International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

HINDI AND MARATHI TO ENGLISH MACHINE
TRANSLITERATION USING SVM

P H Rathod M L Dhor€, R M Dhoré

12Department of Computer Engineering, Vishwakarméitlite of Technology, Pune
lpravi n.rathod@it. edu
2mami krao. dhore@i t. edu
3pune Vidhyarthi Griha’s College of Engineering drethnology, Pune
3 uchi dhore93@nai | . com
ABSTRACT

Language trandliteration is one of the important areas in NLP. Trandliteration is very useful for converting
the named entities (NES) written in one script to another script in NLP applications like Cross Lingual
Information Retrieval (CLIR), Multilingual Voice Chat Applications and Real Time Machine Translation
(MT). The most important requirement of Trandliteration system is to preserve the phonetic properties of
source language after the tranditeration in target language. In this paper, we have proposed the named
entity tranditeration for Hindi to English and Marathi to English language pairs using Support Vector
Machine (SVM). In the proposed approach, the source named entity is segmented into trangliteration units;
hence tranditeration problem can be viewed as sequence labeling problem. The classification of phonetic
units is done by using the polynomial kernel function of Support Vector Machine (SVM). Proposed
approach uses phonetic of the source language and n-gram as two features for trandliteration.

KEYWORDS

Machine Trandliteration, n-gram, Support Vector Machine, Syllabification

1. INTRODUCTION

As Internet users are growing day by day, it isdabto develop tools and applications to support
Indian languages for them. It is challenging amsliterate out of vocabulary words like personal
names, location names and technical terms occuimninfpe user input across languages with
different characters (alphabets) and sounds. Titaraion is a mapping of a word from one
language to another language without losing itsnptio properties [1]. Hindi and Marathi to
English named entity (henceforth denoted as NHjstiteration is quite difficult due to many
factors such as difference in writing script, numtzé alphabets, capitalization of initial
characters, phonetic properties, length of charaatumber of valid transliterations and
availability of the parallel corpus [2]. Formallyansliteration can be defined as the conversion of
a given named entity in the source language ixastring in the source writing system or
orthography, to a name entity in the target languiag another text string in the target writing
system or orthography, such that the target larnguagne is phonemically equivalent to the
source name, conforms to the phonology of the tdagguage and matches the user intuition of
the equivalent of the source language name inatget language. If transliteration is taken as a
sequence labeling problem, the transliteration lmamlefined as a task to generate a valid target
language character/s or label sequence for thecsolanguage character/s or observation
sequence as shown below.

Xi— Yy, Xo— Yy, .0 Xi— Y,

DOI : 10.5121/ijnlc.2013.2404 55

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

whereX; represents alphabet in Hindi or Marathi afidepresents English character.

For Indian languages, most methods incorporategtatistical in nature and most of the work is
carried out for English to Indian languages. Veargsl amount of research is carried for Indian
languages to English. Statistical methods do ngtire extensive knowledge of language, but
they do need large amount of training data whicts pparallel in both languages. The requirement
of bilingual corpus is satisfied by using infornmati sources like directories, government
documents, voters’ list, student’s enrolment ligtschools and colleges etc.

This approach uses proper manual alignment methadveo features as phonetic and n-gram to
improve accuracy of existing transliteration systéine proposed method uses SVM which is
one of the most efficient statistical supervisextméng mechanisms to obtain the transliteration.
Initially broad survey of various methods usedTaansliteration in Indian and Foreign languages
is presented. Then a detailed analysis of our &gprds given which concludes that SVM suits
the most for the task of transliteration. Finallfransliteration system based on SVM is proposed
and tested for Marathi and Hindi to English langupgirs.

2. RELATED WORK

Existing approaches for machine transliteratiores @Grapheme-based and Phoneme-based. The
grapheme based model assumes transliteration asttavgraphic process and map the source
language graphemes directly to the target languggphemes. Phoneme-based model treats
transliteration as a phonetic process. In phoneased framework, transliteration is treated as a
conversion from source grapheme to source phoneft@véd by a conversion from source
phoneme to target grapheme.

C-DAC (Centre for Development of Advanced ComputiM¢CST (National Centre for Software
Technology) and Indictrans Team have played majler in the machine transliteration of Indian
languages in India. The development of GIST (Gregphand Intelligence - Based Script
Technology) was a major breakthrough in early 19B@AC developed GIST card which was
based on Indian Script Code for Information Intergie (ISCIl). Another major development
was UTF-8 Unicode based coding for Indian langudgksThe third development (2003) was a
phonemic code based scheme for effective procesdimgdian languages which was used for
transliterating telephone directory in Hindi, andters’ list [4]. The few other applications
localised were Indian Railways Reservation Systehetephone Bills and Bilingual Telephone
Directories.

