
International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

10.5121/ijnsa.2010.2202                                                                                                  12 

 

COMBINING NAIVE BAYES AND DECISION TREE 

FOR ADAPTIVE INTRUSION DETECTION 

Dewan Md. Farid
1
, Nouria Harbi

1
, and Mohammad Zahidur Rahman

2 

1
ERIC Laboratory, University Lumière Lyon 2 - France 

dewanfarid@gmail.com, nouria.harbi@univ-lyon2.fr   
2
Department of Computer Science and Engineering,  

Jahangirnagar University, Bangladesh 
rmzahid@juniv.edu 

ABSTRACT 

In this paper, a new learning algorithm for adaptive network intrusion detection using naive Bayesian 

classifier and decision tree is presented, which performs balance detections and keeps false positives at 

acceptable level for different types of network attacks, and eliminates redundant attributes as well as 

contradictory examples from training data that make the detection model complex. The proposed 

algorithm also addresses some difficulties of data mining such as handling continuous attribute, dealing 

with missing attribute values, and reducing noise in training data. Due to the large volumes of security 

audit data as well as the complex and dynamic properties of intrusion behaviours, several data mining-

based intrusion detection techniques have been applied to network-based traffic data and host-based data 

in the last decades. However, there remain various issues needed to be examined towards current 

intrusion detection systems (IDS). We tested the performance of our proposed algorithm with existing 

learning algorithms by employing on the KDD99 benchmark intrusion detection dataset. The 

experimental results prove that the proposed algorithm achieved high detection rates (DR) and 

significant reduce false positives (FP) for different types of network intrusions using limited 

computational resources.  

KEYWORDS 

Decision Tree, Detection Rate, False Positive, Naive Bayesian classifier, Network Intrusion Detection   

1. INTRODUCTION 

An “Intrusion Detection System (IDS)” is a system for detecting intrusions that attempting to 

misuse the data or computing resources of a computer system. Mostly intrusions are the 

violation of information security policy. At first IDS was implemented for host-based that 

located in servers to examine the internal interfaces [1]-[3], but with the evolution of computer 

networks the focus gradually shifted toward network-based. Network intrusion detection system 

(NIDS) performs packet logging, real-time traffic analysis of IP network, and tries to discover if 

an intruder is attempting to break into the system [4]-[6]. Snort is an open source network 

intrusion detection and prevention system (NIDPS) developed by Sourcefire [7], [8]. Snort 

performs protocol analysis, content searching/matching, and commonly blocks a variety of 

intrusions such as buffer overflows, stealth port scans, web application attacks, SMB probes, 

and OS fingerprinting attempts. Normally, intruders in computer system are classified into two 

categories like internal and external intruders. Internal intruders are users in the network and 

have some authority, but seek to gain additional ability to take action without legitimate 

authorization. External intruders do not have any authorized access to the system that they 

attack. Two types of detection models: misuse and anomaly are commonly using by IDS. 

Misuse detection model performs simple pattern matching techniques to match an attack pattern 

corresponding to known attack patterns in the database and produces very low false positives 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

13 

 

(FP). Anomaly detection model identifies new attacks by analyzing the anomalous behaviors 

from normal behaviors [9], and achieves high detection rates (DR) for new attacks, but produces 

many false positives (FP). Anomaly based IDS generate rules by observing collected audit data 

that is the records of activities generated by the operating system. Currently adaptive intrusion 

detection aims to solve the problems of analyzing the huge volumes of audit data and realizing 

performance optimization of detection rules [10]-[14].              

Detecting intrusions using data mining algorithms such as decision tree (DT), naïve Bayesian 

(NB) [15], neural network (NN), support vector machine (SVM) [16], k-nearest neighbors 

(KNN), fuzzy logic model [17], and genetic algorithm [18] have been widely used in the last 

decades. However, there exist various problems in current IDS such as low detection accuracy, 

unbalanced detection rates for different types of attacks, high false positives, redundancy of 

input attributes as well as examples in the training data. Another difficulty of current IDS is to 

detect intrusions in real time high-speed networks, because the high-speed networks require IDS 

to deal with large volumes of network data in a very short time. In this paper, based on a 

comprehensive analysis for the current research challenges in intrusion detection, a new 

learning algorithm for adaptive network intrusion detection using naive Bayesian classifier and 

decision tree is presented, which can handle the above mentioned challenging issues. This paper 

also addresses some difficulties of data mining such as handling continuous attribute, dealing 

with missing attribute values, and reducing noise in training data. The experimental results by 

using KDD99 benchmark intrusion detection dataset prove that the proposed algorithm has 

achieved both high detection rates (DR) and the significant reduction of false positives (FP) in 

comparison with existing methods. 

The remainders of the paper are organized as follows. Section 2 presents the related overview of 

networking and intrusion detection. The basic problems of learning are discussed in Section 3, 

whereas our proposed algorithm is introduced in Section 4. Then, the experimental results are 

expressed in Section 5. Finally, our conclusions and future works are mentioned in Section 6. 

2. NETWORKING AND INTRUSION DETECTION OVERVIEW 

2.1. Networking Overview 

In the networks, TCP/IP is widely used for network communications, which are composed of 

four layers: application layer, transport layer, network layer, and hardware layer that work 

together [19]. When data transfers across the networks, the data passes from the highest layer 

through intermediate layers to the lowest layer. The lowest layer sends the accumulated data to 

its destination through the physical network. Application layer sends and receives data for 

particular applications, such as DNS, HTTP, FTP, SMTP, and SNMP. It enables applications to 

transfer data between server and client, and passes application data to the transport layer. 

