
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

DOI : 10.5121/ijcses.2011.2307 94

ROLE OF MIDDLEWARE FOR INTERNET OF

THINGS: A STUDY

Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti and Subhajit Dutta

Innovation Lab, TATA Consultancy Services Ltd. Kolkata, India
soma.bandyopadhyay@tcs.com, munmun.sengupta@tcs.com,

s.maiti@tcs.com, subhajit.dutta@tcs.com

ABSTRACT

Internet of Things (IoT) has been recognized as a part of future internet and ubiquitous computing. It

creates a true ubiquitous or smart environment. It demands a complex distributed architecture with

numerous diverse components, including the end devices and application and association with their

context. This article provides the significance of middleware system for (IoT). The middleware for IoT

acts as a bond joining the heterogeneous domains of applications communicating over heterogeneous

interfaces. First, to enable the better understanding of the current gap and future directions in this field a

comprehensive review of the existing middleware systems for IoT is provided here. Second, fundamental

functional blocks are proposed for this middleware system, and based on that feature wise classification

is performed on the existing IoT-middleware. Third, open issues are analyzed and our vision on the

research scope in this area is presented.

KEYWORDS

Internet of Things, middleware, semantic model, context-awareness, ubiquitous computing.

1. INTRODUCTION

Internet of Things (IoT) is a combined part of future Internet and ubiquitous computing. It

demands interactions with the heterogeneous raw sensors, aggregators, actuators and diverse

domain of context aware applications, preserving the security and privacy. It comprises two

definite components Internet and things. Internet is a global network infrastructure with self

configuring, scalable, dynamic expansion capabilities based on standard and interoperable

communication protocols whereas “things” are physical objects/devices or virtual-

objects/devices/information having identities, physical attributes, and virtual personalities and

use intelligent interfaces. “Things” are heterogeneous in nature and seamlessly integrated into

the information network.

In order to meet the above said demand IoT will require a software platform defined as

middleware, fundamentally providing abstraction to applications from the things, and offering

multiple services. Development of middleware in the domain of IoT is an active area of

research. There have been a lot of researches towards building up this middleware addressing

interoperability across heterogeneous devices serving diverse domains of applications,

adaptation, context awareness, device discovery and management, scalability, managing a large

data volumes and, privacy, security aspects of the said IoT environment. Therefore there is a

strong need to understand how the existing IoT-middleware systems work and address the

different requirements of ubiquity as well as IoT [14] and [15], and most importantly the

existing issues and gaps.

In this article focus has been given to study the existing IoT-middlewares, understanding its

functional components and categorizing and comparing them as per the various features. The

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

95

basic functional building blocks of IoT-middleware are proposed and discussed. Based on this

review existing issues and gaps, and future research scope are also analyzed and presented.

The remainder of this article is organized as follows. First, the related work in IoT-middleware

is presented, followed by descriptions of the essential functional blocks and the system

architecture of the IoT-middleware system. The feature wise classification of theirs along with

the different interfaces and syntax and semantics strategies are described in detail in the next

section. The final section concludes this article with future research scope, and analyzes the

gaps of the existing IoT-middleware system.

2. RELATED WORK

The common goal of all the middleware development initiatives is to develop a framework

which can enable an adaptation layer in a plug-n-play mode. In recent past, many reviews have

been made on different middleware, and on their basic features to support the important needs

of the respective domains.

Various kinds of middlewares based on their supported functionalities like adaptability, context-

awareness and application domains like Wireless Sensor Network (WSN), Radio Frequency

Identification (RFID) are studied. The surveys performed in [4] and [5] have studied the

middleware based on context-awareness feature. The survey in [4] is based on the architectural

aspects and provides taxonomy of the features of a generic context-aware middleware. Survey

reported in [5] evaluates several context-aware architectures based on some relevant criteria

from ubiquitous or pervasive computing perspective. In [6] middleware for WSN has been

reviewed and a detailed analysis of the approaches and techniques offered by the middleware to

meet the requirements of the WSN has been presented. It also discusses generic components of

the middleware and reference model of WSN based middleware. In [7], middleware for WSN

has been classified depending on their approaches, which can be database oriented, tuple space

approaches, event based and service discovery based approaches [13]. It also narrates the

challenges of WSN middleware and provides some suggestions for solving them. In [8]

middleware has been surveyed from adaptability perspective. This review also presents

taxonomy for adaptive middlewares, their application domains and provides details for one of

each middleware categories.

