
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

42

Unstructured Data Collection from APK files for Malware

Detection

Prerna Agrawal
Faculty of Computer Technology (MCA)

GLS University
Gujarat, India

Bhushan Trivedi
Faculty of Computer Technology (MCA)

GLS University
Gujarat, India

ABSTRACT
For Malware Detection Machine Learning methods are applied

extensively in ascertaining if the given APK file is malware or

not. Machine learning methods are found to be less time

consuming and less resource consuming compared to non-

machine learning-based techniques. We have focused on

Machine Learning methods for detecting unknown malware.

For detecting the malware a researcher needs to create a dataset

of its own. Our dataset generation process includes Android

File Collection, Decompilation, and Feature Mining phases.

We have already discussed the Android File Collection phase

in our previous paper [1]. We have collected 15508 Malware

files and 4000 Benign Files using Android File Collection.

Android Files contains unstructured data in the form of text and

XML files which are complex to process and store. Here our

goal is to perform the decompilation of these collected Android

files such that we get all the resources as well as the source

code in a single instance. We aim to handle the big data in

terms of Android Files and process them properly performing

the Decompilation. In this paper, we have proposed an

available automated solution for decompiling the files that also

solves the complexity of handling and processing the big data.

We have also discussed our Decompilation phase and

presented the structure of the reverse-engineered APK file. We

have used an online JADX decompiler [5] for performing the

reverse engineering of the APK files.

Keywords
Malware, APK files, Decompilation, Reverse Engineering,

Machine Learning, Malware Detection

1. INTRODUCTION
Malware Detection using Machine Learning Algorithms is

been used extensively nowadays [4]. Conventionally Malware

Detection was based on signature-based patterns, permissions,

components using static Analysis [3] which was only able to

detect known malware types. Using Machine Learning

methods it is possible to detect the unknown and recent

malware also [2]. So we have focused on Machine Learning-

based approach for our generalized Malware Detection Engine.

The overall Logical representation of our Android Malware

Detection process is already described in the previous paper

[1]. It contains Android File Collection, Decompilation,

Feature Mining, and Machine Learning phases. In the Android

File Collection phase we have collected 15508 Malware files

from the world’s famous Android Malware Projects and 4000

Benign Files. For mining, the features from the APK file the

reverse engineering of an APK file is needed to extract the java

source code and XML files and so the Decompilation phase is

needed. In this paper, we have covered our Decompilation

phase for performing the reverse engineering process of the

files and to collect the unstructured data from APK files. Using

the Feature Mining phase all the features will be extracted from

the files and our final dataset will be generated. For

implementing Machine Learning methods in the Machine

Learning phase the dataset will train and test the models for

investigating and providing better results. The Feature Mining

and Machine Learning phases will be covered in other papers.

Big Data deals with a huge amount of data and is unstructured

that is heterogeneous and comes in various formats like text

files, images, audio, video, etc [14]. The unstructured data does

not have any fixed structure of its own rather than it comprises

of its internal structure [15]. The Android Files have their

internal structure and they consist of text files and XML files.

The Android file collection phase consists of a collection of

15508 Malware files and 4000 Benign Files. So for managing

and storing the massive amount of Android files which

represents a big data problem and performing its

Decompilation is itself a challenge. Here we aim to handle the

big data in terms of Android Files and process them properly

performing the Decompilation.

According to the existing study [6-10] many researchers have

used different tools for decompiling the APK files. There were

many challenges faced like the tools were incapable to extract

the Java code and XML files in a single instance, a lot of

manual intervention was needed, the offline tools were very

slow and time-consuming. Again the offline tools were

inefficient to handle the unstructured data format of Android

Files. Here our objective is to decompile the file by using an

appropriate tool that overcomes all the mentioned challenges.

So here we propose an available automated solution for

decompiling the files. For this we have also studied the existing

tools used by the researchers in the existing study [6-10]. We

have performed Decompilation using an online JADX compiler

[5] of 15508 Malware files and 4000 benign files we collected

in the Android File Collection.

This paper is divided into the following sections: Section 2

provides the Related Work for Decompilation process of APK

files done by the researchers. Section 3 provides a study of

different online and offline decompilers. Section 4 provides our

Decompilation phase of files collected in the Android Files

collection phase. Section 5 provides the conclusion of the

paper.

2. RELATED WORK
The first phase of our work that is the Android File Collection

described in another paper is already implemented. The second

phase is Decompilation which includes Reverse Engineering of

the APK files. We have studied other approaches used by the

researchers. In paper [6] the first step is the conversion of APK

to .dex file. Dex file is a Dalvik Executable file that contains

the java code. The second step is the conversion of .dex to jar

files. Here jar files are extracted from dex files by using the

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

43

Dex2Jar tool. The jar file contains .class files of java code. The

third step is the conversion of class jar files to .java jar files by

using FernFlower Library. In paper [7] the APK files are

Reverse Engineered by using the offline Androguard tool. In

paper [8] the APK files are reverse engineered using APK tool.