Transport layer is responsible for packaging data using TCP (Transmission control protocol) 

and UDP (user datagram protocol) so that it can be transmitted between hosts. Each TCP or 

UDP packet has a source port and a destination port number. Network layer or internet protocol 

(IP) layer is in charge of handling the addressing and routing of data received from the transport 

layer. After the network layer has encapsulated the transport layer data, the resulting logical 

units are referred to as packets. Each packet contains a header, which is composed of various 

fields. Commonly used network layer protocols are IPv4, IPv6, ICMP (internet control message 

protocol), and IGMP (internet group management protocol). It is also responsible for providing 

error and status information involving the addressing and routing of data. Hardware layer or 

data link layer tackles communications on the physical network components including cables, 

routers, switches, and network interface cards (NIC). The best known hardware layer protocol is 

Ethernet. Ethernet relies on the concept of a media access control (MAC) address, which is a 

unique six-byte value (such as 00-02-B4-DA-92-2C) permanently assigned to a particular NIC.  



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

14 

 

2.2. Intrusion Detection Overview 

Intrusion detection is the process of monitoring and analyzing the events in computer systems or 

networks to discover the signals of possible incidents, which attempt to compromise the 

confidentiality, integrity, and availability of computer resources. In general, IDS use misuse-

based and anomaly-based detection model for detecting intrusions. Misuse-based IDS are very 

effective for detecting known attacks but largely ineffective for detecting new attacks whose 

pattern has not stored in the database yet. It performs pattern matching to match an attack 

pattern corresponding to known attack patterns in the database. Anomaly-based IDS identify 

new attacks by analyzing anomalous behavior from normal behaviors. It has a relatively high 

detection rate for new attack, but produces many false positives. It uses profiles that are 

developed by monitoring the characteristics of typical activities over a period of time and then 

compares the characteristics of current activity to thresholds related to the profile. A network-

based IDS (NIDS) monitor and analyze network traffics, and use multiple sensors for detecting 

intrusions from internal and external networks [20]-[22]. IDS analyze the information gathered 

by the sensors, and return a synthesis of the input of the sensors to system administrator or 

intrusion prevention system. System administrator carries out the prescriptions controlled by the 

IDS. Today, data mining has become an indispensable tool for analyzing the input of the sensors 

in IDS. Fig. 1 shows a scenario of IDS to protect server machine from internal and external 

network. 

 

Figure 1.  A typical motivating scenario of intrusion detection. 

Ideally, IDS should have an attack detection rate (DR) of 100% along with false positive (FP) of 

0%. Nevertheless, in practice this is really hard to achieve. The most important parameters 

involved in the performance estimation of IDS are shown in Table 1.   

Table 1.  Parameters for performance estimation of IDS. 

Parameters Definition 

True Positive (TP) or Detection Rate (DR) Attack occur and alarm raised 

False Positive (FP) No attack but alarm raised 

True Negative (TN) No attack and no alarm 

False Negative (FN) Attack occur but no alarm 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

15 

 

The metrics such as precision, recall, overall, and false alarm have been used to measure the 

performance of the data mining algorithm on the minority class [23]-[26]. From Table 1, 

precision, recall, and overall may be defined as follows.  

Precision = 
FPTP

TP

+

                    (1) 

Recall = 
FNTP

TP

+

              (2) 

Overall =  
TNFNFPTP

TNTP

+++

+              (3) 

False Alarm =  
TNFNFPTP

FNFP

+++

+             (4) 

Detection rate (DR) and false positive (FP) are used to estimate the performance of IDS [27], 

which are given as bellow:  

 DR = 100*
_

_det_

attacksTotal

attacksectedTotal             (5) 

 FP = 100*
__

__

processnormalTotal

processedmisclassifTotal            (6) 

2.3. Related Work 

In 1980, the concept of intrusion detection began with Anderson’s seminal paper [40]; he 

introduced a threat classification model that develops a security monitoring surveillance system 

based on detecting anomalies in user behavior. In 1986, Dr. Denning proposed several models 

for commercial IDS development based on statistics, Markov chains, time-series, etc [41]. In the 

early 1980’s, Stanford Research Institute (SRI) developed an Intrusion Detection Expert System 

(IDES) that monitors user behavior and detects suspicious events [42]. In 1988, a statistical 

anomaly-based IDS was proposed by Haystack [43], which used both user and group-based 

anomaly detection strategies. In 1996, Forrest et al. proposed an analogy between the human 

immune system and intrusion detection that involved analyzing a program’s system call 

sequences to build a normal profile [44]. In 2000, Valdes et al. [45] developed an anomaly 

based IDS that employed naïve Bayesian network to perform intrusion detecting on traffic 

bursts. In 2003, Kruegel et al. [46] proposed a multisensory fusion approach using Bayesian 

classifier for classification and suppression of false alarms that the outputs of different IDS 

sensors were aggregated to produce single alarm. In the same year, Shyu et al. [47] proposed an 

anomaly based intrusion detection scheme using principal components analysis (PCA), where 

PCA was applied to reduce the dimensionality of the audit data and arrive at a classifier that is a 

function of the principal components.  In 2003, Yeung et al. [2] proposed an anomaly based 

intrusion detection using hidden Markov models that computes the sample likelihood of an 

observed sequence using the forward or backward algorithm for identifying anomalous. Lee et 

al. [48] proposed classification based anomaly detection using inductive rules to characterize 

sequences occurring in normal data. In 2000, Dickerson at al. [49] developed the Fuzzy 

Intrusion Recognition Engine (FIRE) using fuzzy logic that process the network data and 

generate fuzzy sets for every observed feature and then the fuzzy sets are used to detect network 

attacks. In 2003, Ramadas et al. [50] presented the anomalous network traffic detection with self 

organizing maps using DNS and HTTP services that the neurons are trained with normal 

network traffic then real time network data is fed to the trained neurons, if the distance of the 

incoming network traffic is more than a preset threshold then it raises an alarm.  



