
International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

DOI : 10.5121/ijnlc.2013.2404 55

HINDI AND MARATHI TO ENGLISH MACHINE

TRANSLITERATION USING SVM

P H Rathod1, M L Dhore2, R M Dhore3

1,2Department of Computer Engineering, Vishwakarma Institute of Technology, Pune
1
pravin.rathod@vit.edu

2
manikrao.dhore@vit.edu

3Pune Vidhyarthi Griha’s College of Engineering and Technology, Pune
3
ruchidhore93@gmail.com

ABSTRACT

Language transliteration is one of the important areas in NLP. Transliteration is very useful for converting
the named entities (NEs) written in one script to another script in NLP applications like Cross Lingual
Information Retrieval (CLIR), Multilingual Voice Chat Applications and Real Time Machine Translation
(MT). The most important requirement of Transliteration system is to preserve the phonetic properties of
source language after the transliteration in target language. In this paper, we have proposed the named
entity transliteration for Hindi to English and Marathi to English language pairs using Support Vector
Machine (SVM). In the proposed approach, the source named entity is segmented into transliteration units;
hence transliteration problem can be viewed as sequence labeling problem. The classification of phonetic
units is done by using the polynomial kernel function of Support Vector Machine (SVM). Proposed
approach uses phonetic of the source language and n-gram as two features for transliteration.

KEYWORDS

Machine Transliteration, n-gram, Support Vector Machine, Syllabification

1. INTRODUCTION

As Internet users are growing day by day, it is logical to develop tools and applications to support
Indian languages for them. It is challenging to transliterate out of vocabulary words like personal
names, location names and technical terms occurring in the user input across languages with
different characters (alphabets) and sounds. Transliteration is a mapping of a word from one
language to another language without losing its phonetic properties [1]. Hindi and Marathi to
English named entity (henceforth denoted as NE) transliteration is quite difficult due to many
factors such as difference in writing script, number of alphabets, capitalization of initial
characters, phonetic properties, length of character, number of valid transliterations and
availability of the parallel corpus [2]. Formally, transliteration can be defined as the conversion of
a given named entity in the source language i.e. a text string in the source writing system or
orthography, to a name entity in the target language i.e. another text string in the target writing
system or orthography, such that the target language name is phonemically equivalent to the
source name, conforms to the phonology of the target language and matches the user intuition of
the equivalent of the source language name in the target language. If transliteration is taken as a
sequence labeling problem, the transliteration can be defined as a task to generate a valid target
language character/s or label sequence for the source language character/s or observation
sequence as shown below.

X1 → Y1, X2 → Y2, - - - Xn→ Yn

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

56

where Xi represents alphabet in Hindi or Marathi and Yi represents English character.
For Indian languages, most methods incorporated are statistical in nature and most of the work is
carried out for English to Indian languages. Very less amount of research is carried for Indian
languages to English. Statistical methods do not require extensive knowledge of language, but
they do need large amount of training data which runs parallel in both languages. The requirement
of bilingual corpus is satisfied by using information sources like directories, government
documents, voters’ list, student’s enrolment lists of schools and colleges etc.

This approach uses proper manual alignment method and two features as phonetic and n-gram to
improve accuracy of existing transliteration system. The proposed method uses SVM which is
one of the most efficient statistical supervised learning mechanisms to obtain the transliteration.
Initially broad survey of various methods used for Transliteration in Indian and Foreign languages
is presented. Then a detailed analysis of our approach is given which concludes that SVM suits
the most for the task of transliteration. Finally a transliteration system based on SVM is proposed
and tested for Marathi and Hindi to English language pairs.

2. RELATED WORK

Existing approaches for machine transliterations are Grapheme-based and Phoneme-based. The
grapheme based model assumes transliteration as an orthographic process and map the source
language graphemes directly to the target language graphemes. Phoneme-based model treats
transliteration as a phonetic process. In phoneme-based framework, transliteration is treated as a
conversion from source grapheme to source phoneme followed by a conversion from source
phoneme to target grapheme.

C-DAC (Centre for Development of Advanced Computing), NCST (National Centre for Software
Technology) and Indictrans Team have played major role in the machine transliteration of Indian
languages in India. The development of GIST (Graphics and Intelligence - Based Script
Technology) was a major breakthrough in early 1980. C-DAC developed GIST card which was
based on Indian Script Code for Information Interchange (ISCII). Another major development
was UTF-8 Unicode based coding for Indian languages [3]. The third development (2003) was a
phonemic code based scheme for effective processing of Indian languages which was used for
transliterating telephone directory in Hindi, and voters’ list [4]. The few other applications
localised were Indian Railways Reservation Systems, Telephone Bills and Bilingual Telephone
Directories.

