
International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

DOI : 10.5121/ijcnc.2010.2614 204

IN-DEPTH BREAKDOWN OF A 6LOWPAN STACK

FOR SENSOR NETWORKS

Sergio Lembo, Jari Kuusisto, Jukka Manner

Aalto University - School of Science and Technology

Department of Communications and Networking

P.O.Box 13000, 00076 Aalto, Finland

ABSTRACT

There exist several open source 6LoWPAN stacks for researchers to experiment with. However, they often

lack sufficient and in-depth description of the internal operation, which makes extending the stacks

difficult for many of us. This paper is an extended version of our previous work documenting the internal

logic of an implemented and working 6LoWPAN stack, Nanostack (v1.1). We present first the main

architecture of the stack and subsequently describe the path followed by a packet transiting the different

layers. Then we provide details of each one of the layers in the stack, with exception of the ICMP layer.

The main logic in the MAC layer is comprehensively explained, and an undocumented layer used in nodes

working as Gateway, the NRP layer, is presented. In addition we provide a conceptual view of the

layering of the stack relative to the hardware platform and enumerate the typical tasks running in a

sensor node.

KEYWORDS

6LoWPAN, Nanostack, Wireless Sensor Network, WSN

1. INTRODUCTION

Advances in microelectronics, low-power electronics and micro-electro-mechanical systems

(MEMS), along with low manufacturing costs, have led to the development of wireless sensor

networks (WSNs). These networks consist of individual devices that have been interconnected

wirelessly in order to perform diverse tasks. The inter-device communication requires a suitable

communication protocol that can be chosen among a diverse range of standard and non-standard

protocols. The widely adopted Internet protocol (IP) is used traditionally in computer networks

to provide a uniform and standardized way of communicating that is independent from the

actual physical communication. Because IP has many advantages (e.g. already supported

standards and extensive interoperability) it is also introduced to the WSNs. 6LoWPAN defines

the IP version 6 (IPv6) networking in WSNs [1].

Currently there are few known open-source implementations of 6LoWPAN stacks; recent

surveys report four known open-source 6LoWPAN implementations [2], Nanostack [3] is one

of them. Among the available open-source 6LoWPAN implementations, the authors selected

Nanostack due to two strong facts. Firstly, the stack operates on top of a real time kernel

(FreeRTOS [4]), making it suitable for time critical tasks like real time control or network

synchronization. Secondly, the stack implements mesh-under routing (in contrast of other stacks

that adopt route-over routing [2]).

Nanostack (v1.1) is an implemented and working 6LoWPAN stack distributed under GPL

license. In this paper we focus on the latest open-source Nanostack release, version 1.1, and

hereafter refer to it simply as Nanostack. Nanostack implements most of the RFC4944 [1],

namely, processing of Mesh-Header, Dispatch-Header (and its alternatives LOWPAN_HC1,

LOWPAN_BC0 and IPv6), mesh-under addressing and compression of IP and UDP headers.

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

205

The implementation currently does not support 6LoWPAN fragmentation and we are unable to

report at what extent unicast and multicast address mapping is supported since code related to

the processing of native (non-compressed) IPv6 addresses was not considered in our study. The

stack was written in C language and designed to work on top of FreeRTOS kernel [4].

Despite that Nanostack is an open-source stack, Nanostack authors and users never created

proper documentation of the internal logic of the stack. We provided the first documentation of

the stack in [5], documenting and analyzing its internal architecture. This paper extends our

previous work documenting Nanostack [5], explaining in detail the main logic implemented in

the MAC layer and introducing the NRP layer. In addition we provide a conceptual view of

layering of the stack relative to the hardware platform (sensor node), enumerate the typical tasks

running in a sensor node and describe the functionality of a sensor node working as Gateway.

By exposing the architecture and logic of the stack, the reader can evaluate at what extent

Nanostack is suitable for an intended purpose given different requirements and constraints

(modularity, concurrency, real-time operation, energy consumption, memory size, etc.).

 In the following sections we document the stack architecture and logic. In Section 2 we

introduce Nanostack layers, modules and typical tasks. In Section 3 we introduce the

architecture of the stack. In the sections that follow (4, 5, 6, and 7) we introduce and explain the

operation of each one of the layers in the stack, except the ICMP layer that is not covered in our

descriptions. In Section 8 we describe the NRP layer and the case when a sensor node works as

Gateway. Finally, we conclude the paper in Section 9.

2. NANOSTACK AND WIRELESS SENSOR NODES

In this section we provide a conceptual view of the layering in the stack relative to the hardware

(HW) platform (sensor node), introduce the principal layers (modules) in the stack and

enumerate the typical tasks running in a sensor node.

Nanostack operates on top of the FreeRTOS kernel, a multi-platform, mini, Real Time Kernel

[4], which in turn runs in a micro-controller located in a hardware platform. In the context of

Wireless Sensor Networks (WSN), the hardware platform usually incorporates also sensors and

wireless radio circuitry, and receives the name of “wireless sensor node" or “sensor node"

among other names used in the literature. Fig.1 provides a relative view of Nanostack and its

layers in a hardware platform (wireless sensor node).

In general, in the explanations below we talk simply about nodes and define a node as an entity

that implements the stack and is able to transmit and receive 6LoWPAN packets. In the context

of this paper it is not a requirement that a node contain sensors.