Early work on transliteration is done by Arbabi1894. He combined neural networks with
expert systems for Arabic-English language paingiphoneme-based model [5]. In 1997, Knight
and Graehl suggested a five stage statistical nfodddack transliteration to recover the original
English name from Japanese Katakana [6]. Sta#ld tise same method for back transliteration
from Arabic to English language pair in 1998 [4].2002, Al-Onaizan and Knight developed a
simpler Arabic-English transliterator and evaluatexv well their system can match a source
spelling [8]. Their work inculcates an evaluatioh the transliterations in terms of their
reasonableness according to human judges. WorkL®R for Indian Languages were done by
Jaleel and Larkey which was analogous to their iptesv work on English-Arabic machine
transliteration in 2003[9]. The approach was bagedHMM using GIZA++. In 1997, Knight
developed phoneme-based models, based on weighitedstate transducers (WFST). Jung used
Markov window which considers transliteration aghanetic process in 2003[10]. In 2005, OM
transliteration scheme provided a common scriptesgmtation for most of the Indian languages

56

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

[11]. Punjabi machine transliteration for Punjanidguage from Shahmukhi to Gurmukhi used the
rule-base approach for transliteration in 2006 [I2liring 2002 to 2004, Sproat discussed a
formal computational analysis of Brahmi scripts-fif]. Kopytonenko presented computational
models to carry out grapheme-to-phoneme converigi@d06 [16]. In 2008, Ganesh developed a
statistical transliteration technique which is laage independent. Their team chosen a statistical
model for transliteration which was based on HMMrainent and CRFs [17]. Sujan Kumar Saha
proposed a two-phase transliteration methodolog®0i®8. In 2009, Sumaja Loganathan R and
Soman K P demonstrated method for English to Médaydransliteration by using segmentation
of the source into transliteration units and magpime source language transliteration into the
target language. In experimentation part they hased SVMTool for giving the training to
corpus. SVM learning was done using linear keriibley proved that learning time remains
linear with respect to the number of examples [I18hg-Hoon Oh approach was based on two
transliteration models [19]. They used three ddfgérmachine learning approaches MIRA, MEM
and CRF for building multiple transliteration enggn

In 2010, Antony P.J tried to address the problerntraisliterating English to Kannada language
using SVM kernel. The transliteration scheme wasleter using sequence labeling problem.
The framework was based on data driven approactoaado one mapping method was used to
simplify the development of transliteration systefihe transliteration module uses an
intermediate code, which is designed for presertitegphonetic properties [20]. Ekbal, Naskar
and Bandyopadhyay made substantial contributiodetzelop transliteration systems for Indian
languages to English and especially for Bengalitishgtransliteration [21-28]. Manoj K.
Chinnakotla demonstrated a transliteration system résource scare languages by using
statistical methods to monolingual resources irjusmtion with hand crafted bilingual rules [29].
The statistical technique used by them was Char&gquence Modeling (CSM). They proved
that if the origin of the word is used for the shieration, then the system performs better than
statistical methods. In 2012, Kishorjit Nongmeikap@roposed a Phoneme-based method to
transliterate Bengali script to Meitei Mayek scriyging SVM and was based on Part of Speech
(POS) tagging of the Bengali Script text and triégisited to Meitei Mayek after POS tagging.
After POS tagging they used the YamCha toolkitamtthe corpus. They used polynomial kernel
function and the pair wise multi-class decisiomlbain the transliteration [30].

3. SUPPORT VECTOR MACHINE (SVM)

SVM does the classification by constructing an mehsional hyperplane which optimally
segregates the data into two partitions. SVM basedels are similar to the neural network
models. Theoretically, SVM model with sigmoid kdrfuction is similar to a two-layer neural
network. SVM is a new avatar of kernel functionshma supervised learning approach. It learns
from a set of inputs values with the associateguwalues. It constructs a hyperplane between
two classes using binary classifier. Basically Si&vh binary classifier in which data points are
classified in two classes with +1 and -1 labels.ilé/beparating input examples in two classes it
maximise the separation between two classes usenméthod called as max margin. Due to max
margin separation error rate gets minimised arhyf new input with unknown label arrives for
classification, the chances of making error is mised.

Let the data set is {xXo ,....... %} and the desired output or class label;isl\{+1,-1}, then two
boundary planes and hyper plane is obtained bygusitowing equations eq(1), eq(2) and eq(3).

57

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

(W xy) <= -1 eq(2)
(W' x-y) =0 eq(3 where 1<=i<=n.