The survey presented in this article lists the overall features supported by the existing

middleware in the IoT domain, with the proposal of the functional components and system

architecture of IoT-middleware, and establishes the importance of middleware in IoT, whereas

the rest of the surveys in this section depict how efficiently a particular feature is implemented

in the middleware other than IoT domain. This is the basic difference between the present and

the rest of the works. This article also analyses the issues and gaps on the existing middleware

of IoT and explores the way forward on research scope.

3. FUNCTIONAL BLOCKS

Middleware for IoT is required for various reasons. The summary of reasons is as follows:

� Difficult to define and enforce a common standard among all the diverse devices

belonging to diverse domain in IoT.

� Middleware acts as a bond joining the heterogeneous components together.

� Applications of diverse domains demand abstraction /adaptation layer.

� Middleware provides API (application programming interfacing) for physical layer

communications, and required services to the applications, hiding all the details of

diversity.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

96

The above stated reasons generate the need for various functional components the IoT-

middleware must support. The functional components of the middleware as proposed here are

portrayed in the current section. The functional component of an IoT-middleware is depicted in

Fig. 1. The inner most circle shows the required functional blocks. The second circle

encompasses the further division of the functional blocks, and the outermost circle shows the

important modules interacting with the various functional components, but not part of the

middleware – example context processing, data storage and knowledge database. The functional

components are as follows:

• Interoperation

• Context detection

• Device discovery and management

• Security and privacy

• Managing data volume

Fig. 1. Functional Components of IoT-Middleware

Functional components are discussed in the following subsections.

The system architecture is depicted in Fig. 2. It presents a layered view of the IoT middleware

architecture. The fundamental layers are interface protocols, device abstraction responsible for

providing interoperation, resolving the syntax and semantics associated with devices, central

and management module is the core component, which performs the device discovery,

management and context detection. Application abstraction module provides the interface with

local and remote application. Local applications mainly run as event driven services. The other

components like context analysis, knowledge database may reside in remote system essentially

generating a need of distributed architecture.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

97

Fig.2. Functional Components of IoT-Middleware

3.1 Interoperation

Interoperation shares information and uses the same across diverse domains of applications

using diverse communication interfaces. It can be further classified under three different

categories like network, syntactic and semantics [11]. Network interoperation defines protocols

for exchanging information among the various things across different communication networks,

without considering the content of information. It covers the basic connectivity issues in

physical and data-link to network, transport, session and sometimes application layer of TCP/IP

stack. Syntactic interoperation deals with the format and structure of the encoding of the

information exchanged among things. It includes the presentation and application of TCP/IP

stack. Semantic interoperation defines the rules for understanding the meaning of the content of

information, and creates a domain specific information model, known as semantic model.

IoT-middleware exposes multiple APIs to perform these interoperation functionalities. SOA-

based architecture [9], [18] and Ubiquitous Service-Discovery Service (ubiSD-S) [22] are some

of the common approaches adapted by the available IoT-middlewares for semantic

interoperation whereas Home Audio/Video Interoperability (HAVi) [3] addresses network

interoperation. IoT middleware particularly connecting the diverse sensors with the Internet uses

sensorML (Sensor Model Language) [27] which provides standard models and XML schema

for interoperating with sensors. This defines multiple models for various functionalities of the

sensors, like actuation, aggregation, detection.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

98

3.2 Context Detection

Context is responsible for characterizing the situation of an entity where an entity can be person,

place, or object relevant to the interaction between a user and an application, including the user

and applications themselves. IoT-middleware must be context aware for working into smart

environments. Context awareness can be achieved by context detection and context processing.

Context detection collects data and identifies the factors that have significant impacts on the

response. Context processing extracts the context data, processes it and performs or takes

decision based on that. Both these functional modules are depicted in Fig. 1. A knowledge

database is required for setting up a closed feedback path between these blocks to evaluate the

effectiveness of context-aware systems and make some possible improvements.

Among these, context-detection is a core component of IoT-middleware. The other two

functional blocks residing outside the core components of IoT-middleware are mostly

interacting with the IoT applications. Context detection and context processing have been

implemented in different ways in existing IoT-middlewares.

