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ABSTRACT 
 

Software systems that meet the stakeholders needs and expectations is the ultimate objective of the software 

provider. Software testing is a critical phase in the software development lifecycle that is used to evaluate 

the software. Tests can be written by the testers or the automatic test generators in many different ways and 

with different goals. Yet, there is a lack of well-defined guidelines or a methodology to direct the testers to 

write tests 

 

We want to understand how tests are written and why they may have been written that way. This work is a 

characterization study aimed at recognizing the factors that may have influenced the development of the 

test suite. We found that increasing the coverage of the test suites for applications with at least 500 test 

cases can make the test suites more costly. The correlation coeffieicent obtained was 0.543. The study also 

found that there is a positive correlation between the mutation score and the coverage score. 
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1. INTRODUCTION 
 

Software is an integral part in many of the devices and systems that our society uses today. 

Software testing is the most prevalent approach in the industry that is used to evaluate the 

software. Testing activities can cost half the labor required to develop a working program [10]. In 

a typical commercial development organization, the cost of providing quality software via 

appropriate debugging, testing, and verification activities can easily range from 50 to 75 percent 

of the total development cost [19]. 

 

Despite these obvious efforts, software testing is not effective as it should be [22]. There is a lack 

of a commonly accepted standard for software testing that hampers efforts to test software and 

evaluate the tests results. There is no generalized practice of software testing that is followed 

across the industries. There are many standards and many practice communities specific to the 

domains [14]. There is a need for a well defined underlying methodology that can guide testers. 

This is required to understand how an ideal test case should look like or what should be the focus 

of a test case in a given situation.To identify an effective test suite, it is important to measure its 

quality. There are studies that have provided empirical results supporting specific criteria as the 

best indicators of effectiveness. Test coverage is a promising metric to measure the test suites 

quality A coverage metric specifies which parts of program code should be executed (for 

example, all statements). Each coverage metric has varied criteria and therefore has specific 

requirements that a test suite should meet. When a test suite meets the requirements of coverage 
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metric, testers assume it is able to find more faults than a random test suite that does not meet the 

requirement [5]. The second metric is the mutation score. The ability of test suite to kill the 

generated mutants has been used to gauge the effectiveness of the test suite [7, 24]. 

 

Every tester may have an inherent style of his/her own in writing test cases. Given the wide 

variety of reasons why a test case might be written and also the different styles, one test suite may 

be better than the other. There is a need to characterize how real testers develop test suites to 

create them more systematically in the future. 

 

In this work, we characterize the test suites of existing open source applications to better 

understand how developers traditionally write test cases. In this research, we study the 

relationship trends between widespread metrics in the source code and test code of existing test 

suites. We consider 24 applications sourced from repositories like GitHub, SF100, 

ApacheCommons and SIR. The metrics we studied include execution time, mutation score, 

coverage score, complexity and size of the source code and the test suites. 

 

We learned that the test suite size was not much influenced by the complexity of the program. We 

found only a slight correlation of 0.116. Acceptably, the test suite execution time was not 

influenced much by the complexity of the program studied. Although, the test suite execution 

time can increase when the coverage is increased in bigger test suites (more than 500 tests). Both 

coverage and mutation scores were considered and compared. 

 

In summary, the main contributions of this thesis are as follows: 
 

• A comprehensive survey of previous studies that investigated the relationship between 

coverage, mutation score and effectiveness, other works that have done characterization 

type study for specific metrics.  
 

• Empirical evidence that demonstrates the relationship between different metrics of the 

source code and test code.  
 

• A discussion of the implications of these results for the testers, researchers and teachers 

 

2. TEST SUITE CHARACTERIZATION FRAMEWORK 
 

Here we explain the overall characterization study of our research. We study the software testing 

that is in practice and the need for a standard in this process. Then, the section describes the 

framework through which we aim to understand the testing process better. Finally, we discuss the 

metrics that will be measured and analyzed by the framework. 

 

For better testing, we need effective test suites that can test the system thoroughly. In order to 

improve or redesign the software testing process, we need to have a understanding about the 

process. In this study, we hope to understand how to build an effective test suite by analyzing 

various factors that can shape a test suite’s characteristics. We analyze the relationship trend 

between the program’s attributes and its test suite’s attributes. From this, we learn if there is a 

general test suite writing style across the targets and the domains of the open source world. 