The data points should satisfy the equation ea@d(2) and eq(3) for correct classification. The
decision boundary can be calculated with the falhgwoptimization problem

Minimize || wfi

In few cases application allows misclassificatiavizere small amount of error is tolerated. In
such cases, the degree of misclassification candasured by using the slack variablend C as
a control parameter. After introducing slack valéalequations eq(1), and eq(2) can be written as
(W' X-y) >= +1¢ eq(4)
TR) i b ——————— eq(5)

Now the problem is minimised under the constragMinimize % || WiFC X &

SVM also allows non linear mapping if the dataisetot linearly separable in a high dimensional
space. In this case, it uses a non-linear kermadtiion for constructing the new feature space.
SVM can be used for multiclass data set where numlzsses can be k. In case of binary
classifier, one dimensional plane is divided in subspaces while for multiple classes; it divides
the hyper plane in multidimensional subspaces [31].

4. DEVANAGARI SCRIPT

Hindi and Marathi languages are written using Dexgmi script. Devanagari script used for
Hindi and Marathi have 12 pure vowels , 2 loan eweom the Sanskrit language and 1 loan
vowel from English. There are total 34 consonabtsgonjuncts, 7 loan consonants and 2
traditional signs in Devanagari script and eachsooant have 14 variations through integration
of 14 vowels [32-34]. Table 1 shows Devanagaripscalong with their equivalent phonetic

mapping in Roman. The consonant is used only in Marathi and not in Hind..
Table 1: Devanagari Script
Pure consonants Vowel | Matra | Vowe | Matra

F>ka | @>kha | T>ga F>gha | ¥>nga | T>a No Sign | ®=>RU

Pye]

¥>cha | g>chha | T2ja | F2jha | 5505 | a> A o |T>E |9
z>Ta |3>Tha |S2Da [Z>dha | gyNa | 3o A T
T>ta | T>tha | F2da | FIDha | g5, | f5ee S |d>00 |
7>pa | ®dpha |FPba | FIbha | gyma 33y B Hf>au | o

TSya |T>ra a->la a>va a>sha | F>U 2 #>am | ¢/
¥>Sha | g>sa | 2>Lka | E>ha #=->Ru 2 @ SaH | o:
Conjucts and g>ksha | ¥>dnya | ¥>shra | >dya | F>Tra | >om | =ft-Shri
Symbols —

Loan Letters —» g>Dhxa | @>khxa | T>gxa | 2>jxa | ®>phxa | >Dxa | F>kxa

58

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

5. SYSTEM ARCHITECTURE

The overall system architecture of proposed metloggds depicted in Figure 1. YamCha toolkit
is used for the implementation of SVM. This secfiocuses on the various steps needed to obtain
the transliteration of named entity written in Hirehd Marathi using Devanagari script in
English using Roman script. The overall logicalflof the transliteration system is divided into
following three modules.

* Preprocessing on raw input data
» Training of bilingual corpus using polynomial lindanction of degree two
» Testing of additional data

5.1. Preprocessing

Preprocessing phase is used to convert the rav imgusystem acceptable format. Raw input is
the set of NE strings or words which cannot beatliyeprocessed by the system. These NEs need
to be normalized into the system specified forn#sg. the proposed methodology uses the
phoneme of source input as one of the featuregseptation of raw input in Devanagari needs to
be done using the syllabic format of the sourcguage. In this approach one syllabic unit of
source language is treated as a one phonetic Tind. overall preprocessing is achieved by
dividing task into following two sub modules.

» Syllabification
» Alignment using phonetic mapping

Raw Training Data l

Preprocessing Phase

| Yamcha Compatible data

Training Phase

| SVM Transliteration Model

Marathi/Hindi Transliteration Phase English
Testing data Transliteration

Figurel. System Architecture

59

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013
5.1.1 Syllabification

Syllabification refers to the segmentation of seuend target language NEs into source and
target language Translation Units (TU). Translationit is equivalent to the phonetic unit or
syllabic unit of the source or target language. &le, the NE in Hindi and Marathi written

using Devanagari 9fa (person name) is syllabified & + f& + W whereas its English
equivalent ‘pravin’ is syllabified as pra + vi +using its phonetic mappings [35]. The YamCha
tool accepts the input into syllabic units, whicke aalled as labels. As the each input is
equivalent to phonetic unit, phoneme is taken as anthe feature in this implementation. The
target language TU is given as a tag to the gimpatiwhich is a phonetic equivalent of Hindi
and Marathi in English. Hindi and Marathi NEs fothe source language TUs whereas the
corresponding phonetic units in English form tarngeiguage TUs. The Hindi and Marathi NEs
can be syllabified into its corresponding TUs bingdollowing Algorithm 1.

