
International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.10, April 2016

6

Donna Interactive Chat-bot acting as a Personal

Assistant

Namita Mhatre
Student, K.J.

Somaiya
College of

Engineering.
Mumbai- 77

Karan Motani
Student, K.J.

Somaiya
College of

Engineering.
Mumbai- 77

Maitri Shah
Student, K.J.

Somaiya
College of

Engineering.
Mumbai- 77

Swati Mali
Mentor, K.J.

Somaiya
College of

Engineering.
Mumbai- 77

ABSTRACT

Chat-bots are computer programs coded to have a textual or

verbal conversation which is logical or intelligent. Chat-bots

are designed to make humans believe that they are talking to a

human; but instead they are in fact talking to a machine.

Taking advantage of this transparency property of chat-bot, an

artificial character and personality can be given to a chat-bot

which acts like a person of a specific profession. This paper

describes an approach to the idea of implementing web-based

artificially intelligent chat-bot as a personal assistant of the

user, which stimulates setting and initiating meetings of user

with his clients. The exchange of information happens

through email conversations whereas its evaluation happens

through natural language procession and natural language

generation and AIML files.

General Terms

AIML, Artificial Intelligence, Pattern Matching.

Keywords

Chat-bot, AIML, Artificial Intelligence, Machine Learning,

Google API, AI agent for automated meeting planning,

Scheduler, Personal Assistant.

1. INTRODUCTION
Every human on the earth is bestowed with equal amount of

time i.e. 24 hours per day. Time is one of the only resource

which is fairly distributed among all humans irrespective of

their gender, geographical location, caste or religion,

educational qualification etc. However, some people reach

pinnacles of success whereas others often remain too

engrossed in their mundane activities with no time left for

something extra-ordinary. One of the most important quality

that distinguishes former from the latter is their ability to

manage time.

We live in a world of scalability and collaboration. Our work

takes us to different places and interact with different people.

With every professional having a busy schedule, it becomes

really complex to set up an appointment with another

individual. If not worked upon the schedule efficiently, it can

lead to delay in the meeting which may affect your business

proceedings. Failing to plan is planning to fail. But, since we

are already short of time, we definitely don’t want to spend

our time planning if a machine can do that for us!

Here is where DONNA, a web-based personal assistant chat-

bot comes into picture. A chat-bot is a program that has the

ability to simulate a mundane conversation with a human

either via textual or auditory methods [1]. Most of the chat-

bots are designed for engaging in small talk and their

personalities are created by the programmer. Designing chat-

bots using the current state of the art, mainly uses rules

written in AIML (Artificial Intelligence Markup Language) or

ChatScript. Generally they are implemented to cover a wide

range of issues and topics, but also leaving aside many more

opportunity areas.

This paper focuses on creating an AI implemented chat-bot

which acts like a personal assistant to set a user’s meeting

with his colleagues or friends through email conversations. It

reads the appointment request email from the client with the

help of its natural language processing algorithms like pattern

matching. From the info obtained, it checks user’s availability

at the given date & time from user’s google calendar.

Accordingly, it generates a reply by natural language

generation to send it to user. Through several such

interactions and correspondence emails it finally fixes a

meeting and makes its entry in user’s google calendar. It can

also initiate a meeting request and follow the same procedure

later.

Section 2 of this paper gives an essence of the past work in

this domain. The proposed system is thoroughly explained in

section 3. The architecture diagram and the implementation of

the system are described in section by 4 and 5 respectively;

followed by the experiments conducted and their results in

section 6 and 7.

Since, this process is automated, it not only saves user’s

money for hiring a personal assistant but also saves a lot of

time and turns out to be very performance efficient and

productive.

2. RELATED WORK
The article published by Alan Turing in 1950 proposed Turing

test which acts as a criterion for intelligence. The criterion

depends on the ability of a computer program to impersonate

a human in a real-time written conversation with a human

judge, sufficiently well that the judge is unable to distinguish

reliably (based on the conversational content alone) between

the program and a real human [2].