Previous studies have characterized the software process or a software discipline as a whole [20] 

[30] or a specific software process [11] [34] [38]. In this work, we will determine how test suites 

vary between the case studies and discuss the relationship between the test suite and existing code 

based on a number of metrics. After we learn the characteristics, it is important to know why the 
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test suites might be written that way. The second part of our study focuses in understanding the 

factors that might have the driven the testers during the test suite development. 

 

The primary research interest here is to improve the test suite development process. We aim to 

achieve this through what we learn from the characterization framework. More specifically, we 

aim to help the future testers understand the testing process well. 

 

To achieve our research goals, first, we built a metrics profile of the software and its associated 

test suite of the selected applications as seen in Table 2. 

 

In order to see if there is a general test case writing style, we study the relationships between the 

metrics profiled in the combinations discussed below. In terms of test case cost, it can mainly 

depend on the executim time of the test case or the hardware cost or even the engineers’ salary 

[39]. In this paper, we account for the execution time of the test case for the cost and study the 

factors that can increase the same. We have studied execution time vs coverage to see if targeting 

high coverage scores can affect the execution time of the test suites. Similarly, we study 

execution time vs complexity to see if the test suite of a more complex code can take more time 

to execute the test suites. 

 

Test suite size grows in time. By studying the metrics in the fashion discussed here, we analyze 

the factors that can be potentially responsible for the size of the test suites during the development 

of the test suite. We have studied the relationship between Number of tests vs complexity to see if 

it can be an inherent nature of the testers to concentrate their test case writing effort on more 

complex code. Also, we explore Number of tests vs Coverage to understand if a high coverage 

target for the test suites can make them bigger in size. 

 

In the second part of research, we aim to identify the potential focus of the tester in the test suite 

development. Test suite adequacy is commonly measured by the mutation score and coverage 

score. With this research we try to understand if these factors have driven the testers in reality. By 

studying the relationship trend in coverage vs mutation score, we see if the testers have targeted 

high coverage scores to achieve effective test suites. Similarly, we have considered coverage vs 

complexity to analyze if highly complex code are covered more during testing. We have also 

studied Number of tests vs mutation score to analyze if more tests are written to achieve effective 

test suites. 

 

Analyzing such relationships between metrics can help us understand the kind of test suite can be 

developed given a high complex code and a standard coverage criteria. 

 

We have a number of challenges in the characterization study. Sourced from a variety of 

repositories and domains, test suite writers may have different motivations. For example, in the 

avionics or automotive industries, testers may be most concerned with reaching the required 

statement coverage levels [12]. On the other hand, testers working with Quality analysis teams 

may be more concerned with covering features that the stakeholders have requested and use 

frequently [35]. As we are analyzing existing open source programs, no knowledge of the tools or 

motivations of the test writers can be assumed. It can be difficult to interpret the motiveof 

different stakeholders involved during the test suite development. It is a challenge to come up 

with the general motivations or targets of the testers despite the domain differences. 
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Another challenge here is to choose the suitable set of research questions to answer our 

characterization level goal. It takes a lot of time to come up with the right questions that meets 

our characterization goal. Also, this study’s success largely depends on the selection of right tools 

and metrics for the analysis. It is important to evaluate the variety of coverage and mutation 

analysis tools available in the market to choose the tools that can best serve our goals. Metrics in  

this study are signals that can indicate a trend in the test suite writing practices. While we aim for 

lightweight metrics, we have to choose metrics that can provide insights about the test suites in 

the correlation analysis 

 

 
Figure 1: Test suite characterization framework 

 

3. EVALUATION 
 

Here we will explain the case studies, metrics, and evaluation techniques used in this study. 

 

3.1. CASE STUDY APPLICATIONS  
 

The selection criteria for the programs used was based on open source programs developed in 

Java, the existence of associated JUnit suites and the size of the applications. Applications were 

selected from different size ranges and also with varied sized test suites. 