Algorithm 1
Input: W is the NE in Hindi or Marathi to be sylified.

// Pointer initially points to first Source Trartshiation Unit (STU).
foreach W do // For every character in word W, perform followirtgss:
1. Check if the character is a consonant or a vowel
2. If the character is a consonant then add theactex to current STU.
3. If the character is a vowel then
a. Add the character to current STU.
b. Increment the pointer so that it pointshte hext STU.
end foreach

Output:Phonetic Units in Hindi and Marathi

Using Algorithm 1, Hindi and Marathi NEs are syifad into its phonetic units. Following are
the few examples showing how syllabification is eon

Name in Devanagasiagrrg STUs- @371 | T | ¥

Name in DevanagasisisreaT STUs- [3 [#7] T |9F 7]

Name in DevanagasiFa<r=ATars STUs- [T |&| Tr| =T |aT| 7]
Name in Devanagasisrsgeradist STUs- [|=g | =T |8 | 7| T]
Name in DevanagasiFis\game STUs» [| T 5| 7| % | 7| 7]

Name in Devanaga¥i AT oNTesh STUSS [AT| T[T || |||
Name in Devanagasi Erqaa=mraor STUs- [|9 ||| 1| | 7| W]

5.1.2 Alignment using phonetic mapping

The raw Hindi or Marathi to English mapping fromepious step is of the formr - ma, fir >
ni, & > K, etc. But, in certain examples likeddZra’ (7 & @ T 9), which is syllabified as (va

60

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

san t ra v), a consonar//is mapped to both ‘va’ as well as ‘v'. It is ddélt to automate such
possibilities. In fact, these are the rules that@uing to get trained using tool. Such possibiti
were edited manually to get proper bilingual corfrstraining. Then each STU is mapped to a
Target Language Transliteration Unit (TTUWollowing are the few examples showing how
syllabification and phonetic mapping is done.

NE in Devanagari STUs TTUs

AZIY — [@lzT T — [ma | ha| ra| shtra]

AT — [|| ¥ T |7 — [om | ka| re| shwa | 1]
GIEREIEIES — [[r|F| T|&AT|AT|F] — [no | v |ro|jhal bal d]
FegedAEdS > [5g | FAT ||| T] — [a|badullla|h|gan]j]
IEEECET IR — [®|T|F|T|F|97|7] — [nijran|ja|n]|ku|ma]r]
AREAWMERE — [T | T| | 0| T | F| T —[najralya|n|gal|v|ka]|r]
BrqEaaEE — [F g F| Tt T 7| v — [tri|bhu|va|n]|na|ra]|ya]|n]

5.2. Training Phase

Training phase requires two things, one is traimata and other is feature on which the data is to
be trained. Parallel data obtained during syllabifon is arranged in the YamCha required
format and then n-gram features are used to thésndiata. The first step in using the YamCha is
to create training files. In this file the firstlomn represents a Hindi and Marathi syllabified
named entity and second column represent a truertdgbel corresponding to a Hindi and
Marathi syllabified unit in English. In this phatd® classification is done based on the n-grams.
The details of classification are given for fouif@lient n-grams.

* Bigrams

e Trigrams

* Fourgrams
* Fivegrams

5.2.1. Bigram

The bigram is the first feature used to train theaplel corpora. The bigram feature creates the
SVM classes by considering current and immediatet 8YU. The creation of classes is

described using two NESfaur and aTforsRera’ written in Devanagari script. After training the
above dataset, SVM kernel created eight differattiepns in total using the bigram feature. Using
bigram feature the patterns for NEZoT would be i, 307 71} and for NE ATR<a’ the

patterns would befTfor, fors, <1, T4, 7 }. Classifications of these eight patterns arevshin

the Figure 2. Few patterns are classified into tieg@pace and others are in positive space by
the SVM kernel function.

61

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

Negative Space

Figure2. Hyperplane for Bigram
5.2.2. Trigram

The trigram is the second feature used to trairp#rallel corpora. The trigram feature creates the
SVM classes by considering current and immediatd tveo STUs. Using trigram feature the

patterns for NE Stfaor would be {fawr, f39r o1} and for NE AT{or<1a the patterns would
be{ aTfore, forr<T, <1, T, 7 }. Figure 3 shows the vector space of classifarati

T

Positive Space

Negative Space

Figure3. Hyperplane for Trigram

5.2.3. Fourgram

The fourgram is the third feature used to traingheallel corpora where SVM classes created by
considering current and immediate next three STJshawn in Figure 4. Using fourgram feature

the patterns for NE Sfaor would be {wfawr, for o1} and for NE ST the patterns
would be{mforrr |, forsrera |, #2149, T, 7).

