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ABSTRACT 
 
Anomaly-based Intrusion Detection Systems (IDS) have gained increased popularity over time. There are 
many proposed anomaly-based systems using different Machine Learning (ML) algorithms and techniques, 
however there is no standard benchmark to compare them based on quantifiable measures. In this paper, 
we propose a benchmark that measures both accuracy and performance to produce objective metrics that 
can be used in the evaluation of each algorithm implementation. We then use this benchmark to compare 
accuracy as well as the performance of four different Anomaly-based IDS solutions based on various ML 
algorithms. The algorithms include Naive Bayes, Support Vector Machines, Neural Networks, and K-means 
Clustering. The benchmark evaluation is performed on the popular NSL-KDD dataset. The experimental 
results show the differences in accuracy and performance between these Anomaly-based IDS solutions on 
the dataset. The results also demonstrate how this benchmark can be used to create useful metrics for such 
comparisons. 
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1. INTRODUCTION 
 
Cyber security attacks are the most profitable they have ever been. In ransomware attacks alone, 
more than five billion dollars were lost in 2017, a 15,000% increase from 2015 [1]. Equifax, one 
of the three credit bureaus in the United States, lost the personal data for at least 145 million 
Americans, with more than 209,000 credit card numbers also lost [2]. As more and more data 
becomes Internet-facing, more lax and underfunded security systems are being exposed. 
Vulnerabilities in network defenses, inadequate security policies, and lack of cybersecurity 
education mean these adversaries have multiple avenues to attack most networks. By connecting 
to the Internet, any network is taking on the risk of exposing itself to infiltration by nefarious 
actors. Malware like ransomware is hard to defend against, as newer iterations are released 
constantly, resulting in "zero-day" exploits that standard anti-viruses are not ready to catch [3]. 
 
An Intrusion Detection System (IDS) is a system that monitors network traffic and flags potential 
intrusions by adversarial actors. There are two ways that an IDS can detect these intrusions, by 
using signatures or by detecting anomalies. Signature-based systems compare network traffic to 
the "signatures" of recognized attacks, if a pattern lines up with one of these signatures, it is 
flagged as an attack. These systems are familiar to most users, they are anti-viruses that scan 
systems and look for known threats. Signature detection accuracy is reliably high on known 
attacks, however they can only detect attacks after they have been discovered. With the current 
Internet landscape, catching zero-day exploits is a priority and it is not reasonable to wait until an 
attack signature has been discovered and uploaded [3]. Anomaly-based systems, however, use 
Machine Learning (ML) to classify network traffic as either normal or anomalous. Anomaly-
based IDSs are trained on labeled network data and learn patterns in the data to enable them to 
classify new novel data. They focus on learning "normal" patterns, and everything that is not 
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recognized is anomalous. This allows the classifiers to identify new attacks, since they flag 
anything abnormal [4]. 
 
In an anomaly-based system, a classifier is trained that can read input data and determine a label, 
in this case normal or anomalous. This classifier is trained using a dataset that is similar to what it 
will be monitoring, and this dataset must contain both normal and anomalous data. This allows 
the classifier to recognize patterns in the data, and with enough examples it can classify novel 
data based on what it learned in training. The strength of the classifier is tested by getting its 
accuracy on a testing dataset, which should look similar to the training set but contain new data. 
Different algorithms approach this in unique ways, however the base concepts of training and 
classification are the same [5]. 
 
The primary advantage of anomaly-based IDSs is that, trained correctly, they should be able to 
recognize never-before-seen attacks (zero-days) as they happen. The problem is there is a lot less 
confidence in their labels, since they are essentially guessing from patterns in the data. If the 
training set is not sufficient, or the underlying classifier is implemented incorrectly, the results 
can be severely unreliable [6]. Another issue is the vast selection of algorithms makes it hard to 
determine which is actually the most appropriate to use. 
 
There are myriad papers about different algorithms and their success in anomaly-based IDSs. 
However, each paper trains and tests their algorithm differently. Different papers will use their 
own datasets, and if they do use the same dataset they often use different subsets as the training 
and testing sets. This makes comparisons meaningless, the accuracy of each could be explained 
by factors outside of the algorithms implementation itself (such as the difficulty of the test set) 
[5]. 
 