Early work on transliteration is done by Arbabi in 1994. He combined neural networks with
expert systems for Arabic-English language pair using phoneme-based model [5]. In 1997, Knight
and Graehl suggested a five stage statistical model for back transliteration to recover the original
English name from Japanese Katakana [6]. Stalls used the same method for back transliteration
from Arabic to English language pair in 1998 [7]. In 2002, Al-Onaizan and Knight developed a
simpler Arabic-English transliterator and evaluated how well their system can match a source
spelling [8]. Their work inculcates an evaluation of the transliterations in terms of their
reasonableness according to human judges. Work on CLIR for Indian Languages were done by
Jaleel and Larkey which was analogous to their previous work on English-Arabic machine
transliteration in 2003[9]. The approach was based on HMM using GIZA++. In 1997, Knight
developed phoneme-based models, based on weighted finite state transducers (WFST). Jung used
Markov window which considers transliteration as a phonetic process in 2003[10]. In 2005, OM
transliteration scheme provided a common script representation for most of the Indian languages

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

57

[11]. Punjabi machine transliteration for Punjabi language from Shahmukhi to Gurmukhi used the
rule-base approach for transliteration in 2006 [12]. During 2002 to 2004, Sproat discussed a
formal computational analysis of Brahmi scripts [13-15]. Kopytonenko presented computational
models to carry out grapheme-to-phoneme conversion in 2006 [16]. In 2008, Ganesh developed a
statistical transliteration technique which is language independent. Their team chosen a statistical
model for transliteration which was based on HMM alignment and CRFs [17]. Sujan Kumar Saha
proposed a two-phase transliteration methodology in 2008. In 2009, Sumaja Loganathan R and
Soman K P demonstrated method for English to Malayalam transliteration by using segmentation
of the source into transliteration units and mapping the source language transliteration into the
target language. In experimentation part they have used SVMTool for giving the training to
corpus. SVM learning was done using linear kernel. They proved that learning time remains
linear with respect to the number of examples [18]. Jong-Hoon Oh approach was based on two
transliteration models [19]. They used three different machine learning approaches MIRA, MEM
and CRF for building multiple transliteration engines.

In 2010, Antony P.J tried to address the problem of transliterating English to Kannada language
using SVM kernel. The transliteration scheme was modeled using sequence labeling problem.
The framework was based on data driven approach and one to one mapping method was used to
simplify the development of transliteration system. The transliteration module uses an
intermediate code, which is designed for preserving the phonetic properties [20]. Ekbal, Naskar
and Bandyopadhyay made substantial contribution to develop transliteration systems for Indian
languages to English and especially for Bengali-English transliteration [21-28]. Manoj K.
Chinnakotla demonstrated a transliteration system for resource scare languages by using
statistical methods to monolingual resources in conjunction with hand crafted bilingual rules [29].
The statistical technique used by them was Character Sequence Modeling (CSM). They proved
that if the origin of the word is used for the transliteration, then the system performs better than
statistical methods. In 2012, Kishorjit Nongmeikapam proposed a Phoneme-based method to
transliterate Bengali script to Meitei Mayek script using SVM and was based on Part of Speech
(POS) tagging of the Bengali Script text and transliterated to Meitei Mayek after POS tagging.
After POS tagging they used the YamCha toolkit to train the corpus. They used polynomial kernel
function and the pair wise multi-class decision to obtain the transliteration [30].

3. SUPPORT VECTOR MACHINE (SVM)

SVM does the classification by constructing an n-dimensional hyperplane which optimally
segregates the data into two partitions. SVM based models are similar to the neural network
models. Theoretically, SVM model with sigmoid kernel function is similar to a two-layer neural
network. SVM is a new avatar of kernel functions with a supervised learning approach. It learns
from a set of inputs values with the associated output values. It constructs a hyperplane between
two classes using binary classifier. Basically SVM is a binary classifier in which data points are
classified in two classes with +1 and -1 labels. While separating input examples in two classes it
maximise the separation between two classes using the method called as max margin. Due to max
margin separation error rate gets minimised and if any new input with unknown label arrives for
classification, the chances of making error is minimised.

Let the data set is {x1, x2 ,.......xn} and the desired output or class label is yi ∈ {+1,-1}, then two
boundary planes and hyper plane is obtained by using following equations eq(1), eq(2) and eq(3).

 (wT xi-γ) >= +1 --------------------------------------eq(1)

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

58

 (wT xi-γ) <= -1---------------------------------------eq(2)
 (wT xi-γ) = 0 ---eq(3) where 1<=i<=n.