Each service supported by the middleware [9] can be registered with a context-dependent

identifier. The context-dependent identifier gets changed with the change in end-point mobility.

The network manager would maintain a data-structure like IDTable with the information of

identifiers [10].

The middleware described in [11] performs context detection by collecting information from the

sensor devices and extracts required context data by utilizing available data mining algorithms.

Another approach towards context detection is incorporating semantic context-aware

multimodal visualization approach [1]. This will enable users not only to get just raw data, but

also information relevant to a particular context and also visualization in an adequate way. This

type of framework contains context-aware A2H (Agent-to-Human) interaction which is termed

as 4i (For Eye) technology.

Optimized message communication between middleware users can be another notion of context

awareness [12] where any event-response can first understand the intended recipient and can

communicate among them.

3.3 Device Discovery and Management

Device discovery and management enables any device in the IoT network to detect all its

neighbouring devices and make its presence known to each neighbour in the network. Device

ontology [26] is used for storing information about the heterogeneous devices. From IoT

perspective, these modules need to be reliable, fault-tolerant, adaptive and optimized for

resource consumption [21]. Few techniques adopted for device discovery and management of

device information are listed below:

Middleware described in [16], [8], [9], tries to extend the syntactic interoperability to semantic

interoperability in application layer. This is done by combining the use of ontologies with

semantic web services. Semantic Model Driven Architecture (Semantic MDA) is introduced to

facilitate application development and to promote semantic interoperability for services and

devices. It includes a set of models (Device ontology) and their usage in design time and run

time. It introduces concept of semantic devices which are software representation of physical

devices. Mapping of physical devices to semantic devices can be one-to-one or many-to-one

depending on the application. Information and data about devices and device types are stored in

device ontology. Semantic device description includes information regarding device

capabilities, services, and device malfunction and security properties. Device Description

includes information like device name, vendor details, hardware description and software

description used to describe hardware and software resources of the device. Application

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

99

Ontology Manager provides interface for using Device Ontology. New devices can be included

into the device ontology by adding sub-classes depending on specialized concepts and new

properties. P2P (Point-to-Point) discovery is supported in various middleware systems.

Middlewares described in [1] and [16] adopt this technique. As described in [12], peer-to-peer

architecture is used in a system where devices support self-configurable services and scalability

from tiny embedded devices to heterogeneous P2P networked systems.

Using device ontology, sensor nodes are abstracted as virtual sensor node in middleware

described in [2]. The virtual abstracted unit contains metadata used for identification and

discovery of sensor nodes. It also contains information regarding the data stream, functional

properties related to lifecycle management etc. Concept of hardware abstraction layer which

creates new adaptor when newer devices are added to the network is described in [13]. Agent

based architecture is used in middleware [1] and [11].Here it is assumed that agents are

associated with all devices present in the network. Middleware described in [1] follows IEEE

FIPA model, including a Directory Facilitator in the system which maintains mapping between

agents and their roles. It helps one agent to find other suitable agent/agents. This introduces

severe bottleneck in the system. To improve the survivability of these systems, a significant part

of DF knowledge gets stored in local knowledge databases of different platform agents when

the system becomes fully operational. The combination of the local storages presents a kind of

distributed directory. Peer-to-Peer (P2P) mechanism implemented on such a distributed

directory is another mechanism complementary to central DF. Also, sometimes some of the

services might not prefer to advertise themselves through the central DF for security reasons.

P2P discovery can be the option in such scenario. The objective here is the design of

mechanisms which will extend the scale of semantic resource discovery with P2P discovery.

Such mechanisms have to enable an agents for discovering other agents playing a certain

organizational role, to discover an agent /agents possessing certain needed information, and to

discover resources (through its agents) of certain type or possessing certain properties. Here the

request is sent to all or some of the agents on the contact list of the agent who wants to

communicate. Those agents can forward the request to all/some of the agents on their lists, and

so on.

Middleware in [11] includes agents for managing the repository of roles and scenarios. Agents

are able to monitor data coming from the adapter about states of the resource, and take decisions

depending on the data content. Agents also facilitate discovery of other agents in the

environment. This approach facilitates service discovery, FIPA communication protocols

utilization, and integration/composition of services. Agent-based layer includes an agent

managing repository of roles and scenarios encoded in RDF-based Semantic Agent

Programming Language (S-APL). Agents manage repository of atomic behaviours which are

software components that agents can load depending on current scenario and the directory that

facilitates flexible discovery of agents. S-APL [24] is a hybrid of semantics specification

languages, semantic reasoners, and agent programming languages. It integrates the semantic

description of domain resources with the semantic prescription of behaviour of agents in

individual and collaborative level.