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

16 

 

3. BASIC PROBLEMS OF LEARNING 

3.1. Handling Noise in Dataset 

Noise in the dataset is considered to be one of the most challenging issues in data mining. This 

is because the performance of the learning algorithms depends on the quality of dataset. The 

main idea of dealing with noisy data at the learning time is to avoid over-fitting the dataset. 

Noise handling can be carried out at different stages of rule induction and interpretation. The 

followings exhibit some typical noises being existed in the dataset. 

1) Missing attribute values: The simplest way for handling missing or unknown attribute 

value is to replace the missing attribute value with the most frequent attribute value in the 

dataset. Whereas, the most sophisticated way is to calculate the probability for attribute 

values and assign the probability value rather than the guessed value to each missing 

attribute value.  

2) Contradictory examples: The same examples appear more than once in the dataset with 

different class labels. Contradictory examples confuse the learning algorithms, so these 

examples should be avoided or labeled correctly before learning.   

3) Redundant examples: There often exist multiple copies of the same example in the 

dataset. Redundant examples are not a problem if they do not form contradictions, but 

this redundancy can change the decision trees produced by ID3 algorithm. For data 

mining, it’s better to remove redundancy by keeping only a unique example in the 

dataset. By doing so, it not only saves the space of storage in dataset but also speeds 

significantly up the learning process.  

4) Incomplete attribute problem: When the essential attributes of a problem are not used to 

describe in the dataset. Suppose to distinguish men from women based on the 

descriptions of a large group of people in terms of gender, height, weight, qualifications, 

and so on. The right attribute for men is “gender = male” and women is “gender = 

female”. If we cannot catch the right attribute, then the classification model will be more 

complex and less accurate.     

5) Misclassified examples: The examples in the dataset ware labeled with a wrong 

classification. 

3.2. Dealing with Continuous Attribute 

The goal of dealing with continuous attributes is to discretized the continuous attribute 

containing continuous values (i.e., real numbers or integers) into a number of intervals. The 

discretized intervals can be treated in a similar way to nominal values during learning and 

classification. It is very important for discretization of continuous attribute to find the right 

places to set up interval borders. The simplest technique is to place the interval borders of 

continuous attribute values between each adjacent pair of attribute values that are not classified 

into the same class. Suppose the pair of adjacent values on attribute Ai are Ai1 and Ai2, “A = 

(Ai1+Ai2)/2” can be taken as an interval border. The information gain technique adopted in ID3 

algorithm is another very efficient technique to find the most informative border to split the 

values of the continuous attribute. The maximum information gain is always considered for a 

cut point (the midpoint) between the values taken by two attribute values of different classes. 

Each value of the formula “A = (Ai +Ai+1)/2” where i = 1,…,n-1 is a possible cut point, if Ai and 

Ai+1 have been taken by different class values in the dataset. The purpose of employing 

information gain is to check each of the possible cut points and find the best split point. In C4.5 

algorithm, each of the possible cut points is not the midpoint between the two nearest values, 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

17 

 

rather than the greatest value in the entire dataset that does not exceed the midpoint. The naïve 

Bayesian classifier also uses for discretization of continuous attribute values by constructing a 

probability curve for each class in the dataset. When the curves for every class have been 

constructed, interval borders are placed on each of those points where the leading curves are 

different from its two sides. A few other methods such as equal distance division, grouping, k-

nearest neighbors, and fuzzy borders are also applied to the continuous attributes for 

discretization. 

3.3. Input Attribute Selection from Dataset 

Effective input attribute selection from dataset before learning is very important, because 

irrelevant and redundant attributes of dataset may lead to complex classification model as well 

as reduce the classification accuracy [29]-[36]. In complex classification domains, input 

attributes of dataset may contain false correlations, which hamper the classification process. 

Some attributes in the dataset may be redundant, because the information they add is contained 

in other attributes. Also, some extra attributes can increase the computational time, and can have 

impact on the classification accuracy. Input attributes selection using data mining involves the 

selection of a subset of attributes d from a total of D original attributes of dataset, based on a 

given optimization principle that improves the performance of classifier. Finding a useful 

attribute subset is a form of search. Ideally, attribute selection methods search through the 

subsets of attributes, and try to find the best ones among the completing 2N candidate subsets 

according to some evaluation function. 