 

Applications were selected from popular repositories including GitHub [1], SourceForge [2], and 

SIR [3], and SF100 [4]. The applications selected are listed in Table 1. The case study programs 

run across varied application domains. For example, Trove is a library that provides high speed 

regular and primitive collections for Java and hosted on SourceForge. Apache POI, is an open 

source API for manipulating Microsoft documents. 
 

The size range of the applications also varies. We have selected very large application such as 

Closure compiler with 52KLOC, which is the largest application used in the study. SF100 

application jniinchi is the smallest program used in our study with 783 LOC. Similarly, we have 

test suites ranging from 43KLOC in Closure to 108 lines in Diebierse. 

 

Cyclomatic complexities of our programs ranged from 1.29 in xisemele to the highest of 3.79 in 

tullibee [36]. Modules exceeding a CCN of 10 were split into smaller modules. Considering that, 
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our applications are not very complex, but there are various ranges of it. McCabe also proposed 

cyclomatic complexity as a measure to indicate the number of tests that will be required by the 

program [36]. One of our research question explores this concept to understand if the testers have 

an inherent nature to write more tests for complex code. 

 

20 of our case study applications as listed in Table 1 were considered for the coverage study due 

to environmental constraints and issues in other applications. We have applications 

 
 

Table 1: Case study applications and coverage scores 

 

with branch coverage scores ranging from 98% to as low as 2%. The Apache commons 

application commonslang had the highest branch coverage of 98% and a statement coverage of 

91%. The netweaver application had the lowest branch coverage of 2% and correpsondingly the 

test-LOC/source-LOC ratio in netweaver was very low, 0.07. Within the small range applications 

between 1KLOC - 1.5KLOC, the lavalamp application had the highest coverage of 96%. Among 

the moderate size applications, ranging from 2KLOC - 10KLOC, the commons-validator 

application had the highest coverage. The statement coverage of the commons-validator 

application was 83%. 
 

Similarly, 18 of our applications were considered for the coverage study due to the memory 

buffer constraints caused by the tool we used. The case study applications considered for the 

study are provided the mutation scores in the table 1. Those with no scores were due to memory 

constraints. Mutation scores range from 16% - 90%. The application that has the highest mutation 

score is the commons-io; the netweaver application has the lowest mutation score. 33% of our 

applications have a mutation score greater than 75%. 

 

3.2. LOC AND COMPLEXITY  
 

We have measured program and test attributes like size of the applications using Lines of Code 

(LOC) and the MCCabe’s cyclomatic complexity in the study. The cyclomatic complexity of a 

section of source code is the count of the number of linearly independent paths through the source 

code. In practice, McCabe’s Cyclomatic Complexity (CC) is a software complexity measured by 
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examining the software programs flow graph. CC is calculated as: CC = E −N + 2P where, E is 

the number of edges, N is the number of nodes, and P is the number of discrete connected 

components. 

 

We have used JavaNCSS to gather Non Commenting Source Statements (NCSS) and Cyclomatic 

Complexity Number (McCabe metric). JavaNCSS [13] is a simple command line utility which 

measures two standard source code metrics for the Java programming language. The metrics can 

be collected globally, for each class and/or for each function. The choice of JavaNCSS was made 

for two important reasons. First, it is a tool specific to Java and all our case study applications are 

limited to Java. Second, JavaNCSS measures logical lines of code. As JavaNCSS is a Java-

specific tool, it is possible for the tool to read java code along the logic and express logical lines 

of code. The counter gets incremented for a logic (for example, a package declaration, method 

declaration, label etc). Physical source lines of code can vary significantly with the coder’s style 

and the coding template followed. So it would be more apt to choose logical count (JavaNCSS) 

over physical count for our experiments which requires LOC metric. 

 

Code coverage measures the percentage of software that is exercised by testing process. It can be 

measured at various granularity like statement, branch level etc and is provided by the coverage 

tool. Coverage score is also considered as a measure to quantify the thoroughness of the white-

box testing. We intend to use codecover to measure the code coverage in our study. JaCoCo [16] 

is an open source coverage library for Java, which has been created by the EclEmma team. 