Service discovery based approach is used to find services available in the system and then

correspondingly binding to that target provider Middleware described in [22] introduces a

service discovery protocol called ubiquitous Service-Discovery Service (ubiSD-S) which

provides dynamic, interoperable, context-aware service discovery. The middleware mentioned

in [3] uses devices profile for Web Services (WS) which includes WS-Addressing, WS-

Discovery, WS-Metadata exchange, and WS-Eventing for devices. The framework also includes

device metadata management, and device lifecycle management containing information

regarding the various devices in the network.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

100

Monitoring and Inventory module of the middleware described in [18] includes sub-modules

like Device Repository, Device Monitor, Middleware Historian and Discovery. Device

Repository stores the static information about devices present in the network. For this purposes

it clubs similar devices into Device Types. Device Type contains two fields: Properties and

Features which describe common characteristics of a class of devices. Function of Device

Monitor is to monitor devices and detect events like malfunction/faulty devices. As the devices

are of varied nature, set of fault detection techniques are needed. These techniques can be driven

by events generated by the devices or by invoking specific methods on the devices. New

techniques can be used by implementing another monitoring method. Middleware Historian acts

as an event archive for the architecture. Data from the devices (due to events or invocation),

middleware system information, debugging messages, etc. can be stored there and are accessible

for correlation of events. Discovery sub-module helps to find devices present on a network and

retrieves information about them and their hosted services. Two functional modes are supported

for discovery sub-module,”passive discovery” and “active discovery”. The”passive discovery”

listens to the network for announcements from new devices that connect to the network,

dynamically retrieves their metadata and notifies the systems about the devices and their hosted

services. The” active discovery”, is responsible for dynamic search of specific devices or

services, and is particularly suited for contexts where new devices with unknown capabilities

continuously connect to the system.

3.4 Security and Privacy

Security and privacy are responsible for confidentiality, authenticity, and non-repudiation.

Security can be implemented in two ways – (i) secure high-level peer communication which

enables higher layer to communicate among peers in a secure and abstract way and (ii) secure

topology management which deals with the authentication of new peers, permissions to access

the network and protection of routing information exchanged in the network.

Security has been considered in all the functional blocks of the existing IoT-middleware, from

the user level application to the various parts of the functional blocks [12] with a view to build a

trustworthy design [9] and [10]. Other approaches to implement security and privacy in IoT-

middleware are as follows. Middleware in [11] depicts the semantic ontology-based approach to

build a universal trust management system, here trust descriptions are interpretable and

processable by autonomous trust management procedures and modules, trust data should be

given explicit meaning via semantic annotation. Semantic trust concepts and properties will be

utilized and interpreted using common trust ontology. Trust information can be incorporated as

part of semantic resource descriptions and stored in dedicated places within the platform.

Communication and retrieval of trust information will be accomplished through corresponding

agent-to-agent communication. Here agents represent communicating resources and required to

be configured appropriately to handle all necessary trust management activities between the

corresponding communication parties. Trust management procedures can be realized as a set of

specific business scenarios in the form of agent configuration plans. Device authentication [18],

integrity service and access control [2] are other techniques deployed for IoT.

3.5 Managing Data Volumes

Managing data volumes is an integral part of IoT-middleware. It is believed that there will be

trillions of objects which will be part of this enormous network and hundreds of Exabytes [20]

will be stored or exchanged among the objects. In other words there will be “Exaflood” or “Data

deluge”, i.e. explosion of the amount of data collected and exchanged. Therefore it is imperative

to get novel methods to find, fetch, and transfer data. Here challenges involve in querying,

indexing, process modelling, and transaction handling. These data can be identification data,

positional data, environmental data, historical data and descriptive data as presented in [23].

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

101

That is why managing these voluminous data is an important module of IoT-middleware. In

addition storage and knowledge database plays an assistive role to the module as depicted in

Fig. 1. The data volume management of various IoT-middlewares is discussed in the following

sections.