The APK tool extracts dex files. Now the dex files are again

extracted to get the java code in both the approaches described

in the paper [7] [8]. In paper [9] the APK files are reverse

engineered using APK tool. In paper [10] the APK files are

reverse engineered using offline Androguard tool.

All the existing works are already using a 2 to 3 step process

for Reverse Engineering process. Each step is performed

manually with offline tools and libraries it becomes very time

consuming and it is more error-prone. There is no method used

for the extraction of XML and java files together in a single

instance. For the selection of the proper tool for our task a

study of different decompilation tools used in the existing work

is being discussed in the next section. In this paper, an online

JADX decompiler [5] is used for performing the reverse

engineering of the files which extracts XML and java code

together.

3. TYPES OF DECOMPILATION TOOLS
There are many online and offline 3rd party tools available for

decompiling an APK file used by the researchers. We have

studied those tools used by the researchers and are open source

free to download for selection of the proper one for our work.

The online and offline tools studied are Dex2jar, APK tool,

JADX, javadecompilers.com, FernFlower, Androguard tool.

The Dex2Jar is an offline tool, freely available for download,

and is command-line. This tool is used to decompile the .dex

files into .jar files. The APK tool is offline, freely available for

download, and is command-line. This tool is used to extract

.dex file and all resources files including Manifest.xml file

from the APK file. FernFlower is an offline Java Decompiler

which is used to convert .jar files into java source code.

Androguard is an offline tool with Python Library used to

interact with APK files [12] and is freely available for

download. In the decompilation of an APK file, it uses

decompilers like dad and dex2jad [13]. The limitation of all

these tools is that it will not extract direct java source code in a

single instance. The JADX tool is also known as Dex to Java

Compiler is offline and freely available for download. It

provides both command line and GUI version. It will take the

APK file as an input and will extract Java source code and

resources with the Manifest.xml file in a single shot. The

limitation of this tool offline is that it takes a huge amount of

time in decompiling a single file. Java decompilers [5] is an

online website providing various facilities for the

decompilation of files It provides APK decompiler online

which will decompile APK file and extract resources and java

files with Manifest.xml. For this, it uses the JADX compiler

online. This website is fast and flexible for decompiling the

APK files. It takes no extra resources and all the load for

decompilation of a file is given on its servers. The advantage of

this online website is it decompiles java source code and

resources in a single instance.

After the study of different available tools we selected the Java

Decompilers [5] as it fulfils the solution to all the mentioned

challenges for our Decompilation phase. The next section

discusses the Decompilation phase with its Architectural flow

and also the structure of a decompiled APK file.

4. DECOMPILATION OF ANDROID

FILES
This section contains the various challenges to unstructured

data mining and also the decompilation phase.

4.1 Unstructured Data Mining Challenges
Big Data deals with a huge amount of datasets that are

unstructured and heterogeneous [16 -18]. The unstructured data

does not have predefined schema or models and have their

internal structure so the regular RDBMS is inefficient to store

them [14] [15]. Big data deals with 3 Vs they are 1) Volume 2)

Velocity and 3) Variety [16] [18].

 Volume: It contains big size datasets with a complex data

structure. The challenge with volume is to handle the

complexity of the data structure [16] [18].

 Velocity: It is the need to handle the speed of new data set

creation or updating the existing dataset. This factor

applies to machine-generated data e.g. sensing of the

mobile device. The challenge with velocity is to handle

the capacity of the streaming system as they are limited

and obtaining useful information from continuous new

dataset creation [16] [18].

 Variety: The datasets come from multiple sources and it

can be of various formats like text, audio, video, graph,

sensors, etc. [16] [[18]. The variety of data provides more

information to solve problems. The challenge with Variety

is to handle different formats of data by integrating

different technologies [16].

A Decompiled file is the directory with a collection of multiple

text and XML files. Every decompiled file leads to an

unstructured data format which is quite complex and the

existing studies [5-10] of tools are quite incapable to handle

such big data. Big data Analysis and Mining contains a 3 tier

Processing Framework [16]. Figure 1 represents the big data

Analysis and Mining Framework.