JaCoCo reports code coverage analysis (For example, line, branch, instruction coverage) from the 

bytecode. JaCoCo comes with Ant tasks to launch Java programs with execution recording and 

for creating coverage reports from the recorded data. Execution data can be collected and 

managed with the Jacoco’s coverage task. The standard ANT tasks to test applications in Java are 

junit or tests. To add coverage reports to these tasks, they are wrapped in the coverage task 

provided by JaCoCo. Reports in different formats are created with the report task in JaCoCo. 

 

3.3. MUTATION SCORE 
 

Mutation score is the relation between the number of mutants killed by the test set and the the 

total number of mutants. Mutation score ranges between 0 and 1. When the mutation score is 

higher, a test suite is considered to be more efficient in finding faults. In this study, we have used 

Major [23] mutation framework to fault seed our case study applications and thereby collect their 

mutation scores. The following components enable Major as fundamental research tool on 

mutation testing as well as efficient mutation analysis of large software systems.  
 

 
 

 

• An in-built compiler which aids the full fledged mutation analysis tools.  

• Mutation analyzer which runs the junit tests iteratively to provide mutation analysis 

outputs.  

• Domain specific language provides control to the user allowing to enable or disable 

mutation in specific parts of code. 
 

3.4. STATISTICAL ANALYSES 
 

p-value : We have used correlation analysis to measure the relationship between metrics in our 

study. The Pearson correlation coeffcient determines if, and to what extent, a linear relation exists 

between two variables. It is the most common measure of dependence between two variables. 
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Pearson correlation co-efficient (Pearson’s r) is obtained by dividing the co-variance of the two 

variables by the product of their standard deviations. 

 

Based on the co-efficient value obtained, the relationship between the two variables can be 

described as low, moderate or high. The Pearsons correlation is between -1 and 1. A value of 1 

implies that a linear equation describes the relationship between X and Y perfectly, with all data 

points lying on a line for which Y increases as X increases. A value of -1 implies that all data 

points lie on a line for which Y decreases as X increases. A value of 0 implies that there is no 

linear correlation between the variables. We have used the standard Guilford scale for verbal 

description; this scale describes correlation of under 0.4 as “low”, 0.4 to 0.7 as “moderate”, 0.7 to 

0.9 as “high” , and over 0.9 as “very high”. 
 
 
 

Table 1: Characteristics of the applications used in the study 
 

 
 
 

Kendall Tau : We have also calculated Rank correlation which is another form of correlation 

analysis between two variables. It differs from Pearson correlation by measuring a different type 

of association between two variables. Kendall’s correlation co-efficient is similar to the Pearson 

correlation but does not assume that the variables are linearly related or that they are normally 

distributed. Rather, it measures how well an arbitrary monotonic function could fit the data. The 

Kendall rank correlation checks for the dependence between two variables based on ordered 

element. A rank correlation coefficient (Kendall’s tau) measures the degree of similarity between 

two rankings, and can be used to assess the significance of the relation between them. The 

Kendall rank correlation checks for the dependence between two variables based on ordered 

elements. 

 

We have performed correlation analysis, rank correlation and linear regression using R [31]. R 

language is one of the most widely used languages for statistical software development and data 

analysis 
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4. RESULTS AND DISCUSSION  
 
Here we talk about the general experimental design followed to answer our research questions. In 

the next part, we discuss the results we have observed and discuss the answers to our research 

goals. 

  
 Figure 2: Number of tests compared to               Figure 3: Number of tests compared to branch for 

applications  branch coverage for all the applications          for applications with >500 tests 

 

4.1. EXPERIMENT DESIGN 
 

The study required us to select a variety open source applications in Java.  We have analyzed 

open source applications as listed in Table2.Then, the LOC(lines of code) and cyclomatic 

complexity(CCN) for each of the program on the source code and the associated test suite was 

calculated. Number of tests for an application and the average complexity measurements were 

collected using the package level options available in the JavaNCSS. Shell scripts were used to 

run the JavaNCSS tool to collect LOC and the    CCN on various levels of the source code and 

the test suites of all the programs. We generated mutants (faulty versions of the original subject 

programs) using Major, a tool for generating mutants for the Java programs. We used the Major’s 

compiler option ‘ALL’ to generate mutants. The attribute set to ‘ALL’ during compilation 

generates mutants   with all the mutant operators available with Major. Then, using a shell script; 

we ran every single test case on the mutant versions of all the programs and the outputs have   

been recorded. This helped us in calculating the mutation score in our research. We have 

measured the execution time of individual test cases by modifying the build file of the individual 

applications to print execution time summary.   Execution time of the entire     test suite of an 

application was gathered using the JUnit summary provided by running ant task for test. 