People have started implementing different applications of

chatbot since long back. One can find numerous real-time

chatbots with different personality attributes and different

purposes. There exist applications like: a chatbot acting as an

undergraduate advisor [3], a historical character [4], a

customer service and support assistant [5], an individual on

social network [6] etc. A detailed study was conducted on the

chat-bot application of a historical character which is

described as follows.

Literature survey of Chat-bot as Historic Figure:

Many interactive chat-bots have been developed to stimulate

human-computer intelligent interactions. Most of them rely on

the database for generation of responses. However, this paper

proposes an idea of giving the personality of a real historic

figure through the knowledge of the human figure available.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.10, April 2016

7

This knowledge is extracted from Wikipedia which stores

information in the form of chapter-wise plain texts and

DBpedia. The most important life events and relations of the

historic figures are taken into consideration for building the

desired personality. The two important steps for its execution

are:-

I. Extraction of text.

For extracting facts from text, the Stanford CoreNLP libraries

are used, which provide a set of natural language analysis

tools which can take raw English language text input and

perform lemmatization, POS tagging, markup the structure of

sentences in terms of phrases and word dependencies, and

many other facilities.

A. Using information from DBPedia:

DBpedia is a community effort to extract structured data from

Wikipedia and to make this information available on the Web.

B. Extracting Information from Wikipedia:

For this paper, the example of Adolf Hitler is considered. Few

important topics from Wikipedia page are taken such as

About World War I : Join, Responsibilities, Role,

Decorations, Battles, Ideology, and even about Family,

Health, Death.

C. Transforming verbs within associated texts from

3rd person to 1st person singular:

i. Replacing all references to character’s name with surname

ii. Replacing relevant co-referential pronouns with surname

iii. Replacing possessive pronouns related to the character

iv. Modifying verb form

v. Replacing surname with pronouns

vi. Replacing possessive pronouns

II. Designing the conversation

Designing the conversational agent is not built from scratch.

An open-source software called ChatScript is used. ChatScript

is a scripting language designed to accept user text input and

generate a text response. The program inputs one or more

sentences from the user and outputs one or more sentences

back.

Additionally, there are some existing systems from which the

idea of creating an application of chatbot (virtual personal

assistant) was inspired.

1. A.L.I.C.E.

One of the most famous chatbot which works on Pattern

Matching Strategy is the Artificial Linguistic Internet

Computer Entity (A.L.I.C.E.) [7]. The AIML files for

A.L.I.C.E. are available online which contain categories like

music, art, philosophy, etc. So for the basic working of

Donna, these AIML files are being used. Also, another

original AIML file for the category “Meetings” has been

generated, which answers specific meeting related questions.

Thus, as the project concentrates more towards the scheduling

module, AIML files are being used for the pattern matching

framework of Donna.

2. x.ai (AMY)

AMY is a personal assistant chat-bot designed by a company

called x.ai. It is still in its Beta version and only provides

service to some users as of now. A user has to CC (send a

carbon copy) of the email to AMY (amy@x.ai). Then, Amy

talks to the other party, sets up a preferable meeting timing,

and then sends an acknowledgement emails to both the parties

[8]. The idea to create Donna was inspired by Amy. Donna is

better than Amy in a way that emails have to be forwarded as

a carbon copy to Amy; whereas Donna intelligently extracts

emails which are related to meetings from the user’s account.

As Amy is still in its Beta version, it is not possible to

compare its working and its features with Donna.

3. PROPOSED SYSTEM
The system extracts the appointment related email from the

user account automatically by matching some keywords from

the email body and subject. It then reads the email with the

help of algorithms like pattern matching. From the

information obtained from user’s calendar, it checks user’s

availability at the given date & time from user’s google

calendar. Accordingly, it generates a reply, writes it in a text

file and emails it to user. Through several such interactions

and correspondence emails it finally fixes a meeting and

makes its entry in user’s google calendar. It can also initiate a

meeting request and follow the same procedure later.