The data points should satisfy the equation eq(1), eq(2) and eq(3) for correct classification. The
decision boundary can be calculated with the following optimization problem

 Minimize ½ || w||2

In few cases application allows misclassifications where small amount of error is tolerated. In
such cases, the degree of misclassification can be measured by using the slack variable ξ and C as
a control parameter. After introducing slack variable, equations eq(1), and eq(2) can be written as

 (wT xi-γ) >= +1-ξ ----------------------------------- eq(4)
 (wT xi-γ) <= -1+ξ------------------------------------ eq(5)

 Now the problem is minimised under the constraint as Minimize ½ || w||2 +C Σ ξi
SVM also allows non linear mapping if the data set is not linearly separable in a high dimensional
space. In this case, it uses a non-linear kernel function for constructing the new feature space.
SVM can be used for multiclass data set where number classes can be k. In case of binary
classifier, one dimensional plane is divided in two subspaces while for multiple classes; it divides
the hyper plane in multidimensional subspaces [31].

 4. DEVANAGARI SCRIPT

Hindi and Marathi languages are written using Devanagari script. Devanagari script used for
Hindi and Marathi have 12 pure vowels , 2 loan vowels from the Sanskrit language and 1 loan
vowel from English. There are total 34 consonants, 5 conjuncts, 7 loan consonants and 2
traditional signs in Devanagari script and each consonant have 14 variations through integration
of 14 vowels [32-34]. Table 1 shows Devanagari script along with their equivalent phonetic

mapping in Roman. The consonant /ळ/ is used only in Marathi and not in Hindi.
Table 1: Devanagari Script

Pure consonants Vowel Matra Vowel Matra

क �ka

च�cha

ट�Ta

त�ta

प�pa

य�ya

ष�Sha

ख� kha

छ�chha

ठ�Tha

थ�tha

फ�pha

र�ra

स�sa

ग�ga

ज�ja

ड�Da

द�da

ब�ba

ल�la

ळ�La

घ�gha

झ�jha

ढ�dha

ध�Dha

भ�bha

व�va

ह�ha

ङ�nga

ञ�ya

ण�Na

न�na

म�ma

श�sha

अ�a

आ� A

इ�i

ई�ee

उ�u

ऊ�U

ऋ�Ru

No Sign

◌ा◌ा◌ा◌ा

ि◌ि◌ि◌ि◌

◌ी◌ी◌ी◌ी

◌ु◌◌ुु◌ ु

◌ू◌◌ूू◌ ू

◌ृ◌◌ृृ◌ ृ

ॠ�RU

ए�E

ऎ�ai

ओ�oo

औ�au

अ�ंam

अ: �aH

◌ॄ◌◌ॄॄ◌ ॄ

◌े◌◌ेे◌ े

◌ै◌◌ैै◌ ै

◌ो◌ो◌ो◌ो

◌ौ◌ौ◌ौ◌ौ

◌ं◌◌ंं◌/ं ◌ॅ◌◌ॅॅ◌ ॅ

◌ः◌ः◌ः◌ः

ConjuctsConjuctsConjuctsConjucts and and and and

SymbolsSymbolsSymbolsSymbols →
Loan LettersLoan LettersLoan LettersLoan Letters →

ᭃ�ksha ᭄�dnya ᮰�shra ᳒�dya ᮢ�Tra ॐ�om ᮰ी-Shri

ढ़�Dhxa ख़�khxa ग़�gxa ज़�jxa फ़�phxa ड़�Dxa क़�kxa

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

59

5. SYSTEM ARCHITECTURE

The overall system architecture of proposed methodology is depicted in Figure 1. YamCha toolkit
is used for the implementation of SVM. This section focuses on the various steps needed to obtain
the transliteration of named entity written in Hindi and Marathi using Devanagari script in
English using Roman script. The overall logical flow of the transliteration system is divided into
following three modules.

• Preprocessing on raw input data
• Training of bilingual corpus using polynomial linear function of degree two
• Testing of additional data

5.1. Preprocessing

Preprocessing phase is used to convert the raw input into system acceptable format. Raw input is
the set of NE strings or words which cannot be directly processed by the system. These NEs need
to be normalized into the system specified format. As the proposed methodology uses the
phoneme of source input as one of the feature, representation of raw input in Devanagari needs to
be done using the syllabic format of the source language. In this approach one syllabic unit of
source language is treated as a one phonetic unit. The overall preprocessing is achieved by
dividing task into following two sub modules.