Tier 1: Data Accessing And Computing

Tier 2: Data Privacy and Domain Knowledge

Tier 3: Big Data Mining Algorithms

Fig 1: Big Data Analysis and Mining Framework

In Tier 1 for the large datasets the data mining procedures

require intensive computing units and clusters for data analysis

and comparisons [16]. For maintaining the high-performance

big data processors rely on cluster computers where data

mining task is deployed by running some parallel programming

tools such as Map-Reduce [16]. Tier 2 deals with Data Privacy

and Domain knowledge. One way to achieve data privacy is by

restricting access to the data such that sensitive data access is

limited to certain users only. The second way for maintaining

data privacy is to anonymize the data fields such that sensitive

information is not highlighted to an individual record [16].

Tier 3 deals with big data mining Algorithms. For designing

the algorithms there is a need for deep analysis which is quite

complex [17]. Mining algorithms are autonomous and run in a

decentralized fashion [16]. For Big Data Mining there is a

need for Machine Learning and Data Mining Algorithms which

need high computation power and resources [16]. So every Tier

in Big data Analysis and Mining deals with all the mentioned

challenges which are very complex.

To overcome all the challenges of the unstructured data

analysis and mining we proposed an available automated

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

44

online JADX decompiler [5] that decompiles and stores the file

on the cloud servers. It solves all the challenges managing

volume, velocity, and variety of data automatically on its cloud

servers. Again it solves all the challenges of big data Analysis

and mining framework as the cloud servers itself manages the

complexity of the data analysis, processing clusters, data

privacy, and data mining algorithms. The online decompiler [5]

easily manages the unstructured data decompiles the files on

the cloud servers and returns it.

4.2 Decompilation Phase
Every APK file is a collection of classes, .dex file, and

resources.arsc file. Android uses the Dalvik Virtual Machine

(DVM) to execute the java source code that gets converted into

byte codes and forms the .dex file. The resources.arsc file

contains all the resources used in the application. These

resources comprise of .xml files and also contains the

Manifest.xml file from which the execution of the application

starts. Manifest.xml files contain various permissions, intents,

services, intent-filters, broadcast receivers, and activities used

in the application.

The decompilation of the files is an essential requirement for

feature mining. The existing studies [5-10] claimed the usage

of some existing tools used for decompilation. After

conducting the study of these existing tools some challenges

were found with the usage of them. Mostly all the tools

available were offline having resource, memory consumption,

needed manual intervention, and were slow processing. Again

all the existing tools were incapable of extracting java source

code and XML files in a single instance. To overcome these

challenges there was a need for some other alternative solution.

So we proposed an available automated solution that

overcomes all these challenges and is very secure and flexible

to use.

The second phase of our work is the Decompilation phase and

it is also known as Reverse Engineering of an APK File.

Reverse Engineering is a process to generate source code from

any executable file. The Decompilation phase segregates the

Java code and XML files from an APK file. For extracting the

features from the APK files like permissions, Intents, API calls

the decompilation of the files is necessary. For the feature

selection process the Static Analysis is also performed to

segregate the malware and benign files. The feature extraction

and mining phase will be discussed in another paper.

Figure 2 illustrates the overall flow of architectural flow for the

Decompilation phase. Firstly the user selects any Benign or

Malware Android File from Android files Repository and runs

the Decompilation module. Secondly, that selected file uploads

on the website [5], the website connects to the server and sends

the file to the server for decompilation. Thirdly, the server

processes that APK file segregates the XML and java files both

in a single shot and sends the decompiled zip file back to the

website. Fourthly, the user downloads the zip file from the

website and the zip file is saved at some physical location.

(Save, File)

(Connect, File)
Android

Files
Decompilation Website

(Upload, File)

Server

(Send, Decompiled File)

Decompiled
Files

(Download, File)
(Decompile, File)

Fig 2: Architectural Flow of Decompilation Phase

After the accomplishment of the Decompilation phase with the

APK files, Figure 3 shows the structure of the decompiled

APK file. Here the decompiled file contains two folders

sources and resources with .dex file and resources.arsc file. The

.dex file is further decompiled and sources folder is obtained

which contains all the java source code. With the

decompilation of resources.arsc file the Manifest.xml file and

resources folder are extracted. The resources folder contains all

the resources used and .xml files of the application.

APK File

.dex File Resources
Android

Manifest.xml

Sources res Assets META-INF

Java Files .xml Files

Fig 3: Decompiled APK File

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

45

5. CONCLUSION
Implementing Machine Learning models in the investigation of

Malware Detection generation of the dataset is a critical part.

The decompilation of files is needed for mining the features

from the APK files and generating the dataset. The dataset

generation process includes Android File collection,

Decompilation, and Feature Mining phases. In the Android File

collection phase we have already collected 15508 Malware

files and 4000 Benign Files. In this paper, we have proposed

an available automated solution for decompiling the files and

also solves the complexity of handling and processing the big

data.