62

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

Positive Space

MNegative Space

Figure4. HyBerpIane for Fourgram

5.2.4. Fivegram

The fivegram is the fourth feature used to tramphrallel corpora where SVM classes created by
considering current and immediate next four STUshasvn in Figure 5. Using fivegram feature

the patterns for NE Sfaor would be {wfawr, for o1} and for NE ST the patterns
would be{@TiorERTe , e , #3014, T4, T }.

Positive Space

Figure6. Hyperplane for Fivegram

5.3. Testing Phase

This phase takes two files as input. One is theah@tk generated during training phase and
other is test file. The format of a test file isr@aas training file. It searches a particular patte
from a separating hyperplane. Each pattern ha®m@ s@lue either positive or negative which
indicates the distance of class form a separatypgtplane in model file. If the given Hindi and
Marathi input is in combination of the patterns @hiare there in figures 2 to 5, then generates
the correct output. If the pattern is not foundntliteshows garbage output i.e. incorrect English

63

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

transliterated output. For example, given an inpaitsTTaoera” to the model file, it produces
output as

I —pra
i
T—n
T—ra

qd—v
6. EXPERIMENTATION DETAILS

This section describes the overall implementatietaits of Devanagari to Roman machine
transliteration using YamCha tool.

6.1. Configuration

The programming implementation is carried out ugaga and eclipse integrated development
environment. The GUI is designed in Netbeans becausipports the inbuilt control component
i.e. Button, Textview etc. After the training, mbdike is generated. The model file is executed in
Windows platform using YamCha.exe and libyamchdildls. The training file is stored with dot
data extension, UTF-8 and Linux end line. The trgns carried out on Linux platform.

Features selected are variable sized n-grams igear, Trigram, Fourgram and Fivegram as a
window size. N-grams are generated using only folwaovement. The Makefile is a file where
the feature parameters are modified according goam requirement. The following summary
gives details of each n-gram,

For window size of two (Bigram)
SVM_PARAM=-t1-d2-cl
FEATURE =F:0..1:0..0
MULTI_CLASS =2

For window size of three (Trigram)
SVM_PARAM=-t1-d2-c1l
FEATURE =F:-1..1:0..0
MULTI_CLASS =2

For window size of four (Fourgram)
SVM_PARAM=-t1-d2-c1l
FEATURE =F:-1..2:0..0
MULTI_CLASS =2

For window size of five (Fivegram)

64

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

SVM_PARAM=-t1-d2-c1l
FEATURE =F:-2..2:0..0
MULTI_CLASS =2

The SVM_PARAM “t 1 -d 2 -¢c 1" means that secondjee of polynomial kernel and one slack
variable is used. The YamCha tool supports onlymahial kernel. The MULTI_CLASS=2
means one versus rest i.e. the score indicatafigtaace from separating hyperplane.

For the training two parameters are mandatory.stFane is the location of file which is a
bilingual corpus written in the training format asglcond is the prefix name of the model file.

The parsing direction is from Left to Right for Dmagari script. We have chosen the default
setting which is forward parsing mode (Left to R)giThe Makefile is used for setting different
parameters for bigram, trigram, fourgram and fieagr

6.2. Feature Selection
The parameter FEATURE is used to change the feaet® (window size) for dataset. The
default setting is “F:-2..+2:0.. T:-2..-1". F deastthe static feature while T denotes the dynamic

feature. The static feature “F:-2..+2:0..” mearst flveginning positing of token] is -2 and [end
position of token] is +2.which is shown in Figure 6

Foz -2 AT ma

Pos-1 Tor ni
Pos-0 & ko ---oee-eee--current token
Fos+17T ra
Fos+2d ¥

Figure6. Feature Selection for Window Size -2 to +2
6.3. Testing and Results

The system was tested for person names, histgulege name, city names of Indian origin.
Standard bilingual corpus in Unicode format for ¢liand Marathi is not availabjl&@ence the test
data set is created from voters’ lists of StatdVlaharashtra, census website of Government of
India, road atlas of various states etc. Initialldk NE data set is trained. Figure 7 shows the
shapshot of machine transliteration.

65

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

[E2] N [

PROJECT TITLE:-Devanagari to English NE Transliteration Using SVM

arfexam
WLAER [Uevanagarito Engish Hame... g7 & [3
Devanagariﬁl!?)
[ee |
ﬁ“fﬂ'f = HIJﬂlﬁMl.H.IIi'UI
.. TEE o]
= L | |
Bl.10 @ € ¥ s

Figure7. Snapshot of Transliteration Tool

Accuracy (ACC) which is also known as Word ErrotdR@QVAR) measures the correctness of the

transliteration candidate produced by a transli@masystem. ACC = 1 means that candidate is

the correct Transliteration i.e. it matches with teference, and ACC = 0 means candidate is not
correct. Accuracy is calculated by using the follogvformula.