In [10] and [19] the Storage Manager module realizes the persistent storage and administration

of information in the middleware. It can integrate any kind of storage into the middleware,

address those storages as virtual devices and it stores the data as string. The main constraint of

this middleware is that the storage device should also be running the same middleware. On the

other hand, in [17] there is an existence of a RDBMS (Relational Data Base Management

System). The Information Sharing Module of the middleware is responsible for collecting,

filtering, storing and extracting queried data from the database.

The agents in middleware, as proposed in [11], acquire knowledge by utilizing available data

mining algorithms and dynamically reconfigure the data management architecture on the basis

of this knowledge. These agents infer (also collaboratively) new configuration plan based on

this acquired knowledge. Whereas in [2], storage layer is in-charge of providing and managing

persistent storage for data streams. Query processing is done by the Query Manager (QM)

which includes the query processor and query repository for efficient management of the data.

The notification manager handles the delivery of events and query-results to the registered

clients.

3. CLASSIFICATION OF THE IOT-MIDDLEWARE

This section classifies the different IoT-middleware based on the various features like

interoperation, device management, platform portability, context awareness, security and

privacy, and the support of various interface protocols. Table 1 and Table 2 depict the

classifications of various IoT-middleware systems based on the various features and interface

protocol support respectively.

Table 1. IoT-middleware comparison.

IoT

Middleware

Features of Middleware

Device

Management
Interoperation

Platform

Portability

Context

Awareness

Security

and

Privacy
HYDRA � � � � �

ISMB � � � � �

ASPIRE � � � � �

UBIWARE � � � � �

UBISOAP � � � � �

UBIROAD � � � � �

GSN � � � � �

SMEPP � � � � �

SOCRADES � � � � �

SIRENA � � � � �

 WHEREX � � � � �

All the listed middlewares support device discovery and management. Context aware

functionality is supported by HYDRA, UBIWARE, UBIROAD and SMEPP. On the other hand,

SOCRADES, SMEPP, GSN, UBIROAD and HYDRA are some examples of middleware

implementing security and user privacy in their architecture. Based on platform portability,

syntactic resolution, HYDRA, SMEPP and ASPIRE are OSGi compliant, UBIROAD uses

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

102

JAVA and XML, UBISOAP uses J2SE and J2ME, GSN uses XML and SQL, SIRENA and

SOCRADES use DPWS while SOCRADES also uses SAP NetWeaver [25] platform and ISMB

uses any JAVA compliant platform. WhereX [28] is developed using J2EE architecture and is

integrated with Oracle Application Server 10g.It also uses Rhino rule engine which is

implementation of Java Script.

Table 2. IoT-middleware Interfaces.

IoT

Middleware

Interface protocols

Zigbee RFID WiFi Bluetooth
Sensor

(others)

HYDRA � � � � �

ISMB � � � � �

ASPIRE �

�
� �

�

UBIWARE � � � � �

UBISOAP � � � � �

UBIROAD � � � � �

GSN � � � � � IEEE-1451

SMEPP � � � � �

SOCRADES � � � � �

SIRENA � � � � �

WHEREX � � � � �

4. CONCLUSION

In this article the role of middleware system in IoT is presented. It has proposed the functional

blocks of IoT-middleware, and discussed feature wise classifications among the existing IoT-

middleware. It has also presented the system architecture of IoT middleware.

The current state-of-the-art of the middleware for IoT explores different approaches to support

some of the functionalities to operate in IoT domain. But no one covers the full set of

functionalities to meet the requirement of IoT-middleware as analyzed here for any smart or

ubiquitous environment, except in [29].

Middlewares have several short comings or open issues. They are available for respective

domains separately. ASPIRE, ISMB etc. address the RFID domain. GSN addresses the sensor

networks in general. UBIROAD addresses smart vehicular systems. There exists no generic

middleware which can be applicable across all possible smart environments- like smart home,

smart vehicle, smart city[30] etc. including RFID domain, and can be customized as per the

domain specific requirements. It has been observed from this study that to resolve scalability

issues IPv6 is proposed but not yet resolved completely. Support for context detection and

processing have not been achieved fully. Support of semantic modelling and managing of data

volumes also fall in the open issues, particularly handling the crowd sourcing of diverse

domain. There is a scope for research work in making a generic IoT-middleware system, which

is applicable across all domains by making all the functional components reusable and can be

added as add-on to the middleware system. The development of generic interfaces, as shown in

interface1 and interface2 in Fig.2, are also open issues in this domain.