We have accomplished the Decompilation of 15508 Malware

files and 4000 Benign files using the online JADX Compiler

[5] which is a fast, automated, flexible available solution that

can process the unstructured data on cloud servers and store

them compared to all other existing decompilation tools. The

whole process of our Decompilation phase with the structure of

decompiled APK files is discussed here. The Feature Mining

and Machine Learning phases will be discussed later in other

papers.

6. ACKNOWLEDGEMENTS
We would like to acknowledge our three students Ms. Sabera

Kadiwala, Ms. Indushree Shetty, and Mr. Vraj Shah of

GLSICT, GLS University who helped us in decompiling the

APK files from the website [5] and dedicating their time for

this task.

7. REFERENCES
[1] Prerna Agrawal, Bhushan Trivedi, "Automating the

process of browsing and downloading APK Files as a

prerequisite for the Malware Detection process ",

International Journal of Emerging Trends & Technology

in Computer Science (IJETTCS), Vol 9, Issue 2, March -

April 2020, pp. 013-017, ISSN 2278-6856

[2] Prerna Agrawal, Bhushan Trivedi, “Machine Learning

Classifiers for Android Malware Detection”, 4th

International Conference on Data Management, Analytics

and Innovation (ICDMAI) Springer AISC Series, New

Delhi, Jan 2020. (Paper to be Published)

[3] Prerna Agrawal, Bhushan Trivedi, “Analysis of Android

Malware Scanning Tools”, International Journal of

Computer Sciences and Engineering (IJCSE), Vol.7,

Issue.3, pp.807-810, Mar 2019.

[4] Prerna Agrawal, Bhushan Trivedi, “A Survey on Android

Malware and their Detection Techniques”, Third

International Conference on Electrical, Computer and

Communication Technologies (ICECCT) IEEE, Feb 2019.

[5] Decompilation of APK Files, Online Link:

http://www.javadecompilers.com/APK

[6] Meet Kanwal, Sanjeev Thakur, “An App Based on Static

Analysis for Android Ransomware”, International

Conference on Communication and Automation

(ICCCA), 2017.

[7] Neeraj Chavan, Fabio Di Troia, Mark Stamp, “A

Comparative Analysis of Android Malware”, 3rd

International Workshop on Formal Methods for Security

Engineering (ForSE), 2019.

[8] Suleiman Yerima, Sakir Sezer,” Android Malware

Detection Using Parallel Machine Learning Classifiers”,

8th International Conference on Next Generation Mobile

Applications, Services and Technologies (NGMAST),

Sept 2014.

[9] Zi Wang, JurongCai “DroidDeepLearner: Identifying

Android Malware Using Deep Learning” Sarnoff

Symposium IEEE, Sep 2016.

[10] J.D. Koli, “Randroid: Android Malware Detection using

Random Machine Learning Classifiers”, International

Conference on Technologies for Smart City Energy

Security and Power (ICSESP) IEEE, Mar 2018.

[11] JADX Decompiler Download Files and Download

Instructions, Online Link: https://github.com/skylot/jadx

[12] Androguard Tool Project Download and Description,

Online Link: https://pypi.org/project/androguard/

[13] Androguard tool API Docs, Online Link:

https://androguard.readthedocs.io/en/latest/api/androguard

.html

[14] K.V.Kanimozhi, Dr.M.Venkatesan, “Unstructured Data

Analysis-A Survey”, International Journal of Advanced

Research in Computer and Communication Engineering,

Vol. 4, Issue 3, March 2015

[15] Min Chen, Shiwen Mao, Yunhao Liu, “Big Data: A

Survey”, Mobile Network Applications Springer, 2014,

DOI: 10.1007/s11036-013-0489-0

[16] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, Wei Ding,

“Data Mining with Big Data”, IEEE Transactions on

Knowledge and Data Engineering Vol 26, Issue 1, Jan

2014.

[17] Jinchuan Chen, Yueguo Chen, Xiaoyong Du, Cuiping LI,

Jiaheng LU, “Big data challenge: a data management

perspective”, Frontiers of Computer Science Springer-

Verlag Berlin Heidelberg, April 2013.

[18] Fan W, Bifet A, “Mining big data: current status, and

forecast to the future”, ACM SIGKDD Explor Newsletter,

Vol 4, Issue 2, 2013, pp.1–5.

IJCATM : www.ijcaonline.org

https://ieeexplore.ieee.org/author/37281236800
https://ieeexplore.ieee.org/author/37278848400
https://ieeexplore.ieee.org/author/37403455300
https://ieeexplore.ieee.org/author/37586667000
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
https://link.springer.com/journal/11704