Figure 1: Relative view of Nanostack Layering in HW

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

206

2.1. Nanostack Modules and Layers

Nanostack consists of different stack layers, each one in charge of processing the different

protocol headers in the packets moving in the stack. The principal layers are shown on Fig. 2.

Each one of these layers is introduced in the following sections.

The application layer differentiates from the other layers in the sense that it relates to the stack

through a socket interface (Fig. 2), whereas other layers are related to the stack by an elaborated

mechanism in charge of moving the packets among the layers (Section 3.2).

Figure 2: Principal Nanostack Layers

In Nanostack each layer is associated to a module of code. Nanostack modules can be enabled

or disabled to modify the functionality of the stack. For example, in Section 8 we describe an

optional module called NRP that can be enabled to make a node work as Gateway. In order to

simplify the description of the stack the NRP module is not considered until Section 8.

Nanostack contains also an ICMP module that introduces ICMP layer functionality. ICMP is a

protocol used for communicating exceptional messages between nodes or layers in the stack.

ICMP is not covered in our descriptions, mainly due that ICMP logic is distributed in several

layers and its inclusion can compromise the simplicity and structure that we intend to adopt in

the description of this complex stack. In this paper we assume that a module and a layer are

equivalent and talk in general about layers in the rest of the paper.

2.2. Typical Tasks running in a Sensor Node

FreeRTOS is a multitasking operating system. Nanostack was designed to make use of this

feature and it executes tasks dedicated to different purposes concurrently.

Typical Nanostack tasks running in a sensor node are shown in Fig. 3. The system task labeled

stack_main() is the core task of Nanostack; this task is introduced in Section 3.2. The task

labeled mac_task() process packets at MAC layer level (Section 4). Task vAppTask() is a task

dedicated to execute user’s code at application layer level (Section 7.2). Finally, task

vnrp_task() is a task that is executed when the NRP module for Gateway functionality is

enabled (Section 8).

Figure 3: Typical Nanostack tasks running in a sensor node

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

207

3. STACK ARCHITECTURE

In this section, we first introduce the main data structure used in the stack for processing

packets, followed by the description of a key component in the core architecture, the

"dispatcher" module. We also illustrate the overall architecture with the dispatcher module and

all the layers in the stack.

3.1. Main Data Structure used in the Stack

In the stack packets are handled by mean of instances of the data structure buffer_t. buffer_t is

defined in file buffer.h and reproduced here in Fig. 4.

Figure 4: Main data structure used in the stack

Throughout this document we denote by b an instance of buffer_t. The content of a packet is

stored in the buf field of buffer_t : b.buf; where the notation expresses a qualified name, in this

case b is an instance of buffer_t and buf a field belonging to b. (To be more precise in the actual

implementation b is actually a pointer to an instance of buffer_t, and a C language notation b–

>buf is more appropriate, although not used here to simplify the notation). Linux kernel

connoisseurs can imagine buffer_t as a structure analogous to the socket buffer structure sk_buff

in the Linux kernel [6][7].

Packets move through the stack by mean of instances of structure buffer_t. (We emphasize here

that even when we say that there is a movement of packets inside the stack, Nanostack actually

never moves packets but merely pointers to instances buffer_t). Incoming packets are directly

stored in b.buf. Subsequent processing in the different layers of the stack parses the packet and

fills accordingly the fields of buffer_t structure with the information extracted from the packet.

Outgoing packets are constructed layer by layer; each layer adding an appropriate header in

b.buf.

Three fields in buffer_t of particular importance are b.from, b.to and b.dir. Fields b.from and

b.to indicate the previous and posterior layer that processed and will process the packet,

respectively. Field b.dir indicates the direction of movement of the packet; the value

BUFFER_UP indicates an incoming packet moving toward the Application Layer whereas the

value BUFFER_DOWN indicates an outgoing packet moving toward the Network Layer.

Hereafter an instance buffer_t, b, moving in the stack can be thought as a packet under

processing (parsing) when the packet is incoming or as a packet under composition when the

packet is outgoing. Analogously, when talking about packets moving in the stack we always are

talking of the associated instance buffer_t, b, that carries the packet in the b.buf field.

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

208

3.2. Dispatcher of Packets and Stack Architecture

Fig. 5 shows the architecture of the stack. In the figure we observe a graphical representation of

a queue labeled "Queue events". Queue events transits incoming and outgoing packets (carried

in instances buffer_t, b) between different layers of the stack. The output of the queue is handled

by a dedicated system task labeled stack_main() (file stack.c) that contains an endless loop

checking the arrival of instances b from the queue (function xQueueReceive()). When a packet

is received by xQueueReceive() the function stack_buffer() is called, passing a pointer of the

buffer_t instance b as parameter. Function stack_buffer() behaves as a dispatcher; it contains a

suitable logic that delivers the packet to the appropriate destination layer in the stack.

Figure 5: Nanostack architecture

Possible destination layers are depicted below the box representing task stack_main(). In the

figure we observe the following layers; MAC, cIPV6, mesh and cUDP. Actually the stack

contains also an ICMP layer that we do not include in the current description and a NRP layer

that we decided to explain separately in Section 8 in order to simplify the description of the

stack.

The details of the operation of each one of these layers are described in Sections 4, 5, 6 and 7.1.