• Syllabification
• Alignment using phonetic mapping

Figure1. System Architecture

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

60

5.1.1 Syllabification

Syllabification refers to the segmentation of source and target language NEs into source and
target language Translation Units (TU). Translation unit is equivalent to the phonetic unit or
syllabic unit of the source or target language. For example, the NE in Hindi and Marathi written

using Devanagari ‘ᮧिवण’ (person name) is syllabified as ᮧ + िव + ण whereas its English
equivalent ‘pravin’ is syllabified as pra + vi + n using its phonetic mappings [35]. The YamCha
tool accepts the input into syllabic units, which are called as labels. As the each input is
equivalent to phonetic unit, phoneme is taken as one of the feature in this implementation. The
target language TU is given as a tag to the given input which is a phonetic equivalent of Hindi
and Marathi in English. Hindi and Marathi NEs form the source language TUs whereas the
corresponding phonetic units in English form target language TUs. The Hindi and Marathi NEs
can be syllabified into its corresponding TUs by using following Algorithm 1.

Algorithm 1

Input: W is the NE in Hindi or Marathi to be syllabified.

// Pointer initially points to first Source Transliteration Unit (STU).
foreach W do // For every character in word W, perform following steps:

1. Check if the character is a consonant or a vowel.
2. If the character is a consonant then add the character to current STU.
3. If the character is a vowel then
 a. Add the character to current STU.
 b. Increment the pointer so that it points to the next STU.

end foreach

Output: Phonetic Units in Hindi and Marathi

Using Algorithm 1, Hindi and Marathi NEs are syllabified into its phonetic units. Following are
the few examples showing how syllabification is done.

Name in Devanagari→ महारा᳦ STUs → [म | हा | रा | ᳦]
Name in Devanagari→ Აकारे᳡र STUs → [Ა |का| रे |श्व |र]
Name in Devanagari→ नोवरोझाबाद STUs → [नो | व | रो | झा | बा | द]
Name in Devanagari→ अ᭣द᭨ुलाहगंज STUs → [अ | ᭣द ु| ᭨ला | ह | गं | ज]

Name in Devanagari→ िनरंजनकुमार STUs → [िन | रं | ज | न | कु | मा | र]
Name in Devanagari→ नारायणगावकर STUs → [ना | रा | य | ण | गा | व | क | र]
Name in Devanagari→ िᮢभुवननारायण STUs → [िᮢ | भु | व | न | ना | रा | य | ण]

5.1.2 Alignment using phonetic mapping

The raw Hindi or Marathi to English mapping from previous step is of the form मा � ma, िण �

ni, क � k, etc. But, in certain examples like ‘वसंतराव’ (व सं त रा व), which is syllabified as (va

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

61

san t ra v), a consonant /व/ is mapped to both ‘va’ as well as ‘v’. It is difficult to automate such
possibilities. In fact, these are the rules that are going to get trained using tool. Such possibilities
were edited manually to get proper bilingual corpus for training. Then each STU is mapped to a
Target Language Transliteration Unit (TTU). Following are the few examples showing how
syllabification and phonetic mapping is done.

NE in Devanagari STUs TTUs
महारा᳦ → [म | हा | रा | ᳦] → [ma | ha| ra| shtra]

Აकारे᳡र → [Ა |का| रे |᳡ |र] → [om | ka| re| shwa | r]

नोवरोझाबाद → [नो | व | रो | झा | बा | द] → [no | v | ro | jha| ba| d]

अ᭣द᭨ुलाहगंज → [अ | ᭣द ु| ᭨ला | ह | गं | ज] → [a | badu| lla | h| gan | j]

िनरंजनकुमार → [िन | रं | ज | न | कु | मा | र] → [ni | ran | ja | n | ku | ma | r]

नारायणगावकर → [ना | रा | य | ण | गा | व | क | र] → [na| ra| ya| n | ga |v | ka | r]

िᮢभुवननारायण → [िᮢ | भु | व | न | ना | रा | य | ण] → [tri | bhu | va | n | na | ra | ya | n]

5.2. Training Phase

Training phase requires two things, one is training data and other is feature on which the data is to
be trained. Parallel data obtained during syllabification is arranged in the YamCha required
format and then n-gram features are used to train this data. The first step in using the YamCha is
to create training files. In this file the first column represents a Hindi and Marathi syllabified
named entity and second column represent a true tag or label corresponding to a Hindi and
Marathi syllabified unit in English. In this phase the classification is done based on the n-grams.
The details of classification are given for four different n-grams.