Nor 1lif corrcet match found

: 1 -Z
ACCUracy = —
!) N

1 \0Lif incorrect match found

where N is total number of NEs. Initially, over ttiained data set of 10k size, test data set of 5k
size is tested and we obtained the results depict€dble 2 and Figure 8.

Table2. Initial Results

Bi-gram Tri-gram Four-gram Five-gram
Number of NEs 10000 10000 10000 10000
Trained
Number of NEs
Tested 5000 5000 5000 5000
Number of Correct 2098 2266 2520 1696
NEs
Accuracy 41.96% 45.32% 51.96% 33.92%

66

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

100%
90%
80%
70%
60%

Accuracy

40%
30%
20%
10%

0%

50% -

Initial Results
51.96%
0,
11.96% 45.32%
33.92%
2Gram 3Gram 4Gram 5Gram

Window size [N-gram]

Figure 8. Initial Results

B 2Gram
W 3Gram
W 4Gram

B 5Gram

The initial results of the transliteration were weatisappointing as compared to the results
obtained by other researches for Tamil and Kanadguages. After in depth analysis of the
trained data, it has observed that results wesedssthe pattern created was not having location
names ending with ‘wadi’, ‘gaon’ , ‘nagar’ etc aslixas the surnames ending with ‘kar’ , ‘pure’,
‘kare’ etc. After adding 500 commonly used suffixasHindi and Marathi, in the training data
set, we achieved reasonable transliteration acg@sishown in Table 3 and Figure 9.

Table3. Final Results

Bi-gram Tri-gram Four-gram Five-gram
Number of NEs 10500 10500 10500 10500
Trained
Number of NEs 5000 5000 5000 5000
Tested
Number of Correct 3387 3824 4307 4327
NEs
Accuracy 67.74% 76.48% 86.14% 86.52%

67

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

100% - Final Results
90% - 86.14% 86.52%
80% - 76.48%
o, | 67.74%
70% W 2Gram
60% - B 3Gram
>
® B 4Gram
5 50% -
b B 5Gram
<
40% -
30% -
20% -
10% -
0%
2Gram 3Gram 4Gram 5Gram

Window size [N-gram]

Figure 9. Final Results

Although we have not found any other specific wimkthe Hindi-English and Marathi-English

language pairs using SVM, our results are compé&oetthe other language pairs only for the
languages in India. Table 4 depicts the comparisioperformance with the other different
language pairs in India using SVM.

Table4. Comparison of Results

ngagerar | it | Topdnenreer [wan
English - Malayalam SVM 90.00 Word Accuracy
English - Kannada SVM 81.25 Word Accuracy
Bengali - Meitei Mayek SVM 86.04 Word Accuracy
English - Tamil SVM 84.16 Word Accuracy
Hindi/Marathi- English SVM 86.52 Word Accuracy

68

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

7. CONCLUSIONS

In this paper, we presented machine transliterdtiorHindi to English and Marathi to English
language pairs using Support Vector Machine (SVAM)the Hindi and Marathi are phonetically
rich languages, phoneme is selected as a primeréeais the Devanagari NEs written in Hindi
and Marathi consists of the segments of two, tHme,and five, a variable sized n-gram is taken
as second feature. We used SVM as a machine lgaglgorithm for the classifications of
patterns based on phoneme and variable n-gram. sizesir case, transliteration is treated as
sequence labeling problem in which output of curtabhel depends on more than one previous
and future label. It is desirable that transliteratmodel takes care of all the dependencies. As
SVM creates the hyperplane using linear polynomaattion, there is no restriction on number of
classes to be generated. As SVM can generate adequenber of classes for all available
patterns, it is more suitable for the translitenatiask. In sequence labeling, it has been observed
that increase in n-gram size i.e. from bigramsuwegrams improves the accuracy. As there are no
NEs consisting of one syllabic unit, it has beesarbed that unigram feature provides very less
accuracy. Accuracy has been gradually increasettheasi-gram sized increased. The bigram
gives good accuracy only to the NEs having length Similarly, trigram gives good results for
the NEs having length three. The fourgram and fi@egaccuracy is very close. It has also been
observed that sixgram results are almost samevagrdms but unnecessary increases training
time compared to fivegram. We have trained 10.6rpas using YamCha Toolkit and tested for
5k data. The top-1 accuracy obtained for 5k tedfi@ig using bigram is 67.74%, using trigram is
76.48%, using fourgram is 86.14% and using fivegrau86.52%. We conclude that, 5-gram is
best suitable size for Hindi and Marathi to Englistamed entity transliteration. The current
system is tested for person names and place namhgsltocan further be extended for foreign
names, organization names. As English is non plofetguage, we have not carried out back
transliteration. Therefore, there is also futurepscto perform the back transliteration.