4. PROPOSED HYBRID ALGORITHM 

4.1. Proposed Learning Algorithm 

Given a training data D = {t1,…,tn} where ti = {ti1,…,tih} and the training data D contains the 

following attributes {A1, A2,…,An} and each attribute Ai contains the following attribute values 

{Ai1, Ai2,…,Aih}. The attribute values can be discrete or continuous. Also the training data D 

contains a set of classes C = {C1, C2,…,Cm}. Each example in the training data D has a 

particular class Cj. The algorithm first searches for the multiple copies of the same example in 

the training data D, if found then keeps only one unique example in the training data D (suppose 

all attribute values of two examples are equal then the examples are similar). Then the algorithm 

discreties the continuous attributes in the training data D by finding each adjacent pair of 

continuous attribute values that are not classified into the same class value for that continuous 

attribute. Next the algorithm calculates the prior P(Cj) and conditional P(Aij|Cj) probabilities in 

the training data D. The prior probability P(Cj) for each class is estimated by counting how 

often each class occurs in the training data D. For each attribute Ai the number of occurrences of 

each attribute value Aij can be counted to determine P(Ai). Similarly, the conditional probability 

P(Aij|Cj) for each attribute values Aij can be estimated by counting how often each attribute 

value occurs in the class in the training data D. Then the algorithm classifies all the examples in 

the training data D with these prior P(Cj) and conditional P(Aij|Cj) probabilities. For classifying 

the examples, the prior and conditional probabilities are used to make the prediction. This is 

done by combining the effects of the different attribute values from that example. Suppose the 

example ei has independent attribute values {Ai1, Ai2,…,Aip}, we know P(Aik | Cj), for each class 

Cj and attribute Aik. We then estimate P(ei | Cj) by     

    P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj)                      (7)  

To classify the example, the algorithm estimates the likelihood that ei is in each class. The 

probability that ei is in a class is the product of the conditional probabilities for each attribute 

value with prior probability for that class. The posterior probability P(Cj | ei) is then found for 

each class and the example classifies with the highest posterior probability for that example. 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

18 

 

After classifying all the training examples, the class value for each example in training data D 

updates with Maximum Likelihood (ML) of posterior probability P(Cj|ei). 

    Cj = Ci→ PML(Cj|ei).              (8) 

Then again the algorithm calculates the prior P(Cj) and conditional P(Aij|Cj) probabilities using 

updated class values in the training data D, and again classifies all the examples of training data 

using these probabilities. If any of the training example is misclassified then the algorithm 

calculates the information gain for each attributes {A1, A2,…,An} in the training data D.  

  Info(D) = ∑
=









−

m

j

jj

D

DCfreq

D

DCfreq

1

2
||

),(
log

||

),(
                           (9)   

  Info(T) = )(inf
||

||

1

i

n

i

i To
T

T
∑

=

                         (10) 

  Information Gain (Ai) = Info(D)-Info(T)                   (11) 

And chooses one of the best attributes Ai among the attributes {A1, A2,…,An} from the training 

data D with highest information gain value, Then split the training data D into sub-datasets {D1, 

D2,…,Dn} depending on the chosen attribute values of Ai. After the algorithm estimates the prior 

and conditional probabilities for each sub-dataset Di = {D1, D2,…,Dn} and classifies the 

examples of each sub-dataset Di using their respective probabilities. If any example of any sub-

dataset Di is misclassified then the algorithm calculates the information gain of attributes for 

that sub-dataset Di, and chooses the best attribute Ai with maximum information gain value from 

sub-dataset Di, and split the sub-dataset Di into sub-sub-datasets Dij. Then again calculates the 

prior and conditional probabilities for each sub-sub-dataset Dij, and also classifies the examples 

of sub-sub-datasets using their respective probabilities. The algorithm will continue this process 

until all the examples of sub/sub-sub-datasets are correctly classified. When the algorithm 

correctly classifies all the examples then the prior and conditional probabilities for each datasets 

are preserved for future classification of unseen examples. The main procedure of proposed 

algorithm is described as follows. 

Algorithm   

Input: Training Data, D 

Output: Adaptive Intrusion Detection Model, AIDM 

Procedure:  

Step 1: Search the multiple copies of same example in D, if found then keeps only one unique 

example in D. 

Step 2: For each continuous attributes in D find the each adjacent pair of continuous attribute 

values that are not classified into the same class value for that continuous attribute 

Step 3: Calculate the prior probabilities P(Cj) and conditional probabilities P(Aij|Cj) in D. 

Step 4: Classify all the training examples using these prior and conditional probabilities, P(ei | 

Cj) = P(Cj) ∏k=1→p P(Aij | Cj). 

Step 5: Update the class value for each example in D with Maximum Likelihood (ML) of 

posterior probability, P(Cj|ei); Cj = Ci→ PML(Cj|ei). 

Step 6: Recalculate the prior P(Cj) and conditional P(Aij|Cj) probabilities using updated class 

values in D. 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

19 

 

Step 7: Again classify all training examples in D using updated probability values. 

Step 8: If any training examples in D is misclassified then calculate the information gain for 

each attributes Ai = {A1, A2,…,An} in D using equation (11). 

Step 9: Choose the best attribute Ai from D with the maximum information gain value. 

Step 10: Split dataset D into sub-datasets {D1, D2,…,Dn} depending on the attribute values of Ai. 

Step 11: Calculate the prior P(Cj) and conditional P(Aij|Cj) probabilities of each sub-dataset Di. 

Step 12: Classify the examples of each sub-dataset Di with their respective prior and conditional 

probabilities. 

Step 13: If any example of any sub-dataset Di is misclassified then again calculate the 

information gain of attributes for that sub-dataset Di, and choose one of the best attribute Ai with 

maximum information gain, then split the sub-dataset Di into sub-sub-datasets Dij. Then again 

calculate the probabilities for each sub-sub-dataset Dij. Also classify the examples in sub-sub-

datasets using their respective probabilities. 