• Bigrams
• Trigrams
• Fourgrams
• Fivegrams

5.2.1. Bigram

The bigram is the first feature used to train the parallel corpora. The bigram feature creates the
SVM classes by considering current and immediate next STU. The creation of classes is

described using two NEs ‘ᮧिवण’ and ‘मािणकराव’ written in Devanagari script. After training the
above dataset, SVM kernel created eight different patterns in total using the bigram feature. Using

bigram feature the patterns for NE ‘ᮧिवण’ would be {ᮧिव, िवण ,ण} and for NE ‘मािणकराव’ the

patterns would be{ मािण, िणक, करा, राव, व }. Classifications of these eight patterns are shown in
the Figure 2. Few patterns are classified into negative space and others are in positive space by
the SVM kernel function.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

62

Figure2. Hyperplane for Bigram
5.2.2. Trigram

The trigram is the second feature used to train the parallel corpora. The trigram feature creates the
SVM classes by considering current and immediate next two STUs. Using trigram feature the

patterns for NE ‘ᮧिवण’ would be { ᮧिवण, िवण ,ण} and for NE ‘मािणकराव’ the patterns would

be{ मािणक, िणकरा, कराव, राव, व }. Figure 3 shows the vector space of classification.

Figure3. Hyperplane for Trigram

5.2.3. Fourgram

The fourgram is the third feature used to train the parallel corpora where SVM classes created by
considering current and immediate next three STUs as shown in Figure 4. Using fourgram feature

the patterns for NE ‘ᮧिवण’ would be { ᮧिवण, िवण ,ण} and for NE ‘मािणकराव’ the patterns

would be{ मािणकरा , िणकराव , कराव, राव, व }.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

63

Figure4. Hyperplane for Fourgram

5.2.4. Fivegram

The fivegram is the fourth feature used to train the parallel corpora where SVM classes created by
considering current and immediate next four STUs as shown in Figure 5. Using fivegram feature

the patterns for NE ‘ᮧिवण’ would be { ᮧिवण, िवण ,ण} and for NE ‘मािणकराव’ the patterns

would be{ मािणकराव , िणकराव , कराव, राव, व }.

Figure6. Hyperplane for Fivegram

5.3. Testing Phase

This phase takes two files as input. One is the model file generated during training phase and
other is test file. The format of a test file is same as training file. It searches a particular pattern
from a separating hyperplane. Each pattern has a score value either positive or negative which
indicates the distance of class form a separating hyperplane in model file. If the given Hindi and
Marathi input is in combination of the patterns which are there in figures 2 to 5, then generates
the correct output. If the pattern is not found then it shows garbage output i.e. incorrect English

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

64

transliterated output. For example, given an input as “ᮧिवणराव” to the model file, it produces
output as

ᮧ →pra

िव→vi

ण→n

रा→ra

व→v

6. EXPERIMENTATION DETAILS

This section describes the overall implementation details of Devanagari to Roman machine
transliteration using YamCha tool.

6.1. Configuration

The programming implementation is carried out using java and eclipse integrated development
environment. The GUI is designed in Netbeans because it supports the inbuilt control component
i.e. Button, Textview etc. After the training, model file is generated. The model file is executed in
Windows platform using YamCha.exe and libyamcha.dll files. The training file is stored with dot
data extension, UTF-8 and Linux end line. The training is carried out on Linux platform.

Features selected are variable sized n-grams i.e. Bigram, Trigram, Fourgram and Fivegram as a
window size. N-grams are generated using only forward movement. The Makefile is a file where
the feature parameters are modified according to n-gram requirement. The following summary
gives details of each n-gram,

For window size of two (Bigram)

SVM_PARAM = -t 1 -d 2 -c 1
FEATURE = F:0..1:0..0
MULTI_CLASS = 2

For window size of three (Trigram)

SVM_PARAM = -t 1 -d 2 -c 1
FEATURE = F:-1..1:0..0
MULTI_CLASS = 2

For window size of four (Fourgram)

SVM_PARAM = -t 1 -d 2 -c 1
FEATURE = F:-1..2:0..0
MULTI_CLASS = 2

For window size of five (Fivegram)

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

65

SVM_PARAM = -t 1 -d 2 -c 1
FEATURE = F:-2..2:0..0
MULTI_CLASS = 2

The SVM_PARAM “-t 1 -d 2 -c 1” means that second degree of polynomial kernel and one slack
variable is used. The YamCha tool supports only polynomial kernel. The MULTI_CLASS=2
means one versus rest i.e. the score indicates the distance from separating hyperplane.

For the training two parameters are mandatory. First one is the location of file which is a
bilingual corpus written in the training format and second is the prefix name of the model file.
The parsing direction is from Left to Right for Devanagari script. We have chosen the default
setting which is forward parsing mode (Left to Right). The Makefile is used for setting different
parameters for bigram, trigram, fourgram and fivegram.