Note in the figure that the application layer is positioned outside the brace that expands under

the dispatcher. The application layer is independent of the stack in the sense that it is not related

to the dispatcher and instead receives/sends packets by calling socket functions.

We clarify here that the authors of the stack proposed the name cIPV6 for the layer in charge of

processing the headers Mesh-Header, Dispatch-Header, and its alternatives LOWPAN_HC1,

LOWPAN_BC0, IPv6, etc. (defined in [1]). And the name cUDP for the layer that processes the

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

209

compressed UDP ports (HC_UDP encoding) [1]. In addition each layer is associated to a

module of code that can be enabled/disabled in the stack.

In the following subsections we complete the description of the stack by explaining the journey

of a packet moving in the stack and introducing additional complementary details.

3.2.1. Journey of a packet in the stack

An incoming packet enters to the stack in the MAC layer through a call to mac_push(). In this

layer a data packet is stored inside a buffer_t structure, in the field b.buf. Additional values are

stored in b fields, for example b.dir = BUFFER_UP to indicate that the packet will move toward

the application layer in the stack. Then the instance b is pushed to queue events by calling

function stack_buffer_push(), which in turn calls xQueueSend() to input the instance into the

queue (Fig. 5).

The main idea is that an instance buffer_t b (actually a pointer) travels among the required

layers and in its journey the fields of b acquire the information stored in the packet by

decomposing it (incoming case) or, conversely, the layers utilize the information in the fields of

b to compose the packet (outgoing case). The movement between layers is facilitated by every

time pushing the instance to queue events, and letting the dispatcher deliver the instance to the

appropriate layer by doing a function call to a dedicated handler function in the layer, and

passing the instance as parameter.

After an incoming packet leaves the MAC layer and enters queue events, it is delivered by the

dispatcher to the next layer in the BUFFER_UP direction. In the present explanation the next

layer is cIPv6. Actually the layers in the stack are modular in the sense that at compilation time

some layers can be added or removed from the stack. In our explanation we assume that all the

layers shown in Fig. 5 are present.

Layer cIPv6 will decide (as shown in Section 5.2) the next destination layer in the stack. An

incoming packet targeted for the current node will move in BUFFER_UP direction towards the

application layer, traveling through the cUDP layer. Whereas a packet targeted to another node

may move to the mesh layer to obtain routing information, and from there continue

BUFFER_DOWN to the MAC layer for forwarding. For outgoing packets the journey involves

the displacement of b in the BUFFER_DOWN direction through layers cUDP, cIPV6, mesh and

MAC.

In essence the processing of the packet in each layer will determine its final fate according to

different situations. Subsequent sections in the paper document the different situations and

decisions mandated by the logic in the stack. Of particular importance at this point is to observe

the logic set in the dispatcher. The dispatcher basically selects the next layer by first checking

the existence of a concrete destination in b.to, and if this is not present relying on the directions

BUFFER_UP or BUFFER_DOWN present in the b.dir field (Fig. 5).

3.2.2. Sockets

When an incoming packet leaves the cUDP layer in the stack, it is pushed to queue events as

usual. At this point the dispatcher recognizes that there is no concrete destination layer (b.to =

MODULE_NONE), and that the packet is heading BUFFER_UP. At this point the dispatcher

looks for an existing socket for the destination address and port number stated in the packet and

if the socket exists it moves the instance b to a dedicated queue located inside the corresponding

socket (queue socket) (Fig. 5).

Incoming packets redirected to queue socket are retrieved at application layer by calling

socket_read() function.

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

210

Outgoing packets are generated at application layer by invoking function socket_sendto(), which

will set b.dir = BUFFER_DOWN in the instance b that holds the packet; finally b is pushed to

queue events.

3.2.3. Stack initialization

The stack is initialized by calling function stack_init(). stack_init() is in charge of the following:

1 Creating queue events by executing FreeRTOS function xQueueCreate().

2 Creating a new system task “stack_main()" by executing FreeRTOS function

 xTaskCreate(). This task contains the endless loop shown in Fig. 5, that by means of

function xQueueReceive() checks for incoming instances buffer_t from queue events.

3 Allocating memory for a pre-defined number of instances buffer_t (set in the constant

STACK_BUFFERS_MAX).

4 Initializing indexes stack_buffer_rd = stack_buffer_wr = 0

5 Creating a dedicated task, mac_task(), for processing packets in the MAC layer.

3.2.4. Allocation of pool of instances buffer_t

When the stack is initialized a collection (pool) of buffer_t instances is created. The pool of

instances is arranged in a ring buffer from where the system takes and returns instances during

the operation of the stack. The approach to pre-allocate memory in a pool of instances is not

only to provide performance to the system. Note that this stack was designed to work in

embedded microcontrollers operating with FreeRTOS. FreeRTOS is a multi-platform, mini,

Real Time Kernel that provides memory allocation in deterministic time by means of a memory

allocation API common for any platform (function pvPortMalloc()) [4]. In this sense the

simplest RAM allocation scheme does not permit memory to be freed once it has been

allocated, and hence the use of a pool of instances.

The pool of pre-allocated instances is managed by means of a ring buffer labeled

stack_buffer_pool[]. stack_buffer_pool[] is indexed by two position pointers, a pointer

indicating a reading position (stack_buffer_rd) and a pointer indicating a writing position

(stack_buffer_wr), indicating the next available place where a buffer_t instance can be taken or

returned respectively (Fig. 6).