Step 14: Continue this process until all the examples are correctly classified. 

Step 15: Preserved all the prior and conditional probabilities for each dataset for future 

classification of unseen examples. 

5. EXPERIMENTAL ANALYSIS 

5.1. KDD Cup 1999 Dataset 

The KDD cup 1999 dataset was used in the 3rd International Knowledge Discovery and Data 

Mining Tools Competition for building a network intrusion detector, a predictive model capable 

of distinguishing between intrusions and normal connections [37]. In 1998, DARPA intrusion 

detection evaluation program, a simulated environment was set up to acquire raw TCP/IP dump 

data for a local-area network (LAN) by the MIT Lincoln Lab to compare the performance of 

various intrusion detection methods. It was operated like a real environment, but being blasted 

with multiple intrusion attacks and received much attention in the research community of 

adaptive intrusion detection. The KDD99 dataset contest uses a version of DARPA98 dataset. In 

KDD99 dataset, each example represents attribute values of a class in the network data flow, 

and each class is labelled either normal or attack. The classes in KDD99 dataset can be 

categorized into five main classes (one normal class and four main intrusion classes: probe, 

DOS, U2R, and R2L). 

1) Normal connections are generated by simulated daily user behaviour such as downloading 

files, visiting web pages. 

2) Denial of Service (DoS) attack causes the computing power or memory of a victim machine 

too busy or too full to handle legitimate requests. DoS attacks are classified based on the 

services that an attacker renders unavailable to legitimate users like apache2, land, mail bomb, 

back, etc. 

3) Remote to User (R2L) is an attack that a remote user gains access of a local user/account by 

sending packets to a machine over a network communication, which include send-mail, and 

Xlock.   

4) User to Root (U2R) is an attack that an intruder begins with the access of a normal user 

account and then becomes a root-user by exploiting various vulnerabilities of the system. Most 

common exploits of U2R attacks are regular buffer-overflows, load-module, Fd-format, and 

Ffb-config.   



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

20 

 

5) Probing (Probe) is an attack that scans a network to gather information or find known 

vulnerabilities. An intruder with a map of machines and services that are available on a network 

can use the information to look for exploits. 

In KDD99 dataset these four attacks (DoS, U2R, R2L, and probe) are divided into 22 different 

attacks that tabulated in Table 2.  

Table 2.  Different Types of attacks in KDD99 Dataset. 

4 Main Attack Classes 22 Attacks Classes 

Denial of Service (DoS) back, land, neptune, pod, smurt, teardrop 

Remote to User (R2L) 
ftp_write, guess_passwd, imap, multihop, phf, spy, 

warezclient, warezmaster 

User to Root (U2R) buffer_overflow, perl, loadmodule, rootkit 

Probing ipsweep, nmap, portsweep, satan 

There are total 41 input attributes in KDD99 dataset for each network connection that have 

either discrete or continuous values and divided into three groups. The first group of attributes is 

the basic features of network connection, which include the duration, prototype, service, number 

of bytes from source IP addresses or from destination IP addresses, and some flags in TCP 

connections. The second group of attributes in KDD99 is composed of the content features of 

network connections and the third group is composed of the statistical features that are 

computed either by a time window or a window of certain kind of connections. The list of the 

input attributes in KDD99 dataset for each network connections is shown in the Table 3. 

Table 3.  Input attributes in KDD99 Dataset. 

No Input Attribute Type No Input Attribute Type 

1 Duration Con. 22 is_guest_login Dis. 

2 protocol_type Dis. 23 Count Con. 

3 Service Dis. 24 srv_count Con. 

4 Flag Dis. 25 serror_rate Con. 

5 src_bytes Con. 26 srv_serror_rate Con. 

6 dst_bytes Con. 27 rerror_rate Con. 

7 Land Dis. 28 srv_rerror_rate Con. 

8 wrong_fragment Con. 29 same_srv_rate Con. 

9 Urgent Con. 30 diff_srv_rate Con. 

10 Hot Con. 31 srv_diff_host_rate Con. 

11 num_failed_logins Con. 32 dst_host_count Con. 

12 logged_in Dis. 33 dst_host_srv_count Con. 

13 num_compromised Con. 34 dst_host_same_srv_rate Con. 

14 root_shell Con. 35 dst_host_diff_srv_rate Con. 

15 su_attempted Con. 36 dst_host_same_src_port_rate Con. 

16 num_root Con. 37 dst_host_srv_diff_host_rate Con. 

17 num_file_creations Con. 38 dst_host_serror_rate Con. 

18 num_shells Con. 39 dst_host_srv_serror_rate Con. 

19 num_access_files Con. 40 dst_host_rerror_rate Con. 

20 num_outbound_cmds Con. 41 dst_host_srv_rerror_rate Con. 

21 is_host_login Dis. - - - 

 

 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

21 

 

Table 4 shows the number of examples in 10% training and testing data of KDD99 dataset.  

Table 4.  Number of training and testing examples in KDD99 Dataset. 