6.2. Feature Selection

The parameter FEATURE is used to change the feature sets (window size) for dataset. The
default setting is “F:-2..+2:0.. T:-2..-1”. F denotes the static feature while T denotes the dynamic
feature. The static feature “F:-2..+2:0..” means that [beginning positing of token] is -2 and [end
position of token] is +2.which is shown in Figure 6.

Figure6. Feature Selection for Window Size -2 to +2

6.3. Testing and Results

The system was tested for person names, historical place name, city names of Indian origin.
Standard bilingual corpus in Unicode format for Hindi and Marathi is not available; hence the test
data set is created from voters’ lists of State of Maharashtra, census website of Government of
India, road atlas of various states etc. Initially, 10k NE data set is trained. Figure 7 shows the
snapshot of machine transliteration.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

66

Figure7. Snapshot of Transliteration Tool

Accuracy (ACC) which is also known as Word Error Rate (WAR) measures the correctness of the
transliteration candidate produced by a transliteration system. ACC = 1 means that candidate is
the correct Transliteration i.e. it matches with the reference, and ACC = 0 means candidate is not
correct. Accuracy is calculated by using the following formula.

where N is total number of NEs. Initially, over the trained data set of 10k size, test data set of 5k
size is tested and we obtained the results depicted in Table 2 and Figure 8.

Table2. Initial Results

 Bi-gram Tri-gram Four-gram Five-gram

Number of NEs
Trained

10000 10000 10000 10000

Number of NEs
Tested

5000 5000 5000 5000

Number of Correct
NEs

2098 2266 2520 1696

Accuracy 41.96% 45.32% 51.96% 33.92%

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

67

Figure 8. Initial Results

The initial results of the transliteration were very disappointing as compared to the results
obtained by other researches for Tamil and Kannada languages. After in depth analysis of the
trained data, it has observed that results were less as the pattern created was not having location
names ending with ‘wadi’, ‘gaon’ , ‘nagar’ etc as well as the surnames ending with ‘kar’ , ‘pure’,
‘kare’ etc. After adding 500 commonly used suffixes in Hindi and Marathi, in the training data
set, we achieved reasonable transliteration accuracy as shown in Table 3 and Figure 9.

Table3. Final Results
 Bi-gram Tri-gram Four-gram Five-gram

Number of NEs
Trained

10500 10500 10500 10500

Number of NEs
Tested

5000 5000 5000 5000

Number of Correct
NEs

3387 3824 4307 4327

Accuracy 67.74% 76.48% 86.14% 86.52%

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

68

Figure 9. Final Results

Although we have not found any other specific work for the Hindi-English and Marathi-English
language pairs using SVM, our results are compared to the other language pairs only for the
languages in India. Table 4 depicts the comparison of performance with the other different
language pairs in India using SVM.

Table4. Comparison of Results

Language Pair Classification
Approach

Top-1 Accuracy
Performance (%) Metric

English - Malayalam SVM 90.00 Word Accuracy

English - Kannada SVM 81.25 Word Accuracy

Bengali - Meitei Mayek SVM 86.04 Word Accuracy

English - Tamil SVM 84.16 Word Accuracy

Hindi/Marathi- English SVM 86.52 Word Accuracy

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

69

7. CONCLUSIONS

In this paper, we presented machine transliteration for Hindi to English and Marathi to English
language pairs using Support Vector Machine (SVM). As the Hindi and Marathi are phonetically
rich languages, phoneme is selected as a prime feature. As the Devanagari NEs written in Hindi
and Marathi consists of the segments of two, three, four and five, a variable sized n-gram is taken
as second feature. We used SVM as a machine learning algorithm for the classifications of
patterns based on phoneme and variable n-gram sizes. In our case, transliteration is treated as
sequence labeling problem in which output of current label depends on more than one previous
and future label. It is desirable that transliteration model takes care of all the dependencies. As
SVM creates the hyperplane using linear polynomial function, there is no restriction on number of
classes to be generated. As SVM can generate adequate number of classes for all available
patterns, it is more suitable for the transliteration task. In sequence labeling, it has been observed
that increase in n-gram size i.e. from bigrams to fivegrams improves the accuracy. As there are no
NEs consisting of one syllabic unit, it has been observed that unigram feature provides very less
accuracy. Accuracy has been gradually increased as the n-gram sized increased. The bigram
gives good accuracy only to the NEs having length two. Similarly, trigram gives good results for
the NEs having length three. The fourgram and fivegram accuracy is very close. It has also been
observed that sixgram results are almost same as fivegrams but unnecessary increases training
time compared to fivegram. We have trained 10.5 k corpus using YamCha Toolkit and tested for
5k data. The top-1 accuracy obtained for 5k testing data using bigram is 67.74%, using trigram is
76.48%, using fourgram is 86.14% and using fivegram is 86.52%. We conclude that, 5-gram is
best suitable size for Hindi and Marathi to English named entity transliteration. The current
system is tested for person names and place names only. It can further be extended for foreign
names, organization names. As English is non phonetic language, we have not carried out back
transliteration. Therefore, there is also future scope to perform the back transliteration.