Along with the inconsistencies in datasets, there are also no uniform metrics being used. While 
most papers will try to emphasize the âAIJaccuracyâAI of their algorithm, this word could mean 
different things depending on the method. Some papers describe the accuracy on a small test set, 
or the average accuracy across many test sets and on specific attacks, and some even describe the 
accuracy as the percentage correct when classifying the training set itself [7, 8, 9, 10]. Along with 
these issues, a singular accuracy score is not enough to determine the strength of an algorithm, 
particularly of this nature. It is important to see a confusion matrix, since we need to know if it is 
more likely to have false negatives than false positives, or to see the ratio of true positives to true 
negatives, and to calculate other metrics [11]. Accuracy based on attack type is crucial as well, 
since a classifier may get one hundred percent accuracy with one attack but completely fail with 
another [11]. 
 
The goal of this work is to address the above issues by creating a singular benchmark that will 
serve as a basis to compare different algorithms. By creating a benchmark that trains and tests on 
the same data, and collects the same metrics, this should ensure that each algorithm can be 
compared objectively and provide meaningful results. The benchmark should be consistent, and 
capture useful information about each algorithm. It should also be extensible, and benchmarking 
new algorithms should be straightforward and easily allow for more future comparisons. To 
demonstrate this, four different ML algorithms are benchmarked on the NSL-KDD dataset, a 
large dataset used in the evaluation of anomaly-based IDSs. 
 
The remainder of this paper is organized as follows: Previous Work contains a survey of related 
work in anomaly-based IDS research. Materials and Methods include information about the 
dataset, algorithms and proposed work for the benchmark. Results and Discussion describes the 
observations of the benchmark. Finally, the Conclusion is a summary of the findings in this work. 
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2. PREVIOUS WORK 
 
The impetus for this paper comes from a survey on current machine learning algorithms used in 
anomaly-based IDSs [5]. This survey gives an overview of each of the common algorithms and 
cites several papers that implement each. For future work, the authors pointed out that comparing 
these algorithms methodically is not possible right now, as “If one were to compare the accuracy 
of several ML/DM methods, those methods should be trained on exactly the same training data 
and tested on exactly the same testing data. Unfortunately, even in the studies that used the same 
data set (e.g., KDD 1999), when they compared their results with the best methods from the KDD 
Cup (and usually claimed their results were better), they did so in an imperfect fashion–they used 
a subset of the KDD data set, but not necessarily the same subset that the other method used. 
Therefore, the accuracy of these results is not comparable” [5]. 
 
There are several other surveys that are relevant to this paper. A survey by Dhanabal and 
Shantharajah [12] implements several algorithms on the NSL-KDD dataset, however the focus of 
that survey was testing the strength of the dataset, not the algorithms. The authors used WEKA to 
test three different classifiers on the dataset and noted how well the dataset performed. They 
found that using all forty-one features was not ideal for training and classification, however they 
stated that it was a clear improvement over KDD’99 [12]. 
 
The survey by Garcia-Teodoro et al. [4] raises similar concerns about the ability to benchmark 
and assess anomaly IDS algorithms. The authors surveyed common algorithms and pointed out 
the issues with comparing their efficacy. The authors note that a primary issue in benchmarking is 
the lack of an effective test bed. They reiterated common issues with KDD’99, and mentioned the 
incredible difficulty to create and share a modern dataset of similar size [4]. 
 
Shiravi et al. [6] set out to address the issue of the lack of datasets in network intrusion detection 
research. They state that current data sets for testing are kept secret for privacy concerns, or are 
out of date or poorly made. They proposed a set of guidelines to ensure that datasets used in 
testing are valid, and also created a method to generate different types of traffic that fell under 
these guidelines [6]. 
 
Damopoulos et al. [13] recognized the importance of IDSs for mobile devices and tailored 
profiles for each user in order to create an effective anomaly-based IDS for misuse. They 
benchmarked several algorithms on a dataset of iPhone activity that they constructed in-house 
and recorded their results. The authors found that they could detect misuse with a high degree of 
accuracy. They also gathered several useful metrics for each algorithm used in their mobile IDS. 
Their primary focus was creating an IDS that would work with their dataset and targeted misuse 
specifically, however this paper is proposing a benchmark that can be used in future research 
[13]. 
 