4. SYSTEM ARCHITECTURE
There are four modules in the systems architecture.

i. Presentation layer iii. Data access layer

ii. Service layer iv. Database layer

Presentation layer: It is the interface where the user

communicates with Donna. The output of this layer feeds the

input to the service layer. There are two modules in this layer:

the interface for Donna and a mail server (Gmail). The mail

server module access the API module from the service layer.

Service layer: This layer provides services of creating and

appending data to the files that are created for storing of data

used for sending and receiving Email. The service layer

consists of the web based services that Donna uses, like the

Gmail API, the calendar API, Program O, etc.

Data access layer: This layer is the intermediate layer in the

system. It carries out functions of parsing the data between the

database and the front end of the system. It uses the Pattern

matching algorithm and communicates with the Database

layer to retrieve the matched patterns.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.10, April 2016

8

Database layer: It consists of three main databases. The first

is the AIML database consisting of all the AIML files. The

second comprises of the information regarding the user as

well as the bot. The user’s Google calendar data is stored in

the third database.

5. IMPLEMETATION
For the implementation of Donna, a web server with Internet

access, PHP 5+, MySQL, Xampp, Composer, and Gmail and

Google Calendar APIs were used. The algorithm or the

approach which has been used to develop this system can

work with any other programming language or database

manager.

Fig 2: GUI

Following are the services which are used by Donna to

connect to Gmail and calendar, to reply to emails using

pattern matching (Program – O) etc.

1. Google APIs
Google APIs are application programming interfaces (APIs)

developed by Google. Google APIs help us in authorization

with Google Services. Google APIs includes Search, Gmail,

Translate or Google Maps. Third-party applications can use

the following APIs to for authorization in order to use

Googles services [9].

1.1 Calendar API
One can use the Google Calendar API to find and view public

calendar events. If authorized, private calendars and events on

those calendars can also be accessed and modified [10]. As

Donna’s main function is to set up meetings, she needs to

have access to user’s calendar so as to check the available

time slots. Also, Donna will update the calendar once a

meeting is set so that the user is reminded accordingly.

1.2 Gmail API
The Gmail API is a RESTful API that can be used to access

Gmail mailboxes and send email. For most web applications

(including mobile apps), the Gmail API is the best choice for

authorized access to a user's Gmail data. The Gmail API gives

a flexible, RESTful access to the user's inbox, with a natural

interface to Threads, Messages, Labels, Drafts, and History

[11]. From the modern language of our choice, the application

or system can use the API to add Gmail features like:

 Read messages from Gmail

 Send email messages

 Modify the labels applied to messages and threads

 Search for specific messages and threads

Fig 1: System Architecture

https://developers.google.com/gmail/api/v1/reference/users/threads
https://developers.google.com/gmail/api/v1/reference/users/labels
https://developers.google.com/gmail/api/v1/reference/users/drafts
https://developers.google.com/gmail/api/v1/reference/users/history

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.10, April 2016

9

Thus, Donna will use this API to read the users email and also

to reply to the client. The email reading and email sending

functions will be used from this API.

2. Program – O
Program O is an AIML interpreter written in PHP, and uses a

MySQL database to store chat-bot information, including the

AIML files used to formulate the chat-bot's responses [12].

Program O supports the creation of multiple chat-bots. The

basic skeleton framework for Donna is constructed using

Program O. It lets a user set the bot personality, upload and

integrate AIML files with the bot, connect with the database.

It also has authorization feature, conversation log storing and

a teaching element which can be used to teach the bot. All

these features are used in Donna’s web interface. Thus, the

Program O library is the integral and most important part of

Donna.