REFERENCES

[1] Padariya Nilesh, Chinnakotla Manoj, Nagesh Ajay, Damani Om P.(2008) “Evaluation of Hindi to

English, Marathi to English and English to Hindi”, IIT Mumbai CLIR at FIRE.
[2] Saha Sujan Kumar, Ghosh P. S, Sarkar Sudeshna and Mitra Pabitra (2008) “Named entity recognition

in Hindi using maximum entropy and transliteration.”
[3] BIS (1991) “Indian standard code for information interchange (ISCII)”, Bureau of Indian Standards,

New Delhi.
[4] Joshi R K, Shroff Keyur and Mudur S P (2003) “A Phonemic code based scheme for effective

processing of Indian languages”, National Centre for Software Technology, Mumbai, 23rd
Internationalization and Unicode Conference, Prague, Czech Republic, pp 1-17.

[5] Arbabi M, Fischthal S M, Cheng V C and Bart E (1994) “Algorithms for Arabic name
transliteration”, IBM Journal of Research and Development, pp 183-194.

[6] Knight Kevin and Graehl Jonathan (1997) “Machine transliteration”, In proceedings of the 35th
annual meetings of the Association for Computational Linguistics, pp 128-135.

[7] Stalls Bonnie Glover and Kevin Knight (1998) “Translating names and technical terms in Arabic
text.”

[8] Al-Onaizan Y, Knight K (2002) “Machine translation of names in Arabic text”, Proceedings of the
ACL conference workshop on computational approaches to Semitic languages.

[9] Jaleel Nasreen Abdul and Larkey Leah S. (2003) “Statistical transliteration for English-Arabic cross
language information retrieval”, In Proceedings of the 12th international conference on information
and knowledge management, pp 139 – 146.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

70

[10] Jung S. Y., Hong S., S., Paek E.(2003) “English to Korean transliteration model of extended Markov
window”, In Proceedings of the 18th Conference on Computational Linguistics, pp 383–389.

[11] Ganapathiraju M., Balakrishnan M., Balakrishnan N., Reddy R. (2005) “OM: One Tool for Many
(Indian) Languages”, ICUDL: International Conference on Universal Digital Library, Hangzhou.

[12] Malik M G A (2006) “Punjabi Machine Transliteration”, Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the ACL, pp 1137–1144.

[13] Sproat R.(2002) “Brahmi scripts, In Constraints on Spelling Changes”, Fifth International Workshop
on Writing Systems, Nijmegen, The Netherlands.

[14] Sproat R.(2003) “A formal computational analysis of Indic scripts”, In International Symposium on
Indic Scripts: Past and Future, Tokyo.

[15] Sproat R.(2004) “A computational theory of writing systems, In Constraints on Spelling Changes”,
Fifth International Workshop on Writing Systems, Nijmegen, The Netherlands.

[16] Kopytonenko M. , Lyytinen K. , and Krkkinen T.(2006) “Comparison of phonological
representations for the grapheme-to-phoneme mapping, In Constraints on Spelling Changes”, Fifth
International Workshop on Writing Systems, Nijmegen, The Netherlands.

[17] Ganesh S, Harsha S, Pingali P, and Verma V (2008) “Statistical transliteration for cross language
information retrieval using HMM alignment and CRF”, In Proceedings of the Workshop on CLIA,
Addressing the Needs of Multilingual Societies.

[18] Sumaja Sasidharan, Loganathan R, and Soman K P (2009) “English to Malayalam Transliteration
Using Sequence Labeling Approach” International Journal of Recent Trends in Engineering, Vol. 1,
No. 2, pp 170-172

[19] Oh Jong-Hoon, Kiyotaka Uchimoto, and Kentaro Torisawa (2009) “Machine transliteration using
target-language grapheme and phoneme: Multi-engine transliteration approach”, Proceedings of the
Named Entities Workshop ACL-IJCNLP Suntec, Singapore,AFNLP, pp 36–39

[20] Antony P.J, Soman K.P (2010) “Kernel Method for English to Kannada Transliteration”, Conference
on Machine Learning and Cybernetics, pp 11-14

[21] Ekbal A. and Bandyopadhyay S. (2007) “A Hidden Markov Model based named entity recognition
system: Bengali and Hindi as case studies”, Proceedings of 2nd International conference in Pattern
Recognition and Machine Intelligence, Kolkata, India, pp 545–552.