From these surveys and research, we were able to find papers that proposed implementations for 
specific algorithms in anomaly-based IDS solutions. There are many published research papers in 
this area, but we selected strong papers that were clear about their implementation on NSL-KDD 
or KDD’99, and recreated them for the experiment. We chose one paper to represent each of the 
most common algorithms to demonstrate the benchmark. Background on the specific algorithms 
implemented is provided in the next section. 
 
Mukherjee and Sharma [10] implement Naive Bayes on NSL-KDD and use feature selection 
algorithms to reduce the number of input features. This simplifies the model and makes it more 
understandable, and they posit it does not reduce the accuracy. Using the Feature-Vitality Based 
Reduction Method, they reduced the features to twenty- five. The authors use confusion matrices 
and accuracy to demonstrate the performance of their classifier, which they claim has ninety-
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eight percent accuracy on the testing set. Crucially, they only used a subset of the NSL-KDD 
training and testing sets [10], while this benchmark will use the entire dataset. 
 
Novikov et al. [9] use several neural networks to create an anomaly-based IDS on the KDD’99 
dataset. Although they used the KDD’99 dataset rather than NSL-KDD, they preprocessed the 
data in a similar fashion to reduce duplicate records. The authors trained the classifiers in 
different ways, focusing on subsets of attacks at first and then eventually testing on unseen 
attacks. For data preprocessing, they removed duplicate rows and rebalanced the attacks, making 
the data more like NSL-KDD. They found that both the Multi-layer Perceptron and Radial Basis 
Function network performed well under these conditions, and compared their results to the 
previous cup winners [9]. 
 
For clustering, Kumar et al. [14] use the entire set of input features for NSL-KDD, however 
numbers are normalized to a range of zero to one. Using a technique called Simple k-means 
clustering with four clusters, the centroids of each cluster were calculated. The authors used a 
twenty percent subset of the training and testing sets from NSL-KDD, and found that the clusters 
accurately grouped records into attacks and normal behavior [14]. 
 
Calix and Sankaran [15] used feature reduction and several different kernels to experiment with 
support vector machines (SVMs) on the NSL-KDD dataset. The authors found that using a 
reduced feature set of nineteen features gathered from the information gain feature ranking 
algorithm negligibly reduced accuracy. Feature reduction for SVMs is critical because the SVM 
algorithm often requires a large memory overhead [16]. They also found that out of all the 
kernels, Radial Basis Function (RBF) had the highest accuracy and was the quickest, however 
they only used a subset of NSL-KDD for training and testing [15]. 
 
There are much more research work that describes new ways to create anomaly-based IDS 
solutions [17]. However, the aforementioned research papers are strong candidates and represent 
a broad spectrum of different types of ML algorithms used in such IDS systems. 
 

3. MATERIALS AND METHODS 
 
In order to create a benchmark, a uniform dataset for training and testing is necessary. As 
mentioned earlier, one of the biggest obstacles to comparing algorithms is the inconsistency in 
data. A single dataset must be used, and it needs to be a dataset that accurately represents real-
world implementations [4, 5]. 
 
The KDD Cup 99 dataset (KDD’99) is a widely used dataset for benchmarking IDS solutions 
[18]. It contains network traffic generated by the MIT Lincoln Lab in 1998 and was used in the 
1999 KDD Competition as a dataset for building an IDS [19]. The data was generated in 1998 
and is unlikely that training an IDS on this data would be useful with modern attacks. However, it 
accurately represents the scale and attack variety that is necessary for a strong IDS. With its size 
and reputation, it is an almost ideal dataset for a benchmark. According to Lazarevic et al. [11] 
and McHugh [19] the dataset contains several issues that must be addressed, such as many 
duplicate rows and skewed proportions for attacks. The size of the dataset also means that a 
subset of the training and testing dataset must be used; incorporating all of the data is too 
impractical for current hardware systems [20]. 
 
The NSL-KDD dataset is a subset of the KDD’99 dataset [21]. It was created to solve some of the 
inherent issues with the former dataset, primarily by drastically decreasing the number of 
duplicate rows. The NSL-KDD dataset is significantly smaller than KDD’99, which means that it 
is not necessary to partition the data into smaller testing and training sets as they are already small 
enough to be handled by most classifiers. This is essential for the issue this paper seeks to 
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resolve, since we can use the entire training and testing sets for NSL-KDD, ensuring that the 
classifiers are seeing the same data [20]. The NSL-KDD dataset has become a standard of its own 
since its release, and has been used in many papers in place of the former dataset [21]. 
 