We are continuing to carry researches on the above mentioned open issues to design and

develop a layer based IoT-middleware for any smart environment. One of the contributions of

this paper consists in this discussion on the open issues on middleware for IoT and that can be

combined to define the future research scope on IoT-middleware.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

103

REFERENCES

[1] Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., Terziyan, V.: Smart Semantic

Middleware for the Internet of Things. In: 5th Intl. Conf. Informatics in Control, Automation and

Robotics (ICINCO’08), pp. 169--178. Volume ICSO, (2008)

[2] Aberer, K., Hauswirth, M., Salehi, A.: Middleware Support for the Internet of Things. In: 5th

GI/ITG KuVS Fachgespr˝ach "Drahtlose Sensornetze", pp. 15--21. (2006)

[3] Bohn, H., Bobek, A., Golatowski, F.: SIRENA - Service Infrastructure for Realtime Embedded

Networked Devices: A Service Oriented Framework for Different Domains. In: International

Conference on Systems and International Conference on Mobile Communications and Learning

Technologies (ICNICONSMCL’06), pp. 43. IEEE Computer Society, Washington, DC, USA

(2006)

[4] Kjær, K., E.: A Survey of Context-Aware Middleware. In: 25th conference on IASTED

International Multi-Conference: Software Engineering, pp. 148--155. ACTA Press (2007)

[5] Miraoui, M., Tadj C., Amar, C. B.: Architectural Survey of Context-Aware Systems in Pervasive

 Computing Environment. In: Ubiquitous Computing and Communication Journal, vol. 3, no. 3

 (2008)

[6] Wang, M., M., Cao, J., N., Li, J., Das, S., K.: Middleware for Wireless Sensor Networks: A

 Survey. In: Journal of Computer Science and Technology, vol. 23, no. 3, pp. 305—326. (2008)

[7] Henricksen, K., Robinson, R. A Survey of Middleware for Sensor Networks: State-of-the-Art

 and Future Directions. In: International Workshop on Middleware for Sensor Networks, pp.

 60-65. Melbourne, Australia, November (2006)

[8] Sadjadi, S. M., McKinley, P.: A Survey of Adaptive Middleware. Technical Report MSU-CSE-

 03-35,Computer Science and Engineering, Michigan State University, East Lansing, Michigan

 (2003)

[9] Eisenhauer, M., Rosengren, P., Antolin, P.: A Development Platform for Integrating Wireless

 Devices and Sensors into Ambient Intelligence Systems. In: 6th Annual IEEE Communications

 Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks

 Workshops (SECON Workshops '09), pp. 1—3. (2009)

[10] Badii, A., Khan, J., R., Crouch, M., Zickau, S.: Hydra: Networked Embedded System

 Middleware for Heterogeneous Physical Devices in a Distributed Architecture, Final External

 Developers Workshops Teaching Materials. (2010)

[11] Terziyan, V., Kaykova, O., Zhovtobryukh, D.: UbiRoad: Semantic Middleware for Context-

 Aware Smart Road Environments. In: Fifth International Conference on Internet and Web

 Applications and Services (ICIW), pp. 295--302, Barcelona (2010)

[12] Albano et. al., M.: Towards Secure Middleware for Embedded Peer-to-Peer Systems: Objectives

 and Requirements. In: RSPSI, Innsbruck (2007)

[13] Gelernter, D.: Generative Communication in Linda. In: ACM Transactions on Programming

 Languages and Systems (TOPLAS), vol. 7, issue 1, New York (1985)

[14] Liu, D. -L. Y. F., Liang, Y. -D.: A Survey of the Internet of Things. In: The 2010 International

 Conference on Electronic-Business Intelligence (ICEBI) (2010)

[15] Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A Survey. In: Computer Networks,

 vol. 54, issue 15, pp. 2787—2805. (2010)

[16] Vision and Challenges for Realising the Internet of Things,

 http://ec.europa.eu/information_society/events/shanghai2010/pdf/cerp_iot_clusterbook_2009.pdf

 (2010)

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

104

[17] ASPIRE Architecture and Middleware,
 http://wiki.aspire.ow2.org/xwiki/bin/download/Main/Services/06%20ASPIRE%20Architecture