REFERENCES

[1] Padariya Nilesh, Chinnakotla Manoj, Nagesh Aj@amani Om P.(2008) “Evaluation of Hindi to
English, Marathi to English and English to HindiT Mumbai CLIR at FIRE.

[2] Saha Sujan Kumar, Ghosh P. S, Sarkar SudesithMara Pabitra (2008) “Named entity recognition
in Hindi using maximum entropy and transliteratfon.

[3] BIS (1991) “Indian standard code for informatimterchange (ISCIl)”", Bureau of Indian Standards,
New Delhi.

[4] Joshi R K, Shroff Keyur and Mudur S P (2003) #honemic code based scheme for effective
processing of Indian languages”, National Centre 8oftware Technology, Mumbai, 23rd
Internationalization and Unicode Conference, Pra@zech Republic, pp 1-17.

[5] Arbabi M, Fischthal S M, Cheng V C and Bart BE994) “Algorithms for Arabic name
transliteration”, IBM Journal of Research and Depehent, pp 183-194.

[6] Knight Kevin and Graehl Jonathan (1997) “Madhitransliteration”, In proceedings of the 35th
annual meetings of the Association for Computafiburaguistics, pp 128-135.

[7] Stalls Bonnie Glover and Kevin Knight (1998) ranslating names and technical terms in Arabic
text.”

[8] Al-Onaizan Y, Knight K (2002) “Machine transiah of names in Arabic text”, Proceedings of the
ACL conference workshop on computational approath&emitic languages.

[9] Jaleel Nasreen Abdul and Larkey Leah S. (20@3tistical transliteration for English-Arabic a®
language information retrieval”, In Proceedingstlid 12th international conference on information
and knowledge management, pp 139 — 146.

69

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]
(28]
[29]
[30]
[31]
[32]

[33]
[34]

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

Jung S. Y., Hong S., S., Paek E.(2003) “Erfgtis Korean transliteration model of extended Marko
window”, In Proceedings of the 18th Conference @m@utational Linguistics, pp 383—-389.
Ganapathiraju M., Balakrishnan M., Balakrishnid., Reddy R. (2005) “OM: One Tool for Many
(Indian) Languages”, ICUDL: International Confereran Universal Digital Library, Hangzhou.
Malik M G A (2006) “Punjabi Machine Translitgion”, Proceedings of the 21st International
Conference on Computational Linguistics and thé 44inual meeting of the ACL, pp 1137-1144.
Sproat R.(2002) “Brahmi scripts, In Constrainin Spelling Changes”, Fifth International Worksho
on Writing Systems, Nijmegen, The Netherlands.
Sproat R.(2003) “A formal computational anasysf Indic scripts”, In International Symposium on
Indic Scripts: Past and Future, Tokyo.
Sproat R.(2004) “A computational theory of tng systems, In Constraints on Spelling Changes”,
Fifth International Workshop on Writing Systemsjigen, The Netherlands.
Kopytonenko M. , Lyytinen K. , and Krkkinel.(2006) “Comparison of phonological
representations for the grapheme-to-phoneme mappimgConstraints on Spelling Changes”, Fifth
International Workshop on Writing Systems, Nijmeg€he Netherlands.
Ganesh S, Harsha S, Pingali P, and Verma \0&p0Statistical transliteration for cross language
information retrieval using HMM alignment and CRH#, Proceedings of the Workshop on CLIA,
Addressing the Needs of Multilingual Societies.
Sumaja Sasidharan, Loganathan R, and Soman(R0@9) “English to Malayalam Transliteration
Using Sequence Labeling Approach” Internationalrdaliof Recent Trends in Engineering, Vol. 1,
No. 2, pp 170-172
Oh Jong-Hoon, Kiyotaka Uchimoto, and Kentarori$awa (2009) “Machine transliteration using
target-language grapheme and phoneme: Multi-engaresliteration approach”, Proceedings of the
Named Entities Workshop ACL-IJCNLP Suntec, Singapd~NLP, pp 36-39
Antony P.J, Soman K.P (2010) “Kernel Method English to Kannada Transliteration”, Conference
on Machine Learning and Cybernetics, pp 11-14
Ekbal A. and Bandyopadhyay S. (2007) “A Hidddarkov Model based named entity recognition
system: Bengali and Hindi as case studies”, Prangedf 2nd International conference in Pattern
Recognition and Machine Intelligence, Kolkata, lgip 545-552.
Ekbal A. and Bandyopadhyay S. (2008) “Bengaimed entity recognition using support vector
machine”, In Proceedings of the IJCNLP-08 WorksloopNER for South and South East Asian
languages, Hyderabad, India, pp 51-58.
Ekbal A. and Bandyopadhyay S. (2008), “Develgnt of Bengali named entity tagged corpus and its
use in NER system”, In Proceedings of the 6th Wiwkson Asian Language Resources.
Ekbal A. and Bandyopadhyay S. (2008) “A welsédh Bengali news corpus for named entity
recognition”, Language Resources & Evaluation, ¥@l. pp 173-182.
Ekbal A. and Bandyopadhyay S.(2008) “Improvitige performance of a NER system by post-
processing and voting”, In Proceedings of JointRAIRternational Workshop on Structural Syntactic
and Statistical Pattern Recognition, Orlando, Eayipp 831-841.
Ekbal A. and Bandyopadhyay S.(2009) “Bengalandhed Entity Recognition using Classifier
Combination”, In Proceedings of Seventh InternatloiConference on Advances in Pattern
Recognition, pp 259-262.
Ekbal A. and Bandyopadhyay S. (2009) “VoteHRNsystem using appropriate unlabelled data”, In
Proceedings of the Named Entities Workshop, ACLNIE.
Ekbal A. and Bandyopadhyay S. (2010) “ Namatitg recognition using appropriate unlabeled data,
post-processing and voting”, In Informatica, Vol 3. 1, pp 55-76.
Chinnakotla Manoj K., Damani Om P., and SatwsRvijit (2010) “Transliteration for Resource-
Scarce Languages”, ACM Trans. Asian Lang. Inforrighe 14, pp 1-30.
Kishorjit Nongmeikapam (2012) “Transliterat&¥/M Based Manipuri POS Tagging”, Advances in
Computer Science and Engineering and Applicatipp989-999
K.P.Sonam, V. Ajay, R. Laganatha.(2009) “MawhiLearning with SVM and Other Kernel
Methods”, Machine Learning Book, PHI.
Koul Omkar N. (2008) “Modern Hindi Grammar”,ubwoody Press
Walambe M. R. (1990) “Marathi ShuddalekhanitiNPrakashan, Pune
Walambe M. R. (1990) “Marathi Vyakran”, Nitfrrakashan, Pune