The NSL-KDD dataset is still not an accurate real-world dataset, since it is a subset of the 
KDD’99 data. Any classifier trained on this dataset and then used in a real network is unlikely to 
perform well. This does not change the fact that it is still an effective benchmark for IDSs. Any 
anomaly-based IDS should be trained on network traffic from the network in which it will be 
used, since every network is going to have different patterns [22]. Also, the NSL-KDD dataset 
still has similar data to a real network and classifiers will face the same issues (different attack 
types, never-before-seen attacks), and is the most complete dataset of this type publicly available, 
which is why it is so commonly used [23]. 
 
This paper will use the NSL-KDD dataset, however the benchmark would work with any dataset 
that conforms to these rules. There are newer datasets containing more modern attacks, such as 
the UNSW-NB15 dataset generated for the Australian Centre for CyberSecurity [24]. This dataset 
contains nine attack types and has a training set with one hundred seventy-five thousand records 
and a testing set with eighty- two thousand records. There is also the HTTP CSIC dataset 
generated for the CSIC (Spanish Research National Council) in 2010 as a response to some of the 
criticisms of KDD’99 [25]. The dataset contains HTTP requests, thirty-six thousand of which are 
normal requests and more than twenty-five thousand that are anomalous [25]. Both of these 
datasets may be more applicable for certain use cases, however they are not as ubiquitous as NSL-
KDD. For the demonstration of the benchmark, NSL-KDD is ideal since there are many papers 
that describe their implementations on this dataset specifically. 
 

THE DATASET 
 
NSL-KDD is a large dataset of network traffic, and is already partitioned into a training set and 
testing set. There are forty-one attributes describing network traffic. Each record is also labeled 
with an attack that falls into one of five categories, the number for each is recorded in Table 1 
[26]. 
 

1. Normal: Normal network traffic is anything that is not classified as an attack. This is one 
of two labels in a binary classification (normal/anomalous). 

2. Probe: Probing attacks involve some sort of surveillance or method to gain information 
about a network, particularly for circumventing security controls. For example, port 
scanning. Attacks in the dataset include: ipsweep, mscan, nmap, portsweep, saint, satan. 

3. DoS: Denial-of-Service attacks involve exhausting the resources of a network, often 
through aflood of meaningless requests. Attacks in the dataset include: apache, back, 
land, mailbomb, Neptune, pod, processtable, smurf, teardrop, upstorm. 

4. User to Root (U2R): These attacks involve an adversary with a normal user account 
somehow 
gaining root privileges by exploiting vulnerabilities. Attacks in the dataset include: 
buffer_overflow, load module, perl, rootkit, ps, sqlattack, xterm. 

5. Remote to Local (R2L): These attacks consist of a remote attacker somehow getting access 
to a local machine on the network. Attacks in the dataset include: ftp_write, 
guess_password, imap, multihop, named, phf, send mail, snmpgetattack, snmpguess, 
warezmaster, worm, xlock, xsnoop, http-tunnel. 

 

Dataset Normal Probe DoS U2R R2L 
Training 67343 11656 45927 52 995 

Testing 9710 2421 7458 200 2754 
 

Table 1: Number of records in the NSL-KDD dataset, split between the five categories of attacks. 
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3.1 ANOMALY DETECTION BACKGROUND 
 
While there are many different machine learning algorithms used in IDSs, this paper will 
implement four in order to demonstrate the benchmark. This is not an exhaustive list of 
algorithms, and simply provides a brief introduction to each concept. 
 

NAIVE BAYES 
 
Naive Bayes classifiers are a subset of Bayesian classifiers, which are statistical classifiers that 
rely on Bayes Theorem [10]. The classifier simply picks the label with the highest probability, 
given the input features. The naive portion of the classifier is that it assumes a strong 
independence between attributes. Essentially it assumes the probabilities for each of the input 
features are independent of each other. Intuitively this is not usually the case, however in practice 
the assumption greatly reduces computation without sacrificing performance [5, 10]. 
 
NEURAL NETWORKS 
 
Neural networks are classifiers inspired by the brain. They use connected layers of neurons that 
“fire” when thresholds are met. There is usually an input layer (of features) and an output layer 
(the result/classification), with one or more hidden layers of neurons between them. Neural 
networks are trained in cycles, sometimes referred to as “epochs”, where each neuron’s activation 
function is tuned to increase accuracy. Neural networks are often considered “black boxes”, since 
the individual neurons are tuned without any input from the user [27]. 
 