Figure 6: Ring buffer for buffer_t instances.

The functions stack_buffer_get() and stack_buffer_free() are front end functions that will take or

return a buffer_t instance from the pool and at the same time these functions initialize or reset

the fields of the structure. Behind these functions, stack_buffer_pull() and stack_buffer_add()

perform the actual unload/load of buffer_t pointers from/to the pool of instances

stack_buffer_pool[] (Fig. 6).

In the stack a call to stack_buffer_get() is always followed by a call to stack_buffer_free() at

some point in the life of the packet in order to recycle the finite number of instances buffer_t.

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

211

For example, a packet is returned to the pool after transmission or after discarding it due to

some exceptional condition.

4. MAC LAYER

The processing of a packet at the MAC layer level comprises the identification and

incorporation of the MAC headers in the MAC sub-layer part of an IEEE 802.15.4 data frame

and the logic related to retransmissions when transmission acknowledgements (ACKs) are

expected.

Actually the portion of data that we call packet is the MAC protocol data unit (MPDU) (PSDU

at PHY layer level) of the IEEE 802.15.4 Data Frame [8]. This portion of data is the one pointed

by the b.buf field of the buffer_t instance.

The logic in the MAC layer is distributed in two different parts of the code, in the MAC layer

module from the stack, and in a dedicated task labeled mac_task() (see Section 2.2) that is

initialized with the stack.

Fig. 7 depicts the MAC layer module from the stack. As it can be observed in the figure, there is

no processing of packets in the BUFFER_UP direction. The processing in this direction is

instead carried out in the dedicated task mac_task() that among other jobs takes care of

processing incoming packets. In the subsections below we discuss the processing of a packet in

the BUFFER_UP and BUFFER_DOWN directions considering both, the MAC layer module

from the stack and the dedicated task mac_task() running concurrently in the stack.

Figure 7: MAC layer module in the stack

4.1. Ring Buffers in the MAC Layer for Reception and Transmission of Packets

Two ring buffers, mac_rx[] and mac_tx[], are used for buffering received packets or packets to

be transmitted. The ring buffers store instances buffer_t and contain two indexes indicating the

current writing and reading place in the buffer (Fig. 8).

Figure 8: Ring buffers used in the MAC layer for reception and transmission of packets

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

212

4.2. Packets in BUFFER_UP Direction

The movement of packets in the BUFFER_UP direction is associated with the reception of

packets. Fig. 9 depicts the details of a packet entering to the stack. When a packet arrives to the

node, an interrupt service routine calls function mac_push() which adds the received packet to

the mac_rx[] ring buffer and sets the packet direction b.dir to value BUFFER_UP; b.dir is used

later by the dispatcher to move the packet in the BUFFER_UP direction. Then function

mac_rx_push() is called, which in turn delivers an event type MAC_RECEIVE to a queue

named mac_events.

Figure 9: Details of packet entering to the stack

The dedicated task in the MAC layer, mac_task() (Fig. 10), contains an endless loop that in each

iteration calls function xQueueReceive(). This blocking function checks the state of the other

end of the queue mac_events and unblocks when there is an event available. When the event

mac_event_t = MAC_RECEIVE is received, the first switch() in Fig. 10 branches the flow

toward the switch-case MAC_RECEIVE. Then a call to function mac_rx_pull() retrieves the

received packet from the ring buffer mac_rx[], and the flow of execution continues until the

second switch() on Fig. 10. In this switch() we assume that mac_mode evaluates to

MAC_ADHOC and function mac_adhoc() is executed.

When mac_adhoc() is called (Fig. 11), the first switch() shown on the figure evaluates to case

MAC_RECEIVE. Then the MAC header (IEEE 802.15.4 MPDU) is parsed by calling

mac_buffer_parse() and the fields b.dst_sa and b.src_sa, among others, of the buffer_t instance

b are filled with the received destination and source address. A posterior call to mac_data_up()

pushes the b instance containing the packet to queue events for further processing by the next

layer in the stack (cIPv6 layer).

4.3. Packets in BUFFER_DOWN Direction

The movement of packets in the BUFFER_DOWN direction is associated with the transmission

of packets. In this case the dispatcher makes a function call to function mac_handle() (the

dedicated function to handle packets in this layer) and subsequently the latter calls

mac_tx_add() (Fig. 7). Function mac_tx_add() adds the instance b containing the packet in a

ring buffer named mac_tx[] and next an event MAC_TRANSMIT is pushed to queue

mac_events. Posterior processing in the system task mac_task() (Fig. 10) will process this event

and finally deliver the packet to the radio for transmission. In the following paragraphs we

explain how the packet is transmitted once the MAC_TRANSMIT event is received in

mac_task().

The dedicated task in the MAC layer, mac_task() (Fig. 10), is continuously looping and

checking for events at the other end of the queue mac_events (function xQueueReceive()). When

the event mac_event_t is received with value MAC_TRANSMIT, the first switch() in Fig. 10

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

213

branches the flow toward the switch-case MAC_TRANSMIT. Assuming that it is the first

packet to be transmitted mac_timer_event takes value MAC_TIMER_NONE; then the packet

contained in the buffer_t instance is retrieved from the mac_tx[] ring buffer by calling

mac_tx_pull(). Assuming that this buffer exists, mac_event_t is set to MAC_NONE, the buffer_t

instance is stored in the global pointer mac_tx_on_air and a timer is launched. The launch of the

timer sets a global event variable mac_timer_event to value MAC_TIMER_CCA. Given the

case under consideration, and with the given assumptions, the remaining entries in the logic are

not executed and the task mac_task() returns to the blocking state in function xQueueReceive().