70

International Journal on Natural Language ComputiaiyLC) Vol. 2, No.4, August 2013

[35] Dhore M L, Dixit S K and Dhore R M (2012) “Hilnand Marathi to English NE Transliteration Tool
using Phonology and Stress Analysis”, 24th Intéoma Conference on Computational Linguistic,s
Proceedings of COLING Demonstration Papers, aBbimbay, pp 111-118

Authors

P. H. Rathod (pravin.rathod@vit.edu) has compld&é&din Information Technology, from
Government College of Engineering, Karad, Maharashndia, in 2008. Recently he ha
completed ME in Computer Science and EngineerirgnfrVishwakarma Institute of
Technology, Pune, India in 2013. Currently he isrkirgy as Assistant Professor i
Department of Computer Engineering at Vishwakarnsditute of Technology, Pune. He he
his interest in Machine Translation and Machinen§ligeration specifically in Devanagari-

English Language Pairs. His current areas of rebeare Mobile Ad hoc Networks, Internet Routing
Algorithms, Computer Networking, Machine Translatand Transliteration

M. L. Dhore (manikrao.dhore@vit.edu) has completd& in Computer Science anc

Engineering from NITTR, Chandigarh, India in 19@urrently he is working as Associat

Professor in Department of Computer Engineeringistiwakarma Institute of Technolog

Pune. Presently he is pursuing his Ph.D. from Usitie of Solapur, Maharashtra, India, if

the area of Computational Linguditics. He has his interest in Machine Translatiod ¢

Machine Transliteration specifically in Marathi-Hish and Hindi- English Language Pairs. He has
developed the tools for Devanagari to English MaehiTransliteration for the online web based
commercial applications. His current areas of neseare Internet Routing Algorithms, Computer
Networking, Machine Translation and Transliteration

Ruchi M Dhore (ruchidhore93@gmail.com) is the shidef Third Year Computer
Engineering at Pune Vidyarthi Griha's College ofgimering and Technology, Pune
Maharashtra, India. She is scholar student of bege and securing distinction every ye:
in the University of Pune examinations. She is \gogd in programming and won the prize
in state level and national level competitions. ldesa of research interest includes Te
Processing and Pattern Searching. She likes tal hdl carrier in the development c
language processing tools for Marathi language.

71