K-MEANS CLUSTERING 
 
K-means clustering is a technique that clusters data points based on their similarity. It is an 
unsupervised learning technique, meaning the data does not have labels during training. There are 
many different techniques for clustering, but in k-means clustering a mean vector is calculated for 
each cluster [28]. The total number of clusters can be set beforehand, and the goal is to maximize 
the similarity between vectors inside each cluster, while minimizing similarities across clusters 
[28]. 
 

SUPPORT VECTOR MACHINES 
 
Support Vector Machines (SVMs) are vector-space classifiers that aim to find a hyperplane to 
separate classes, using support vectors. In the vector-space model, each training record is 
interpreted as an n-dimensional vector, where n is the number of input features. The support 
vectors are training vectors close to the border between the classes and are used to create a 
hyperplane that maximizes the distance between the training vectors and itself [16]. 
 
The surface itself is calculated using some sort of kernel function, which defines the shape of the 
plane. The most common kernels are linear, polynomial, and Radial Basis Function (RBF). 
Tuning the parameters of SVMs is critical, and bad performance for this classifier can often be 
explained by poor parameter choices [16]. 
 

3.2 PROPOSED WORK 
 
This work focuses on benchmarking IDS approaches for use with mobile devices. A new and 
common use case for IDS solutions is an implementation on smartphones. An IDS running in this 
environment must have high performance. More metrics are necessary, since not only will the 
algorithm need to be accurate, it must also be efficient [13]. The benchmark itself will capture 
information for both of these aspects of the IDS systems. 
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In order to create the benchmark, it is necessary to gather the metrics that are valuable and 
comparable between algorithms. The next step is to find and implement strong research work that 
created anomaly-based IDS solutions for NSL-KDD. Once the metrics and algorithms are 
gathered, the benchmark is developed and each algorithm is tested with it. 
 
The crucial objective of this benchmark is to gather metrics regarding accuracy that can be used 
to compare different algorithms. Accuracy over the entire testing dataset is the most used metric 
in IDS proposals. Along with this, confusion matrices are commonly gathered and can be used to 
extract even more metrics, such as Positive Predicted Value (Precision) and Recall [5]. Confusion 
matrices contain four elements: True Positives (TP) which are rows correctly classified as 
anomalous in this dataset, True Negatives (TN) are correctly classified as normal, and False 
Positives (FP) and False Negatives (FN), the former being incorrectly classified as anomalous 
and the latter classified incorrectly as normal. Precision is T P =(T P + F P ), which is the 
proportion of correctly classified anomalous data to the total amount of data classified as 
anomalous. This is different from accuracy since it does not count the number correct or incorrect 
for normal data classification. The recall  is T P =(T P + F N ), which is the ratio of correctly 
classified anomalous data to the total number of anomalous rows in the dataset [5]. Each of these 
metrics gives a different perspective on the strength of the algorithm. 
 
Along with these general metrics, we can gather accuracy for each of the five categories of 
attacks. This paints a more complete picture of the performance of the algorithms, and shows 
where potential weak points are in each. These metrics must be gathered using the exact same set 
of testing data. This ensures each algorithm is on an equal playing field and no external factors 
affect their performance. For the accuracy metrics, statistics were gathered over fifty passes on 
the testing data. As most of the algorithms are deterministic [5], only neural networks should see 
any variance between passes. 
 
The secondary focus of the benchmark involves time and power consumption. The CPU time and 
power consumption of an algorithm are important to know when using these algorithms in 
resource-starved devices. For each of the standard actions (data preprocessing, training, testing, 
classifying), the benchmark captures the average CPU time and power consumption over one 
hundred passes. While CPU time will differ between devices, the proportional time should be the 
same. Power consumption is difficult to track since it is subject to many external factors. We 
relied on Operating System’s power utilities to measure power consumption. 
 

