applications,

12international conference, Munich, Germany, 3-5 sep.

2001.

[16] Jaypalsinh A. Gohil and Prashant M. Dolia, ”Study and

Comparative Analysis of Basic Pessimistic and

Optimistic Concurrency Control Methods for Database

Management System”, International Journal of

Advanced Research in Computer and Communication

Engineering, Vol. 5, Issue 1, January 2016.

[17] Ashish Srivastava, Udai Shankar and Sanjay Kumar

Tiwari,” A Protocol for Concurrency Control in Real-

Time Replicated Databases System”, International

Journal of Computer Networks and Wireless

Communications (IJCNWC), Vol.2, No.3, June 2012.

[18] Jose M. Faleiro and Daniel J. Abadi, “Rethinking

serializable multiversion concurrency control”,

Proceedings of the VLDB Endowment, Vol. 8, No. 11,

2015.

[19] Per-Åke Larson et Al.,”High-performance concurrency

control mechanisms for main-memory databases”,”

Proceedings of the VLDB Endowment”, Volume 5, Issue

4, December 2011, PP. 298-309.

[20] NASER S. BARGHOUTI AND GAIL E. KAISER,

"Concurrency Control in Advanced Database

Applications", ACM Computing Surveys, Vol 23, No 3,

September 1991.

[21] Peter Rob and Carlos Coronel,” Database Systems:

Design, Implementation, and Management”, Joe

Sabatino Publisher, tenth edition, 2013, USA. ISBN-13:

978-1111969608

http://computerresearch.org/index.php/computer/issue/view/61
http://computerresearch.org/index.php/computer/issue/view/61
http://computerresearch.org/index.php/computer/issue/view/61
http://computerresearch.org/index.php/computer/issue/view/61
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.D.%20Lomet.QT.&newsearch=true
http://www.cs.yale.edu/homes/avi
http://www.lehigh.edu/~hfk2/hfk2.html
http://www.cse.iitb.ac.in/~sudarsha
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Shanwal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Kumar.QT.&newsearch=true
http://dl.acm.org/author_page.cfm?id=81331502739&coll=DL&dl=ACM&trk=0&cfid=595208851&cftoken=40992189
https://books.google.com.eg/books?id=KqwqBgAAQBAJ&pg=PA82&lpg=PA82&dq=Wolf+Stephan+et+al.+%22An+evaluation+of+strict+timestamp+ordering+concurrency+control+for+main-memory+database+systems.%22+,+Springer+International+Publishing+,+2015,+pp.82-93.%E2%80%8F&source=bl&ots=fe897bHjPK&sig=QHMN4py969yCW7FVD5LeVdNnsS4&hl=ar&sa=X&ved=0ahUKEwiCg7Tn6OPLAhWE0hoKHeQCBhsQ6AEIHTAA
https://books.google.com.eg/books?id=KqwqBgAAQBAJ&pg=PA82&lpg=PA82&dq=Wolf+Stephan+et+al.+%22An+evaluation+of+strict+timestamp+ordering+concurrency+control+for+main-memory+database+systems.%22+,+Springer+International+Publishing+,+2015,+pp.82-93.%E2%80%8F&source=bl&ots=fe897bHjPK&sig=QHMN4py969yCW7FVD5LeVdNnsS4&hl=ar&sa=X&ved=0ahUKEwiCg7Tn6OPLAhWE0hoKHeQCBhsQ6AEIHTAA
http://dl.acm.org/author_page.cfm?id=81100572892&coll=DL&dl=ACM&trk=0&cfid=595208851&cftoken=40992189
http://dl.acm.org/author_page.cfm?id=81100430588&coll=DL&dl=ACM&trk=0&cfid=595208851&cftoken=40992189
http://dl.acm.org/author_page.cfm?id=81361599316&coll=DL&dl=ACM&trk=0&cfid=583793153&cftoken=40893263