Figure 10: Details of function mac_task()

At this point we assume for simplicity that there is no simultaneous transmission or reception of

packets. Then when the timer MAC_TIMER_CCA expires (after a random time in a defined

interval), it triggers the transmission of the packet as follows. First a timer callback function in

the code, mac_timer_callback(), is executed. Then function mac_timer_callback() (not shown

on the figures) pushes to queue mac_events the event previously set in the global event variable

mac_timer_event; i.e. the event value MAC_TIMER_CCA. When at the other end of the queue

mac_events the event MAC_TIMER_CCA is received, the flow of execution continues until the

second switch() on Fig. 10. In this switch() we assume that mac_mode evaluates to

MAC_ADHOC and function mac_adhoc() is executed. When mac_adhoc() is called (Fig. 11),

the first switch() evaluates to case MAC_TIMER_CCA. In this case the global pointer

mac_tx_on_air is copied to a local pointer buf and the global pointer is set to zero. The flow of

the code then executes the same code under the switch-case condition MAC_TRANSMIT. In

the switch-case condition MAC_TRANSMIT, function mac_buffer_out() is called.

In function mac_buffer_out() (Fig. 12) we assume that the packet comes from the cIPv6 layer

and buf.to is set to value MODULE_MAC_15_4. Then this causes the call to function

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

214

mac_header_generate() which creates and adds the MAC header in the packet. Then a local

variable ack is set to value 1 if the MAC layer is configured with transmission

acknowledgements, or otherwise to 0. Next the packet is sent to the radio and transmitted by

calling function rf_write(), function that does not belong to the stack but to the platform port for

radio chip TI CC2420 in file rf.c. If the transmission is successful rf_write() returns TRUE and

function mac_buffer_out() returns with a value MAC_TX_OK_ACK if ACK transmission is

enabled in the MAC or with value MAC_TX_OK if ACK transmission is disabled in the MAC.

Figure 11: Details of function mac_adhoc()

After the packet is sent the flow of the code returns and executes the second switch() in Fig. 11,

evaluating the return of the function call mac_buffer_out(). If ACK transmission is disabled the

switch-case evaluates to MAC_TX_OK. In this case we do not expect to receive an ACK from

the transmitted packet, so we just free the buffer used by this packet and set mac_timer_event to

MAC_TIMER_NONE. If ACK transmission is enabled the switch-case evaluates to

MAC_TX_OK_ACK. In this case we expect to receive an ACK from the transmitted packet, so

we need to keep the packet for retransmission in case that a future retransmission is needed. A

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

215

packet for retransmission is kept in the global pointer mac_tx_on_air and a timer

MAC_TIMER_ACK is launched. In both cases the switch-case breaks and the endless loop in

function mac_task() blocks again in function xQueueReceive() waiting for the arrival of an

event in queue mac_events.

If ACK transmission is enabled and the receiver properly emits a transmission ACK, it arrives

to the node and function ack_handle() is called, which in turn delivers to queue mac_events an

event type MAC_ACK_RX. When function xQueueReceive() receives the event, the flow of the

code branches in the first switch() on Fig. 11 with case MAC_ACK_RX. In this case the ACK

timer is stopped, a Neighbor and Routing table TTL update event is sent to the cIPv6 layer and

the global pointer mac_tx_on_air is set to zero.

Figure 12: Details of function mac_buffer_out()

If ACK transmission is enabled and a transmission ACK never arrives, the timer

MAC_TIMER_ACK expires and causes an event type MAC_TIMER_ACK that is pushed to

queue mac_events. This event is processed in the first switch() on Fig. 11. In this case a counter

mac_tx_retry is increased and a new attempt to transmission is made by starting a timer type

MAC_TIMER_CCA, which in turns when expiring triggers a new transmission as explained

above. If no ACK is received after the number of re-transmissions attempts is greater than

MAC_RETRY_MAX, the timer is stopped and the packet is sent to the cIPv6 layer with an

event type HANDLE_BROKEN_LINK.

5. CIPV6 LAYER

The processing of a packet in the cIPV6 layer when it is moving in the BUFFER_UP direction

comprises the identification of the 6LoWPAN headers Mesh-Header and Dispatch-Header, and

the alternatives of the latter, LOWPAN_HC1, LOWPAN_BC0 and IPv6, defined in RFC 4944

[1]. In the BUFFER_DOWN direction the processing comprises the incorporation of the

6LoWPAN LOWPAN_HC1 and LOWPAN_BC0 Dispatch-Headers.

This version of the stack (Nanostack 1.1) does not include fragmentation and it is not

recognizing the Fragmentation-Header. Furthermore in our study we do not cover the

processing of IPv6 and LOWPAN_BC0 headers even when these are present on the stack.

The upper part of Fig. 13 and 14 show the logic involved in cIPV6 layer. In Fig. 13 we can

observe the entry point of a packet in this layer; packets are delivered by the dispatcher and can

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

216

arrive either from the MAC layer (incoming packets) or from the cUDP layer (outgoing

packets).