4. RESULTS AND DISCUSSION 
 
The benchmark is conducted on an Asus Chromebook C300. It has an Intel Celeron N2830 2.16 
GHz Processor and four gigabytes of RAM [29]. In comparison, a Samsung Galaxy S7 has a 
Snapdragon 820 processor which has a similar clock rate and cache size [30] along with four 
gigabytes of RAM and no dedicated GPU. While the iPhone X is faster with its A11 bionic 
chipset and dedicated GPU [31], the Chromebook is similar in power to the vast majority of 
mobile phones currently in use. While IDS systems written specifically for mobile should be 
more efficient since they can use native code and be customized for the exact architecture of the 
device, the relative speed of each algorithm should be consistent. 
 
The benchmark is written in Python and uses pandas [32] for data manipulation and scikit-learn 
[33] for machine learning algorithm implementations. Time is tracked using Python’s internal 
library to track CPU time, and power consumption was tracked using Ubuntu’s reported battery 
charge levels. The Chromebook itself is running the benchmark in Ubuntu 14.04 [34]. Each 
algorithm was implemented as closely as possible to their respective papers, and the source code 
is available online [35]. 
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ACCURACY 
 
The accuracy metrics were gathered on the test set, with the average accuracy over fifty passes 
recorded. All but the neural network are deterministic, so any variance inaccuracy is most likely 
the result of floating point precision issues [36]. From Table 2 we can see that the overall 
accuracy is very similar between the algorithms. The neural network performed the strongest with 
almost 78% accuracy, and k-means performed the worst with 74% accuracy. The categorical 
accuracy is interesting, since the only category the neural network performed best in was R2L, 
which is where every algorithm failed. Probe and DoS had high accuracy for most algorithms, 
while U2R and R2L were much more difficult to detect. K-means performed the best on normal, 
with 99% accuracy. 
 

Algorithm Accuracy 
(Total) 

Probe DoS U2R R2L Normal 

Naive Bayes 0.753626 0.827757 0.775275 0.645 0.028655 0.926364 
Neural 

Network 0.778019 0.861016 0.774462 0.5302 0.132055 0.948373 
SVM 0.769064 0.938868 0.760794 0.39 0.107843 0.928424 

K-means 0.740367 0.741875 0.687318 0.5601 0.012338 0.990937 
Table 2: Accuracy results from testing. The mean accuracy was measured over 50 passes, however the only 

algorithm with variance is the neural network. 
 

The confusion matrices in Table 3 tell a similar story, the neural network had the highest TP score 
with the highest TP + TN score. K-means had the highest TN score but struggled with TP, 
meaning it had a lot of false negatives. Clearly k-means leans towards classifying most behavior 
as normal, whereas the rest of the algorithms had a similar FP measure. From the confusion 
matrices we can derive the metrics discussed earlier, precision and recall. These are commonly 
used in the evaluation of ML algorithms, and from the results we see that K-means actually has 
more than 98% precision since it has very few false positives. The neural network has the second 
highest with more than 94% precision, due to its strong TP number. For recall, though, k-means 
performs poorly with barely 55% recall while the rest are between 62% and 65% recall. What this 
shows is that k-means are the least likely to flag normal data as anomalous, its precision is high 
and positive predictions can be trusted. On the other hand, its recall is the lowest which means it 
will let more attacks through without catching them compared to the other algorithms. 
 

Algorithm True Positives True Negatives False Positives False Negatives 
Naive Bayes 7994 8995 715 4839 

Neural Network 8330 9209 501 4503 
SVM 8322 9015 695 4511 

K-means 7068 9622 88 5765 
Table 3: Confusion matrices recorded from experiments. Mean numbers are collected over 50 passes, 

however only the neural network had any variance. 
 

POWER 
 
The benchmark also collects metrics regarding power consumption, both in CPU time and 
straight battery use. The benchmark collected the mean CPU time over one hundred cycles for 
each function of the classifier, and a single battery charge loss for the entire duration of each test. 
In Figure 1 we see that there is a vast gap in training time between the algorithms. There is almost 
a 2000% increase in training time between Naive Bayes and SVM, while the neural network and 
k-means are about the same duration and twice as fast as SVM. 
 
We see a similar story with classifying the testing dataset Table 4. Naive Bayes is clearly the 
fastest here, however for data preprocessing SVM is actually faster, and when classifying one row 
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it is almost as fast. These are both of the algorithms that were implemented using heavy feature 
reduction, which is a potential reason for these big speed increases. 
 