 %20and%20Middleware.pdf

[18] Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., Souza, L., Trifa, V.: SOA-Based

 Integration of the Internet of Things in Enterprise Services. In: IEEE International Conference

 on Web Services (ICWS), pp. 968—975. Los Angeles (2009)

[19] Reiners, R., Zimmermann, A., Jentsch, M., Zhang, Y.: Automizing Home Environments and

 Supervising Patients at Home with the Hydra Middleware: Application Scenarios using the

 Hydra Middleware for Embedded Systems. In: Proc. of the First International Workshop on

 Context-Aware Software Technology and Applications (CASTA), pp. 9—12. New York (2009)

[20] http://en.wikipedia.org/wiki/Exabyte

[21] Ahamed, S. I.,Zulkernine, M.,Anamanamuri, S.: A Dependable Device Discovery Approach for

 Pervasive Computing Middleware. In: First International Conference on Availability, Reliability

 and Security (ARES '06), pp. 66-73.Vienna (2006)

[22] Caporuscio, M., Raverdy, P. -G., Issarny, V.: ubiSOAP: A Service Oriented Middleware for

 Ubiquitous Networking. In: IEEE Transactions on Services Computing, IEEE computer Society

 Digital Library,(2010)

[23] Cooper, J., James, A., Challenges for Database Management in the Internet of Things. In: IETE

 Technical Review, vol. 26, no. 5, pp. 320--329. (2009),

[24] Katasonov, A., Terziyan, V.: Semantic Agent Programming Language (S- APL): A Middleware

 for the Semantic Web.In: IEEE International Conference on Semantic Computing, pp.504-

 511.Santa Clara (2008)

[25] SAP NETWEAVER, http://www.sap.com/platform/netweaver/components/index.epx

[26] FIPA Device Ontology Specification (Approved for Experimental, as on 2002/05/10),

 http://www.fipa.org/specs/fipa00091/XC00091C.pdf

[27] http://www.opengeospatial.org/standards/sensorml

[28] http://wendang.baidu.com/view/ad7040a1b0717fd5360cdc8a.html

[29] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti, Subhajit Dutta “A Survey of

 Middleware for Internet of Things” CoNeCo 2011, Ankara, Turkey, June 26 - 28, 2011.

[30] http://www.sofia-project.eu/system/files/Unified+smart+city+environment+based+on+SOFIA.pdf

Authors

Soma Bandyopadhyay has more than 13 years of industry experience in the area of

Embedded Systems, Digital Signal Processor, Protocol and Wireless

Communications and ubiquitous computing. Since 2003 has been associated with

Innovation lab of TATA Consultancy Services (TCS) as senior scientist. Presently

her prime focus area is ubiquitous and sensor network and computation, wireless

communication- 4G-next generation broadband wireless MAC and Physical layer

design, development & research activity. She has contributed towards the IEEE

standard body on behalf of TCS. At present she is leading the research and

development activity in interoperability and adaptability aspects of ubiquitous

computing. Academically she is an M.Tech & B.Tech in Computer Science &

Engineering from the University of Calcutta, India. She did her graduation in

Physics (Hons.) from the same university.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011

105

Munmun Sengupta is working as a researcher in Innovation Lab of TATA

Consultancy Services, India, in ubiquitous computing domain, mainly in

middlewares with having 7 years of Industry experience. She has worked on the

development of various wireless mobile communication technologies like

WCDMA, UMTS, LTE. She has received her Bachelor of Technology degree in

Electronics and Communication engineering from Sikkim Manipal University of

Health, Medical and Technological Sciences, India in 2004.

Souvik Maiti is working in the domain of media and informatics in TATA

Consultancy Services, India, having 6 years of Industry experience. He has worked

on various wireless communication technologies like LTE, WiMax, Bluetooth,

802.11n, and embedded platform development. He has received the Bachelor of

Technology degree in Electronics and Communication engineering from the

Sikkim Manipal University of Health, Medical and Technological Sciences, India

and Diploma in Embedded System from the Jadavpur University in 2004 and 2005

respectively.

Subhajit Dutta is working in the domain of Performance Optimization in Business

Framework in TATA Consultancy Services, having 3 years of experience. He has

worked on IPv6, OSGi platform, and interoperation aspects of middleware. He has

received the Bachelor of Technology degree in Computer Science and Engineering

from West Bengal University of Technology in 2008.