Attack Types Training Examples Testing Examples 

Normal 97277 60592 

Denial of Service 391458 237594 

Remote to User 1126 8606 

User to Root 52 70 

Probing 4107 4166 

Total Examples 494020 311028 

 

5.2. Experimental Analysis 

In order to evaluate the performance of proposed algorithm for network intrusion detection, we 

performed 5-class classification using KDD99 intrusion detection benchmark dataset. All 

experiments were performed using an Intel Core 2 Duo Processor 2.0 GHz processor (2 MB 

Cache, 800 MHz FSB) with 1 GB of RAM. The results of the comparison of proposed 

algorithm with ID3 and with naive Bayesian classifier are in Table 5 and Table 6.   

Table 5.  Comparison of the results using 41 attributes. 

Method Normal Probe DOS U2R R2L 

Proposed Algorithm (DR %) 99.72 99.25 99.75 99.20 99.26 

Proposed Algorithm (FP %) 0.06 0.39 0.04 0.11 6.81 

Naïve Bayesian (DR %) 99.27 99.11 99.69 64.00 99.11 

Naïve Bayesian (FP %) 0.08 0.45 0.04 0.14 8.02 

ID3 (DR %) 99.63 97.85 99.51 49.21 92.75 

ID3 (FP %) 0.10 0.55 0.04 0.14 10.03 

Table 6.  Comparison of the results using 19 attributes. 

Method Normal Probe DOS U2R R2L 

Proposed Algorithm (DR %) 99.84 99.75 99.76 99.47 99.35 

Proposed Algorithm (FP %) 0.05 0.28 0.03 0.10 6.22 

Naïve Bayesian (DR %) 99.65 99.35 99.71 64.84 99.15 

Naïve Bayesian (FP %) 0.05 0.32 0.04 0.12 6.87 

ID3 (DR %) 99.71 98.22 99.63 86.11 97.79 

ID3 (FP %) 0.06 0.51 0.04 0.12 7.34 

We tested the performance of proposed algorithm using the reduced dataset of 12 attributes and 

17 attributes in KDD99 dataset, which increase the detection rate for intrusion classes that are 

summarized in Table 7.  

Table 7.  Performance of proposed algorithm using reduced dataset. 

Class Value 12 Attributes 17 Attributes 

Normal 99.98 99.95 

Probe 99.92 99.93 

DoS 99.99 99.97 

U2R 99,38 99.46 

R2L 99.55 99.69 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

22 

 

6. CONCLUSIONS AND FUTURE WORKS 

This paper introduced a new hybrid learning algorithm for adaptive network intrusion detection 

using naive Bayesian classifier and ID3 algorithm, which analyzes the large volume of network 

data and considers the complex properties of attack behaviours to improve the performance of 

detection speed and detection accuracy. In this paper we have concentrated on the development 

of the performance of naïve Bayesian classifier and ID3 algorithm. It has been successfully 

tested that this hybrid algorithm minimized false positives, as well as maximize balance 

detection rates on the 5 classes of KDD99 benchmark dataset. The attacks of KDD99 dataset 

detected with 99% accuracy using proposed algorithm. The future work focus on improving the 

false positives of remote to user (R2L) attack and apply this detection model into real world 

IDS.  

ACKNOWLEDGEMENTS 

Support for this research received from ERIC Laboratory, University Lumière Lyon 2 – France, 

and Department of Computer Science and Engineering, Jahangirnagar University, Bangladesh.  

REFERENCES 

[1] Jackson, T., Levine, J., Grizzard, J., Owen, and H., “An investigation of a compromised host on 

a honeynet being used to increase the security of a large enterprise network,” IEEE workshop on 

Information Assurance and Security, IEEE, 2004. 

[2] D. Y. Yeung, and Y. X. Ding, “Host-based intrusion detection using dynamic and static 

behavioral models,” Pattern Recognition, 36, 2003, pp. 229-243.   

[3] X. Xu, and T. Xie, “A reinforcement learning approach for host-based intrusion detection using 

sequences of system calls,” In Proc. of International Conference on Intelligent Computing, 

Lecture Notes in Computer Science, LNCS 3644, 2005, pp. 995-1003. 

[4] Krasser, S., Grizzard, J., Owen, H., and Levine. J., “The use of honeynets to increase computer 

network security and user awareness,” Journal of Security Education, vol. 1, 2005, pp. 23-37. 

[5] Shon T., Seo J., and Moon J., “SVM approach with a genetic algorithm for network intrusion 

detection,” in Proc. of 20th International Symposium on Computer and Information Sciences 

(ISCIS 2005), Berlin: Springer-Verlag, 2005, pp. 224-233. 

[6] X. Xu, X.N. Wang, “Adaptive network intrusion detection method based on PCA and support 

vector machines,” Lecture Notes in Artificial Intelligence (ADMA 2005), LNAI 3584, 2005, pp. 

696-703. 

[7] Martin Roesch, “SNORT: The open source network intrusion system,” Official web page of 

Snort at http://www.snort.org/ 

[8] L. C. Wuu, C. H. Hung, and S. F. Chen, “Building intrusion pattern miner for sonrt network 

intrusion detection system,” Journal of Systems and Software, vol. 80, Issue 10, 2007, pp. 1699-

1715. 

[9] Lazarevic, A., Ertoz, L., Kumar, V., Ozgur,. A., Srivastava, and J., “A comparative study of 

anomaly detection schemes in network intrusion detection,” In Proc. of the SIAM Conference on 

Data Mining, 2003. 

[10] Sebastiaan Tesink, “Improving intrusion detection system through machine learning,” Technical 

Report, Series no. 07-02, ILK Research Group, Tilburg University, March, 2007. 