There are two possibilities for meeting fixing:

1. Where the user wants to initiate the meeting.

2. Where the user receives an email regarding the meeting.

5.1 User initiates meeting
This is a part where the USER wants to initiate a meeting and

send an appointment request to the client. It is the simplest

part of the entire working system. The user has to fill a form

containing the details of Client’s name, Client’s email id, the

date and time of meeting, and the reason for the appointment.

5.1.1 Get the receiver’s details
The form on the web application of the system lets the user

enter the specific information related to the meeting. Donna

also checks the date and time to make sure it is a period in the

future. Here intelligence is provided such that Donna checks

for any holidays, birthdays, important events, etc. in the user’s

calendar and alerts the user if he selects one of these days for

setting up a meeting. It is just a mere warning and the user can

still go ahead and set up a meeting on that day if he wants to.

5.1.2 Formulate and send the email
Donna collects all the information from the form and enters it

in a template. Then, the text file is converted s into an Email

format with the subject set as “Regarding an Appointment”. It

stores the Email address of the client into a different variable

and uses it to send the file to the client.

5.2 User receives meeting message
5.2.1 Pull the message from user’s account.
There is an existing system Amy (x.ai), which also performs

the function of setting up meetings. In that system we have to

forward (CC) the email to Amy [8]. Unlike Amy, Donna does

the work intelligently. Donna extracts meeting related

messages from user’s account by matching some keywords.

Hence, the user does not have to forward the email. Once a

meeting related email comes in the user’s inbox, it is checked

for keywords and patterns; and if it satisfies to be a meeting

related email, it is directly forwarded to Donna.

5.2.2 Read the email
When Donna receives the email, it checks for the top

UNREAD mails received. The Gmail API provides the

functionality of checking the labels of the emails which helps

to extract the unread emails. It will select the first unread

email (the email that is received first), read the contents of the

email and store it into a text file which is then passed to the

chatbot (Program O) for parsing and reply generation.

5.2.3 Pattern matching
Pattern matching is a type of natural language processing in

which the system searches for keywords in a sentence and

based on that keywords, it searches the database for a match

and replies with the corresponding answer. This system uses

an open source software Program-O that uses a pattern

matching algorithm for reading a sentence and generating a

reply.

The system reads the content of the email from a text file. It

will separate the E-mail ID of the person who has sent the

email, which is required later to send the reply. After

separating the Email-ID, the following steps are taken to parse

the email.

Algorithm:

1. The system reads the text file and splits the whole

data into chunk of sentences by tokenizing it.

2. Initially, it analyzes the first sentence, reads the first

and the last word of the sentence and counts the

number of words in the sentence.

3. It matches the AIML pattern with the first or the last

words, and filters all the irrelevant pattern matches.

4. It tracks a score for the pattern and word matches

i.e. whether the pattern is fully matched, common

word match, default match, etc.

5. According to the scores of the pattern, it finds out if

the pattern belongs to an AIML category.

6. It then initializes the sentence, matches the pattern,

builds a nouns and verb list and accordingly

generates a reply.

7. The procedure repeats until all the sentences are

parsed and a reply has been generated.

5.2.4 Check the calendar
Donna while parsing the email, reads the condition of the

meeting sent by the client. Using Google Calendar API,

Donna checks the user’s calendar whether he is free for the

particular time slot of that day and accordingly generated a

reply. The schedule of the user is saved in the database for

easy access. Also, the user is able to add or modify an event in

the calendar directly from the GUI.

5.2.5 Reply Generation
As discussed earlier, Donna stores the Email-ID of the client

so as to send the generated reply to the corresponding Email-

ID. After reading the email, the system generates a reply for a

sentence which is stored in a text file. It repeats the process of

parsing the sentence and generation a reply, and appends the

output to the file.

5.2.6 Send the email
After the process terminates, using Gmail API and a PHP

mailer library, Donna sends the text file in an Email format to

the client.