In the subsequent subsections we describe the different conditional branches that form the logic

of this layer.

Figure 13: cIPv6 and mesh layers in the stack: BUFFER_UP case

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

217

5.1. Exception Messages

On the top of Fig. 13 the first two conditional branches verify particular exception messages set

in b.options. The first verification is related to an option to refresh a Time-To-Live clock

counter in entries of neighbor and routing tables (described in Section 6). The second

verification is related to an exception labeled broken-link that occurs when the stack does not

receive in time an acknowledgement about the reception of a delivered packet from the

destination node, or when the transmission of a packet does not succeed after exceeding a

maximum number of attempts due to the unavailability of the transmitter to perform the

transmission. In the broken-link case the MAC layer adds a flag in the packet that is identified

in this conditional branch and triggers an exception message. The exception message is

delivered to the application layer for packets addressed to the current node through a dedicated

queue to inform exceptions (queue event_queue), or otherwise delivered by means of an ICMP

message to the destination address set in the packet.

Figure 14: cIPv6 and mesh layers in the stack: BUFFER_DOWN case

Packets not involved with these conditional branches continue their journey toward the next

conditional branch that verifies the direction of the packet. The logic for packets in the

BUFFER_UP direction is discussed in Section 5.2 and depicted in Fig. 13. The logic for packets

in the BUFFER_DOWN direction is discussed in Section 5.3 and depicted in Fig. 14.

5.2. Packets in BUFFER_UP Direction

The upper part of Fig. 13 depicts the logic followed by a packet moving in the BUFFER_UP

direction in this layer. The first step is to update a table called Neighbor Table by invoking

function update_neighbour_table(). Studying the logic stated by the code in the stack we

concluded that the criteria to define what is a neighbor and what is not is based on the principle

of “any node that can be listened is a neighbor". In this sense an incoming packet from other

node entitles the other node to become a neighbor of the receiving node. Neighbor Table and a

related table, Routing Table, are described in the next section.

The next step is to check the 6LoWPAN encapsulation header. The conditional branch checks if

the header is a Dispatch-Header or Mesh-Header. When a Dispatch-Header is present, the logic

verifies the existence of the type-specific header to be LOWPAN_HC1 and then pushes the

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

218

packet to queue events for further processing in the next layers in the stack (cUDP or ICMP in

this case). When a Mesh-Header is present (and assuming that routing is enabled in the stack by

defining HAVE_ROUTING directive for the C preprocessor), the parsing process looks for the

Dispatch-Header that follows the Mesh-Header. In the Dispatch-Header the type-specific header

is checked with a conditional branch that verifies if the header is LOWPAN_HC1 or

LOWPAN_BC0. The processing for the LOWPAN_BC0 case is not considered here. In the

LOWPAN_HC1 case a table containing the routing of the packets, Routing Table, is updated by

calling function update_routing_table().

The next phase is to check the 6LoWPAN originator address (ORIGINATOR hereafter)

present in the Mesh-Header and check if the ORIGINATOR is this node. If the ORIGINATOR

is this node it means that the packet looped back to the original sender and therefore should be

discarded. The conditional branch that follows checks if the packet is targeted for this node by

comparing the final address present in the Mesh-Header to the own address of the node. If it is

the case the packet is pushed to queue events for further processing in the next layer in the stack

(cUDP).

A packet with a mesh final address other than the address of this node is a packet that reaches

this node and requires forwarding. From now on the packet enters in a forwarding stage. In

order to forward the packet to the proper destination its traveling direction in the stack will be

now changed from BUFFER_UP to BUFFER_DOWN direction.

The first step in forwarding a packet is to check if the destination address (mesh final address)

is the same that the own address of the node. If this is the case the packet is being sent to itself,

so it is discarded. Next the number of hops left is checked. If the number of hops left is zero, a

broken-link event is generated. Note that this broken-link event is a different event to the

mentioned at the beginning of this section; in this case an ICMP message is delivered to the

destination address set in the packet. If the number of hops is greater than zero the packet is

pushed to queue events for further processing in the next layer in the stack, in this case the mesh

layer.

As additional information we mention that at the beginning of the logic explained in this

subsection, the logic checks the presence of an IPv6 header. This is not considered here and not

depicted in the figure.

5.3. Packets in BUFFER_DOWN Direction

The upper part of Fig. 14 depicts the logic followed by a packet moving in the

BUFFER_DOWN direction in this layer. In the figure we can observe a conditional branch that

checks if the packet contains a broadcast address. The broadcast case is not considered in this

document. Non-broadcast packets are pushed to the queue events for further processing in the

next layer in the stack, in this case the mesh layer.

6. MESH LAYER

The processing of a packet in the mesh layer when it is moving in the BUFFER_UP direction

comprises the execution of mesh-under routing relying on the information retrieved from the

6LoWPAN Mesh-Header in the cIPv6 layer. In the BUFFER_DOWN direction the processing

comprises the incorporation of the 6LoWPAN Mesh-Header defined in RFC 4944 [1].