Algorithm 
Preprocessing 

Training Data (s) 
Training Classifier 

(s) 
Preprocessing Testing 

Data (s) 
Classifying Test Dataset 

(s) 
Classifying One Row 

(s) 
Naive Bayes 1.81429 1.808617 0.362088 0.348027 1.251e  4 

Neural Network 3.34136 18.01759 0.642061 0.511775 2.758e  4 
SVM 1.67410 36.65068 0.353161 0.463680 1.323e  4 

K-means 3.29604 18.40322 2.50727 0.725168 5.788e  4 

Table 4: Average CPU time over 100 passes for each of the main actions in loading and training the 
classifiers. 

BATTERY 
 
When looking at battery consumption for each of these activities in Figure 2, we see that they 
more or less line up with the CPU time to train. K-means consumes the most battery on 
preprocessing the test dataset and classifying it, which is also where it is slowest compared to the 
other algorithms. SVM clearly uses a lot of battery to train the classifier, which is unsurprising 
given the training time. The battery metrics are not reliable enough to draw conclusions from, 
since the battery consumption is hard to track and subject to so many external factors. However, 
these results highlight a concern that must be addressed for mobile devices. If the battery 
consumption of an algorithm is too great, it is not a good candidate for use on mobile. From our 
results in this setting, it is clear that Naive Bayes creates the least battery drain. 
 

DISCUSSION 
 
The results of this benchmark paint an objective picture of the relative strengths of the above 
algorithm’s implementations on the NSL-KDD dataset. The neural network is clearly the most 
accurate on this data with 78% accuracy. However, if CPU time is a concern, the Naive Bayes 
implementation is magnitudes faster than the other algorithms, with some reduction in accuracy 
at 75%. K-means is unlikely to accidentally flag normal traffic as anomalous with 98% precision, 
however it has a much lower categorical accuracy than the other algorithms and a recall of only 
55%. 
 

 
 

Figure 1: Average training time with marked standard deviation for each algorithm, collected over 100 
passes. 
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Figure 2: Total battery consumption over 100 passes for each of the main actions in loading and training 

the classifiers. Classifying one row had negligible battery impact for each algorithm. 
 
Naive Bayes is by far the fastest algorithm. For data preprocessing and training, it only takes on 
average about 3.6 seconds, whereas k-means and the neural network take more than 21 seconds, 
and SVM takes over 38 seconds. Since it is only 3% less accurate than the best implementation, it 
appears to be the best choice for an anomaly-based IDS on a mobile device. A case can be made 
for the neural network, which is clearly slower for training but is less than a second slower for 
loading and testing the test dataset. In battery consumption, the differences are minimal outside of 
training. If training is infrequent, the boost in accuracy is potentially a good trade and makes the 
neural network the best candidate. 
 

5. CONCLUSIONS 
 
In this work, we developed and implemented a benchmark on a uniform dataset to evaluate 
accuracy as well as the performance of various Anomaly-based IDS solutions. This benchmark 
has the potential to provide objective quantitative judgments on different algorithms and their 
implementations. By using this strategy, it is possible to make informed decisions on the best 
possible algorithm for the situation. 
 
Based on our observations, we can conclude that for performance, Naive Bayes is significantly 
faster at training than all of the algorithms, resulting in a much lower total CPU usage and battery 
consumption. The neural network had the highest accuracy, and is the best contender when 
performance is less of an issue. While specific use cases may value metrics differently, this 
benchmark provides definitive numbers that can be used to compare these algorithms. 
 
In the results of our experiment, we saw the strengths and weaknesses of each algorithm we 
implemented for use in anomaly-based IDS solution. As mentioned earlier, there are many other 
algorithms and countless implementations available, but by using this benchmark it is possible to 
compare each of them and find the one that is truly the best suited for use in a given setting. 
 
A goal of this work is to make this benchmark a standard method for comparing algorithms in the 
future. New algorithms can use this benchmark and compare their results with the ones in this 
work, which will add to a growing set of comparisons. Any proposed algorithms that were 
implemented on NSL-KDD can now be benchmarked and meaningful statistics can be generated. 
Future solutions that incorporate NSL-KDD can utilize this benchmark when generating their 
results as well, and they can compare their observations to the ones shown here. 
 
The source code for the benchmark and each algorithm implementation are available on GitHub 
[35], and it can be downloaded and adapted to any use case. Future work could include 
implementations of more ML algorithms for this benchmark. In addition, the methods used in this 
benchmark can be utilized to evaluate such ML algorithms in other applications in the future. 
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