5.2.7 Update calendar
As soon as an appointment is scheduled for the user, Donna

immediately updates user’s Google Calendar with the

following meeting and blocks the slot as Meeting. Ultimately,

it sends an invitation to both the parties i.e. the user as well as

the person seeking an appointment with the user. Thus an

event is created in the calendar.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.10, April 2016

10

6. EXPERIMENTAL SETUP
To perform the tests, two Gmail accounts were created; one

for Donna donna.paulsen4269@gmail.com and another for

Harvey harvey.spector4269@gmail.com. Two tests were

conducted:

1. To check the efficiency of the system; where time

taken to generate a reply for an email depending on

the size was calculated for emails with varying size

and contents.

2. The learning capacity of Donna; where erratic

replies were detected and Donna was taught how to

reply in those cases.

To conduct the first test, a number of emails were sent to

Donna where each email differed in size (the unit to measure

size is taken to be the number of lines) and in contents (with

images, attachments etc.). The table below shows the decrease

in efficiency as the size of the email increases.

Table 1. Efficiency Measure

Size of email

(Number of lines)

Time taken to generate reply

(in seconds ‘s’)

1 7.50

2 8.79

5 9.90

10 14.30

15 16.00

20 17.08

50 48.00

From the observations it can be deduced that the larger the

email, lesser the efficiency.

Now for the second test, consider an example. Donna was

asked a question as follows:

Client: “How are you?”

Donna: “I am functioning within normal parameters.”

This response clearly reveals that the person is talking to a bot

(or an utterly sarcastic person). So in this case Donna was

taught to pretend to be human. Following interface shows how

the bot is taught.

Fig 3: Teaching Interface

Thus, the ideal response that Donna should give is:

“I’m doing fine, thanks. How are you?”

Thus, after teaching Donna about this, the same question was

posed again. The following image shows the reply to a

question before teaching and reply to the same question after

teaching.

Fig 4: Reply from Donna (before and after teaching)

It is thus evident from figure 4 that Donna is a bot capable of

learning and this is the module which makes its Artificial

Intelligence apparent.

An experiment was also conducted to test the quality of

replies that Donna gives to the questions posed. Even though

Donna is a computer Program, it does not reply perfectly to

every question. In this test, replies were rated from on a scale

of three, one being poor, two being average and three being

excellent. Following are three examples for each type of

rating.

Fig 5: Poor Reply (Rating - 1)

Fig 6: Average Replies (Rating - 2)

Fig 7: Excellent Replies (Rating - 3)

The experiment was tested on a log of about 700 messages

approximately for the period of six months and it was noted

that Donna replied poorly for about 5% of the messages,

average for about 60% of the messages and excellently for

about 35% of the whole messages. These statistics are close to

those of other existing chat-bots. The below diagram

represents the graphical view of the statistics.

Fig 8: Performance Statistics

7. RESULTS
From the first experiment, it can be concluded that efficiency

decreases with the increase in the size of emails. Generally,

professional communication consists of terse emails without

much superfluous talk. Thus it is assumed that the efficiency

of the system won’t be wounded much as this application is

for managing schedule and setting up meetings. After

studying some professional emails (regarding meeting) it can

be said that their size usually rounds up to no more than 30

sentences. Thus, an efficiency of 30 seconds is good for the

system as compared to a human assistant who usually takes a

lot more time than that to reply to emails.

The second experiment proves that Donna is an interactive

chat-bot consisting of a learning element. Thus, whenever the

user finds a particular reply to be incorrect, he may teach

Poor

Average

Excellent

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.10, April 2016

11

Donna the correct reply for the same question and she learns.

This is very useful for this particular application as each user

might want to have different answers for questions depending

on personal choices. For example, when the person is not

available for a meeting, he might not want his secretary to

reveal the reason why he is not available in that particular

time slot. But as information about his schedule is available to

Donna, she might disclose it to a person asking to schedule a

meeting for the same time slot. At such times, the user could

teach Donna what to talk about and what not to talk about.