Routing information is stored in two main tables, Neighbor Table and Routing Table. Neighbor

Table contains contact information related to nodes that were heard in the past, either by

broadcast or unicast packets. Routing Table contains contact information for nodes that are not

neighbor nodes. New entries in this table are added with callings to update_routing_table()

setting a value b.event other than REMOVE_ROUTE and ROUTE_ERR in the instance b. In

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

219

the stack we identified two calls to update_routing_table() for adding new entries in the Routing

Table, both mentioned in Sections 5.2 and 6.2. Here we point out that these function calls are

inconsistent in the sense that the logic distributed in different points of the stack does not

present a definite criterion to add initial entries in the table: The conditional statement

mentioned in Section 5.2 requires the packet to have a 6LoWPAN Mesh-Header before an entry

in the table can be processed, and the conditional statement mentioned in Section 6.2 requires an

entry in the table before adding a 6LoWPAN Mesh-Header in the packet. Both conditions lock

each other.

The lower part of Fig. 13 and 14 shows the logic involved in this layer when the packet moves

in the BUFFER_UP and BUFFER_DOWN directions respectively. In the subsequent

subsections we describe the different conditional branches that form the logic of this layer for

the cases BUFFER_UP and BUFFER_DOWN.

6.1. Packets in BUFFER_UP Direction

The lower part of Fig. 13 depicts the logic followed by a packet moving in the BUFFER_UP

direction in this layer. Actually the packet is no longer moving in the BUFFER_UP direction

but hereafter in the BUFFER_DOWN direction due to the fact that the packet reaches this part

in the stack from the packet forwarding case mentioned in Section 5.2. In the figure we can

observe first a conditional branch that checks if the destination address of the packet to be sent

matches a previously stored neighbor node (function check_neighbour_table()). If this is the

case the packet is pushed to the queue events for further processing in the next layer in the stack

(MAC layer). The remaining conditional branches are self explicative in the figure.

6.2. Packets in BUFFER_DOWN Direction

The lower part of Fig. 14 depicts the logic followed by a packet moving in the

BUFFER_DOWN direction in this layer. In the figure we can observe first a conditional branch

that checks if the destination address of the packet to be sent matches a previously stored

neighbor node (function check_neighbour_table()). If this is the case the packet is pushed to the

queue events for further processing in the next layer in the stack (MAC layer).

If the destination address of the packet being sent does not belong to a previously stored

neighbor, the logic checks the routing table by calling check_routing_table(). If an entry in the

Routing Table exists, the 6LoWPAN Mesh-Header is added to the packet with an originator

address equal to the address of the node and a mesh final address equal to the intended address.

The destination address in the MAC layer is set to the address found in the routing table.

If an entry in the Routing Table does not exist, the logic verifies whether there is a neighbor

with low RSSI (Received Signal Strength Indication); state previously retrieved by

check_neighbour_table(). Despite of the existence of a neighbor with low RSSI or not, the logic

pushes the packet to the MAC layer. In other words, this means that if the node does not have

the destination address registered in the neighbor or routing tables, the packet is transmitted

anyway. In our opinion a more elaborated routing protocol should be developed and

implemented, for example initiating a route discovery.

7. HIGHER LAYERS

In this section we describe the remaining layers that form part of the stack; cUDP layer and

Application layer.

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

220

7.1. cUDP Layer

The processing of a packet in cUDP layer comprises the identification and incorporation of the

6LoWPAN header HC2, in this case for UDP HC_UDP, defined in RFC 4944. In the

BUFFER_UP direction this layer checks the HC2 encoding (HC_UDP) and extracts the port

numbers. Extracted port numbers are stored in the b instance in fields b.src_sa.port and

b.dst_sa.port. In the BUFFER_DOWN direction this layer adds the HC_UDP header and

compressed port numbers.

7.2. Application Layer

As mentioned in Section 3.2, in Fig. 5 the application layer is positioned outside the brace that

expands under the dispatcher. The application layer is independent of the stack in the sense that

it is not related to the dispatcher and instead receives/sends packets by calling socket functions.

The application layer consists of an independent FreeRTOS task that implements the socket API

to access the stack. Incoming packets are redirected to queue socket inside the socket structure,

and are then retrieved at application layer by calling socket_read() function. Outgoing packets

are generated at application layer by invoking function socket_sendto(), which sets b.dir =

BUFFER_DOWN in the instance b that holds the packet, and finally are pushed to queue events

by calling stack_buffer_push().

8. NRP LAYER AND GATEWAY NODES

In this section we introduce an additional layer, the NRP layer. The NRP layer is enabled by

using the optional module NRP. This layer was not considered in the previous sections due that

it belongs to an optional module that is not essential for the main functionality of the stack. The

NRP layer is generally used in the stack when a node acts as Gateway (GW) between the

wireless sensor network (WSN) and the rest of the world outside the WSN.

In a typical GW configuration the NRP layer is incorporated to the stack and the application

layer does not implement a socket interface. Under this setting we can depict the stack as it is

shown in Fig. 15.

Figure 15: Nanostack Layers including NRP layer

The layer was named NRP due that it uses a Network Routing Protocol (NRP) [9] to

communicate the GW node with the external world. In practice a GW node implements the

NRP layer in the stack and connects to a workstation via a serial interface. With this setting

incoming and outgoing packets to/from the WSN and circulating through the serial interface are

encapsulated using the Network Routing Protocol (Fig. 16). The main idea is that a process

running in the workstation attends the other end of the serial communication line and helps to

transmit and receive packets to the WSN. In Fig. 16 we depict a possible representation of the

arrangement of a node acting as gateway, the serial communication line and the workstation.