[11] Barbara, Daniel, Couto, Julia, Jajodia, Sushil, Popyack, Leonard, Wu, and Ningning, “ADAM: 

Detecting intrusion by data mining,” IEEE Workshop on Information Assurance and Security, 

West Point, New York, June 5-6, 2001. 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

23 

 

[12] Lee W., “A data mining and CIDF based approach for detecting novel and distributed 

intrusions,” Recent Advances in Intrusion Detection, 3
rd

 International Workshop, RAID 2000, 

Toulouse, France, October 2-4, 2000, Proc. Lecture Notes in Computer Science 1907 Springer, 

2000, pp. 49-65. 

[13] Lee W., Stolfo S., and Mok K., “Adaptive Intrusion Detection: A Data Mining Approach,” 

Artificial Intelligence Review, 14(6), December 2000, pp. 533-567. 

[14] Stolfo J., Fan W., Lee W., Prodromidis A., and Chan P.K., “Cost-based modeling and evaluation 

for data mining with application to fraud and intrusion detection,” DARPA Information 

Survivability Conference, 2000. 

[15] N.B. Amor, S. Benferhat, and Z. Elouedi, “Naïve Bayes vs. decision trees in intrusion detection 

systems,” In Proc. of 2004 ACM Symposium on Applied Computing, 2004, pp. 420-424. 

[16] Mukkamala S., Janoski G., and Sung A.H., “Intrusion detection using neural networks and 

support vector machines,” In Proc. of the IEEE International Joint Conference on Neural 

Networks, 2002, pp.1702-1707. 

[17] J. Luo, and S.M. Bridges, “Mining fuzzy association rules and fuzzy frequency episodes for 

intrusion detection,” International Journal of Intelligent Systems, John Wiley & Sons, vol. 15, 

no. 8, 2000, pp. 687-703. 

[18] YU Yan, and Huang Hao, “An ensemble approach to intrusion detection based on improved 

multi-objective genetic algorithm,” Journal of Software, vol. 18, no. 6, June 2007, pp. 1369-

1378. 

[19] Karen Scarfone, and Peter Mell, “Guide to intrusion detection and prevention systems (IDPS),” 

National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, NIST Special 

Publication 800-94, February, 2007. 

[20] Wasniowski R., “Multi-sensor agent-based intrusion detection system,” In Proc. of the 2
nd

 

Annual Conference on Information Security, Kennesaw, Georgia, 2005, pp. 100-103. 

[21] Diego Zamboni, “Using internal sensors for computer intrusion detection,” Ph.D. dissertation, 

Purdue University, 2001. 

[22] T. Bass, “Intrusion detection systems and multi-sensor data fusion,” Communications of the 

ACM, 43(4), 2000, pp. 99-105. 

[23] F. Provost, and T. Fawcett, “Robust classification for imprecise environment,” Machine 

Learning, vol. 42/3, 2001, pp. 203-231. 

[24] M. Joshi, V. Kumar, and R. Agarwal, “Evaluating boosting algorithms to classify rare classes: 

Comparison and Improvements,” In Proc. of the 1
st
 IEEE conference on Data Mining, San Jose, 

CA, 2001. 

[25] M. Joshi, R. Agarwal, and V. Kumar, “Predicting rare classes: can boosting make any weak 

learner stronger?,” in Proc. of 8th ACM Conference ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, Edmonton, Canada, 2002. 

[26] G. Helmer, J.S.K. Wong, V. Honavar, and L. Miller, “Automated discovery of concise predictive 

rules for intrusion detection,” Journal of Systems and Software, vol. 60, no. 3, 2002, pp. 165-

175. 

[27] R.C. Chen, and S.P. Chen, “Intrusion detection using a hybrid support vector machine based on 

entropy and TF-IDF,” International Journal of Innovative Computing, Information, and Control 

(IJICIC), vol. 4, no. 2, 2008, pp. 413-424. 

[28] R. Agarwal, and M.V. Joshi, “PNrule: a new framework for learning classifier models in data 

mining (a case-study in network intrusion detection),” Proceedings of 1
st
 SIAM Conference on 

Data Mining, 2001.  



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

24 

 

[29] Radtke PVW, Sabourin R, and Wong T, “Intelligent feature extraction for ensemble of 

classifiers,” In Proc. of  8
th

 International Conference on Document Analysis and Recognition 

(ICDAR 2005), Seoul: IEEE Computer Society, 2005, pp. 866-870. 

[30] R. Rifkin, A. Klautau, “In defense of one-vs-all classification,” Journal of Machine Learning 

Research, 5, 2004, pp. 143-151. 

[31] Chebrolu S., Abraham A., and Thomas J.P., “Feature deduction and ensemble design of 

intrusion detection systems,” Computer & Security, 24(4), 2004, pp. 295-307. 

[32] Tsymbal A., Puuronen S., Patterson D.W., “Ensemble feature selection with the simple Bayesian 

classification,” Information Fusion, 4(2), 2003, pp. 87-100. 

[33] Sung A.H., and Mukkamala S., “Identifying important features for intrusion detection using 

support vector machines and neural networks,” In Proc. of International Symposium on 

Applications and the Internet (SAINT 2003), 2003, pp. 209-217. 

[34] Oliveira LS, Sabourin R, Bortolozzi RF, and Suen CY, “Feature selection using multi-objective 

genetic algorithms for handwritten digit recognition,” In Proc. of 16
th

 International Conference 

on Pattern Recognition (ICPR 2002), Quebec: IEEE Computer Society, 2002, pp. 568-571. 