[22] Ekbal A. and Bandyopadhyay S. (2008) “Bengali named entity recognition using support vector
machine”, In Proceedings of the IJCNLP-08 Workshop on NER for South and South East Asian
languages, Hyderabad, India, pp 51–58.

[23] Ekbal A. and Bandyopadhyay S. (2008), “Development of Bengali named entity tagged corpus and its
use in NER system”, In Proceedings of the 6th Workshop on Asian Language Resources.

[24] Ekbal A. and Bandyopadhyay S. (2008) “A web-based Bengali news corpus for named entity
recognition”, Language Resources & Evaluation, vol. 42, pp 173–182.

[25] Ekbal A. and Bandyopadhyay S.(2008) “Improving the performance of a NER system by post-
processing and voting”, In Proceedings of Joint IAPR International Workshop on Structural Syntactic
and Statistical Pattern Recognition, Orlando, Florida, pp 831–841.

[26] Ekbal A. and Bandyopadhyay S.(2009) “Bengali Named Entity Recognition using Classifier
Combination”, In Proceedings of Seventh International Conference on Advances in Pattern
Recognition, pp 259–262.

[27] Ekbal A. and Bandyopadhyay S. (2009) “Voted NER system using appropriate unlabelled data”, In
Proceedings of the Named Entities Workshop, ACL-IJCNLP.

[28] Ekbal A. and Bandyopadhyay S. (2010) “ Named entity recognition using appropriate unlabeled data,
post-processing and voting”, In Informatica, Vol 34, No. 1, pp 55-76.

[29] Chinnakotla Manoj K., Damani Om P., and Satoskar Avijit (2010) “Transliteration for Resource-
Scarce Languages”, ACM Trans. Asian Lang. Inform,Article 14, pp 1-30.

[30] Kishorjit Nongmeikapam (2012) “Transliterated SVM Based Manipuri POS Tagging”, Advances in
Computer Science and Engineering and Applications, pp 989-999

[31] K.P.Sonam, V. Ajay, R. Laganatha.(2009) “Machine Learning with SVM and Other Kernel
Methods”, Machine Learning Book, PHI.

[32] Koul Omkar N. (2008) “Modern Hindi Grammar”, Dunwoody Press
[33] Walambe M. R. (1990) “Marathi Shuddalekhan”, Nitin Prakashan, Pune
[34] Walambe M. R. (1990) “Marathi Vyakran”, Nitin Prakashan, Pune

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.4, August 2013

71

[35] Dhore M L, Dixit S K and Dhore R M (2012) “Hindi and Marathi to English NE Transliteration Tool
using Phonology and Stress Analysis”, 24th International Conference on Computational Linguistic,s
Proceedings of COLING Demonstration Papers, at IIT Bombay, pp 111-118

Authors

P. H. Rathod (pravin.rathod@vit.edu) has completed BE in Information Technology, from
Government College of Engineering, Karad, Maharashtra, India, in 2008. Recently he has
completed ME in Computer Science and Engineering from Vishwakarma Institute of
Technology, Pune, India in 2013. Currently he is working as Assistant Professor in
Department of Computer Engineering at Vishwakarma Institute of Technology, Pune. He has
his interest in Machine Translation and Machine Transliteration specifically in Devanagari-
English Language Pairs. His current areas of research are Mobile Ad hoc Networks, Internet Routing
Algorithms, Computer Networking, Machine Translation and Transliteration

M. L. Dhore (manikrao.dhore@vit.edu) has completed ME in Computer Science and
Engineering from NITTR, Chandigarh, India in 1998. Currently he is working as Associate
Professor in Department of Computer Engineering at Vishwakarma Institute of Technology,
Pune. Presently he is pursuing his Ph.D. from University of Solapur, Maharashtra, India, in
the area of Computational Lingui stics. He has his interest in Machine Translation and
Machine Transliteration specifically in Marathi-English and Hindi- English Language Pairs. He has
developed the tools for Devanagari to English Machine Transliteration for the online web based
commercial applications. His current areas of research are Internet Routing Algorithms, Computer
Networking, Machine Translation and Transliteration.

Ruchi M Dhore (ruchidhore93@gmail.com) is the student of Third Year Computer
Engineering at Pune Vidyarthi Griha’s College of Engineering and Technology, Pune,
Maharashtra, India. She is scholar student of her college and securing distinction every year
in the University of Pune examinations. She is very good in programming and won the prizes
in state level and national level competitions. Her area of research interest includes Text
Processing and Pattern Searching. She likes to build her carrier in the development of
language processing tools for Marathi language.