Given this arrangement, the application layer of the stack implementing a socket interface can

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

221

be visualized as running in the workstation, thus allowing the implementation of the GW

functionality.

The logic followed by the NRP layer is explained with the aid of Fig. 17. The figure depicts the

NRP layer (upper part of the figure), and a dedicated task (lower part of the figure), vnrp_task(),

executing concurrently with the stack. In the figure we can identify the two possible cases of

incoming traffic:

1 Packets from the Radio to the Node.

2 Packets from the Serial Interface to the Node.

and the two cases of outgoing traffic:

3 Packets from the Node to the Serial Interface.

4 Packets from the Node to the Radio.

Incoming packets in items 1 and 2 are related to outgoing packets in items 3 and 4 respectively.

In the case of incoming packets from the Radio to the Node, the packet reaches the NRP layer

through the dispatcher sending the packet in the BUFFER_UP direction (top of Fig. 17). Then

the logic verifies whether there is a NRP subscription (see [9] for details), and then adds the

packet into a ring buffer for transmission over the serial communication line. The transmission

takes place in function vnrp_task() (bottom of Fig. 17).

Figure 16: Node implementing Nanostack with NRP layer and serial communication to a

workstation using NRP protocol

In the case of incoming packets from the Serial Interface to the Node, the function vnrp_task()

retrieves one by one bits from the serial line when available, composes a packet and stores its

instance, buffer_t, into a reception ring buffer. Packets coming from the serial line can contain

actual data or control messages. Control messages are used for example to register NRP

subscriptions [9]. If the received packet contains data and the next target layer is the IP layer,

then the packet is pushed to queue events and finally handled by the dispatcher.

9. CONCLUSION

In the previous sections we documented the architecture of the stack and each one of its layers,

except the ICMP layer, that was left aside due that the ICMP logic is distributed in several

layers and its inclusion can compromise the simplicity and structure that we intend to adopt in

the description of the stack. In this section we conclude the paper and provide a list of the

outstanding features of the stack. Additional details are provided in [5].

Nanostack v1.1 is a stack designed with a modular architecture that operates moving pointers to

instances of the data structure buffer_t. This implementation facilitates the movement of data

through the stack without misusing memory size or reducing performance. In addition the stack

operates in a concurrent fashion using multiple tasks, and over a real-time kernel system.

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

222

In our opinion some outstanding points of Nanostack are: 1) The architecture of the stack is

modular. Layers can be added or removed. 2) It is suitable for researching mesh-under routing

protocols, (in contrast of other stacks that adopt route-over routing [2]). 3) It is based on

FreeRTOS, a real time kernel suitable for real time control processes and network

synchronization [10]. 4) The programming at application level is extremely simple, facilitated

by FreeRTOS and the socket API available in the stack.

To our knowledge Nanostack has been used in diverse academic and research fields, such as in

network synchronization [10], real-time wireless control systems [11], structural health

monitoring (SHM) [12], and WSN routing.

Figure 17: NRP Layer

REFERENCES

[1] Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets over IEEE

802.15.4 Networks. RFC 4944 (Proposed Standard) (September 2007)

[2] Mazzer, Y., Tourancheau, B.: Comparisons of 6LoWPAN Implementations on Wireless Sensor

Networks. In: Sensor Technologies and Applications, 2009. SENSORCOMM ’09. Third

International Conference on. (18-23 June 2009) 689 –692

[3] NanoStack 6lowpan: Nanostack v1.1 (2008)

http://sourceforge.net/projects/nanostack/.
[4] FreeRTOS: The FreeRTOS project (2009) http://www.freertos.org/.

[5] Lembo, S., Kuusisto, J., Manner, J.: Internal Map of the Nanostack 6LoWPAN Stack. In

Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D., eds.: Recent Trends in Networks

and Communications. Volume 90 of Communications in Computer and Information Science.

Springer Berlin Heidelberg (2010) 619–633

International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.6, November 2010

223

[6] Rio, M.: A map of the networking code in linux kernel 2.4.20. Technical Report Data TAG-

2004-1 (March 2004)

[7] Wehrle, K.: The Linux networking architecture: design and implementation of network protocols

in the Linux kernel. Pearson Prentice Hall, Upper Saddle River, N.J : (cop. 2005.)

[8] IEEE Computer Society: IEEE standard 802.15.4-2006 (2006)

[9] Sensinode Ltd.: nRoute Protocol Specification, v0.7 (2006)

http://sourceforge.net/projects/nanostack/ (distributed with Nanostack v1.1

source code).

[10] Mahmood, A., Jäntti, R.: Time synchronization accuracy for real-time wireless sensor networks.

In: Ninth Malaysia International Conference on Communications, 2009. MICC ’09. (December

2009)

[11] Kaltiokallio, O., Eriksson, L., Bocca, M.: On the Performance of the PIDPLUS Controller in

Wireless Control Systems. In: Proceedings of the 18th IEEE Mediterranean Conference on

Control and Automation (MED’10), Marrakech, Morocco. (23-25 June 2010)

[12] Bocca, M., Cosar, E., Salminen, J., Eriksson, L.: A Reconfigurable Wireless Sensor Network for

Structural Health Monitoring. In: Proceedings of the 4th International Conference on Structural

Health Monitoring of Intelligent Infrastructure (SHMII-4 2009), Zurich, Switzerland. (22-24

July 2009)