As shown in the third experiment that Donna replies

averagely about 60% of the times. Humans are bound to make

mistakes many times. They misunderstand a statement or a

question and may reply irrelevantly. Donna is a piece of

artificial intelligence but making some errors makes the

system indistinguishable from a human assistant.

8. CONCLUSION AND FUTURE WORK
Using pattern matching algorithm, a system that can act as a

virtual personal assistant to plan user’s work and schedule his

meetings was successfully designed.

In terms of the efficiency of the system to respond within a

stipulated time period, which achieved overall 70%

efficiency, it can be concluded that the system is capable

enough to be implemented in the practical world.

Furthermore, the system can be enhanced by including

various modules. An important module that can be

incorporated is setting the priority of client with whom the

user should set meeting, in case of clash of request by

multiple clients. This could either be done by getting

information about user’s personal relationship with the client

through machine learning tools and giving priority to close

friends and frequent colleagues, or by simply asking priority

of client to the user.

One of the major part in the system can be enriched is adding

the functionality of scheduling meeting with multiple clients

for race condition like same time of meeting. Also, the

location factor has to be included so as to allocate a meeting

place appropriate for both the user as well as the client.

9. LIMITATIONS
From the results, it is evident that as the number of lines in the

email increases, the efficiency of the system decreases to a

great extent. So as a limitation to this system, if the client

sends a huge chunk of data in a single email, the system might

hold back and take a long time to respond to the request of the

client.

Also, Donna is not able to handle conversations related to

group (conference) meetings. If multiple clients approaches

Donna for the same conference meet individually, the system

would allocate different timings for each client. Moreover, the

chat-bot is not considering location of the meeting. If the user

is busy with a client and free for another slot, Donna might set

up an appointment right after the current meet say at a

distance of 20 Km. The user might take time and end up

reaching late for the meeting.

10. ACKNOWLEDGMENTS
Especial thanks to Ms. Swati Mali for her guidance

throughout the project and Ms. Nirmala Shinde for her

insightful comments.

11. REFERENCES
[1] ChatbotWikipedia,“https://en.wikipedia.org/wiki/Chatbot

”, last retrieved on 13-03-2016.

[2] ChatterbotWikipedia,“https://en.wikipedia.org/wiki/Chat

terbot”, last retrieved on 13-03-2016.

[3] Supratip Ghose & Jagat Joyti Barua, “Toward the

implementation of a Topic specific Dialogue based

Natural Language Chatbot as an Undergraduate

Advisor”, 2013, 978-1-4799-0400-6.

[4] Emanuela Haller, Traian Rebedea, “Designing a Chat-bot

that Simulates an Historical Figure”, 19th International

Conference on Control Systems and Computer Science,

2013, 978-0-7695-4980-4

[5] “Shallow Parsing Natural Language Processing

Implementation for Intelligent Automatic Customer

Service System”, ICACSIS, 2014, 978-1-4799-8075-8

[6] Salto Martínez Rodrigo & Jacques García Fausto

Abrahaman, “Development and Implementation of a

Chat Bot in a Social Network”, Ninth International

Conference on Information Technology- New

Generations, 2012, 978-0-7695-4654-4

[7] A.L.I.C.E. Artificial Intelligence Foundation,

“https://alice.pandorabots.com”, last retrieved on 12-02-

2016.

[8] X.ai, “https://x.ai”, last retrieved on 20-02-2016.

[9] GoogleAPIsWikipedia,“https://en.wikipedia.org/wiki/Go

ogle_APIs”, last retrieved on 07-03-2016.

[10] GoogleCalendarWikipedia,“https://en.wikipedia.org/wiki

/Google_Calendar”, last retrieved on 07-03-2016.

[11] Gmail API wiki - Stack Overflow,

“http://stackoverflow.com/tags/gmail-api/info”, last

retrieved on 07-03-2016.

[12] GitHub - Program-O, “https://github.com/Program-

O/Program-O”, last retrieved on 07-03-2016.

IJCATM : www.ijcaonline.org