[35] Mukkamala S., and Sung A.H., “Identifying key features for intrusion detection using neural 

networks,” In Proc. of the ICCC International Conference on Computer Communications, 2002. 

[36] Lee WK, and Stolfo SJ, “A framework for constructing features and models for intrusion 

detection systems,” ACM Transactions on Information and System Security, 3(4), 2000, pp. 227-

261. 

[37] The KDD Archive. KDD99 cup dataset, 1999. 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 

[38] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed Analysis of the KDD CUP 99 

Data Set,” Submitted to Second IEEE Symposium on Computational Intelligence for Security 

and Defense Applications (CISDA) 2009. 

[39] J. McHugh, “Testing intrusion detection systems: a critique of the 1998 and 1999 darpa intrusion 

detection system evaluations as performed by Lincoln laboratory,” ACM Transactions on 

Information and System Security, vol. 3. Np. 4, 2000, pp. 262-294. 

[40] James P. Anderson, “Computer security threat monitoring and surveillance,” Technical Report 

98-17, James P. Anderson Co., Fort Washington, Pennsylvania, USA, April 1980. 

[41] Dorothy E. Denning, “An intrusion detection model,” IEEE Transaction on Software 

Engineering, SE-13(2), 1987, pp. 222-232. 

[42] Dorothy E. Denning, and P.G. Neumann “Requirement and model for IDES- A real-time 

intrusion detection system,” Computer Science Laboratory, SRI International, Menlo Park, CA 

94025-3493, Technical Report # 83F83-01-00, 1985. 

[43] S.E. Smaha, and Haystack, “An intrusion detection system,” in Proc. of the IEEE Fourth 

Aerospace Computer Security Applications Conference, Orlando, FL, 1988, pp. 37-44. 

[44] S. Forrest, S.A. Hofmeyr, A. Somayaji, T.A. Longstaff, “A sense of self for Unix processes,” in 

Proc. of the IEEE Symposium on Research in Security and Privacy, Oakland, CA, USA, 1996, 

pp. 120-128. 

[45] A. Valdes, K. Skinner, “Adaptive model-based monitoring for cyber attack detection,” in Recent 

Advances in Intrusion Detection Toulouse, France, 2000, pp. 80-92. 

[46] C. Kruegel, D. Mutz, W. Robertson, F. Valeur, “Bayesian event classification for intrusion 

detection,” in Proc. of the 19th Annual Computer Security Applications Conference, Las Vegas, 

NV, 2003. 



International Journal of Network Security & Its Applications (IJNSA), Volume 2, Number 2, April 2010 

 

 

25 

 

[47] M.L. Shyu, S.C. Chen, K. Sarinnapakorn, L. Chang, “A novel anomaly detection scheme based 

on principal component classifier,” in Proc. of the IEEE Foundations and New Directions of 

Data Mining Workshop, Melbourne, FL, USA, 2003, pp. 172-179. 

[48] W. Lee, S.J. Stolfo, “Data mining approaches for intrusion detection,” In Proc. of the 7
th

 

USENIX Security Symposium (SECURITY-98), Berkeley, CA, USA, 1998, pp. 79-94. 

[49] J.E. Dickerson, J.A. Dickerson, “Fuzzy network profiling for intrusion detection,” In Proc. of the 

19
th

 International Conference of the North American Fuzzy Information Processing Society 

(NAFIPS), Atlanta, GA, 2000, pp. 301-306. 

[50] M. Ramadas, S.O.B. Tjaden, “Detecting anomalous network traffic with self-organizing maps,” 

In Proc. of the 6th International Symposium on Recent Advances in Intrusion Detection, 

Pittsburgh, PA, USA, 2003, pp. 36-54. 

 

Authors 

Dewan Md. Farid is currently a research fellow at ERIC Laboratory, University 

Lumière Lyon 2 - France. He obtained his B.Sc. Engineering in Computer Science 

and Engineering from Asian University of Bangladesh in 2003 and Master of 

Science in Computer Science and Engineering from United International University, 

Bangladesh in 2004. He is pursuing Ph.D. at Department of Computer Science and 

Engineering, Jahangirnagar University, Bangladesh. He is a faculty member in the 

Department of Computer Science and Engineering, United International University, 

Bangladesh. He has published nine international papers including one journal in the 

field of data mining, machine learning, and intrusion detection. 

  

Nouria Harbi is a member of research staff ERIC Laboratory, University Lumière 

Lyon 2 - France. She received her master degree in computer science and Ph.D. 

from INSA Lyon - France. She then joined the laboratory ISEOR, where she worked 

on information systems. She is currently working on the security of decisional 

information system and modelling data warehouse. 

 

Mohammad Zahidur Rahma is currently a Professor at Department of Computer 

Science and Engineering, Jahangirnager University, Banglasesh. He obtained his 

B.Sc. Engineering in Electrical and Electronics from Bangladesh University of 

Engineering and Technology in 1986 and his M.Sc. Engineering in Computer 

Science and Engineering from the same institute in 1989. He obtained his Ph.D. 

degree in Computer Science and Information Technology from University of 

Malaya in 2001. He is a co-author of a book on E-commerce published from 

Malaysia. His current research includes the development of a secure distributed 

computing environment and e-commerce.  

 

 

 

 

 
 

   