Coverage scores at the statement level and at the branch coverage were determined using a 

coverage tool called JaCoCo. The build files (build.xml) of the applications were modified to 

include the coverage tasks of JaCoCo. Finally, tests were run to collect the coverage report 

 

4.2. TEST SUITE WRITING STYLE IN THE OPEN SOURCE APPLICATIONS  
 

In this section, we aim to find if there is a traditional test suite development style in the open 

source industry. We plan to answer our research goals with the following questions: 
 

• Is the test suite size driven by complexity or coverage score of the source code? 

• What factors can influence the execution time of the test suite? 
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Figure2 illustrates the relationship between the test suite size (number of tests in the test suite) 

and the branch coverage for each program. The horizontal axis represents the number of tests 

while the vertical axis holds the branch coverage values. The Kendall coefficient obtained was 

0.357. The Pearson’s co-efficient value for this comparison is 0.241 indicating a positive but a 

low correlation between the coverage score and the number of test cases in the test suite. The line 

coverage demonstrates a trend similar to branch coverage. The correlation co-efficient achieved 

between the number of tests and line coverage was 0.202. The plots imply that both branch and 

line coverage havea slightly positive correlation and thus influence on the number of tests 

developed for an application. 

 

 
Figure 4: Number of tests compared to                                  Figure 5: Number of tests compared to         

complexity of the programs                                                                 Lines of Code 

 

However, we examined this relationship again by including the SF100 applications except for 

three applications (inspirento, diebierse and tullibee). The correlation value obtained from the 

Figure3 was 0.543 indicating a moderate correlation for the attributes under study. This can be 

due to the size of some of the test suites in the SF100 applications that ranged between 3 tests 

(diebierse) and 321 (inspirento) test cases. Hence in smaller applications with less than 500 

number of test cases, the coverage scores might not influence the number of tests or vice versa. 

Although in applications with >500 tests, increasing coverage might lead to bigger test suites. 

Hence in considerably bigger applications like apache commons, testers may have focused on 

increasing coverage which has made test suites grow in size. In order to analyze if bigger test 

suites can always provide higher coverage, we have to maintain the size of the application 

constant. To explore this is beyond the scope of our current study. 

 

To study the effect of complexity of the application on the test suite size, we have measured the 

Pearsons correlation for the comparison. Figure 4 illustrates the relationship between the size of 

the test suite and the complexity of the case study application. The horizontalaxis represents the 

number of tests and the vertical axis represents the average method- level complexity of the 

application. The coverage score vs the complexity demonstrated a low correlation with the 

correlation co-efficient of 0.116. The Kendall tau value determined for this comparison was 

0.241. We may say that the number of tests in a test suite is not strongly dictated by the 

complexity of the methods in an application. Even when we considered a subset of our case study 

applications, like the apache commons applications, we see that the number of tests does not 

grow significantly with the complexity of the code. The apache commons’ applications had a 
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cyclomatic complexity ranging from 2.52 to 3.31. We also tried the same comparison with 

applications ranging between 1KLOC-1.5KLOC and still obtained a very low correlation of 0.08. 

Rather, the size of the application was straightforward indicator of the size of the test suite it had. 

Figure5 indicates that bigger applications have greater number of tests.  The Pearson’s correlation 

co-efficient considering all our case study applications for this relationship was found to be as 

high as 0.6. The correlation reveals that the application’s size (lines of code) can drive the number 

of tests for it. 

 
Figure 6: Execution time of the test suites                           Figure 7: Execution time compared to the branch  

compared to the complexity of the programs                       coverage scores of the test suites 

 

The complexity of an application was found to have only a slightly positive correlation(0.116) in 

influencing the number of tests. The slight correlation is also likely to be caused by the 

application’s size that leads to higher number of tests. 

 

We studied the effect of coverage and complexity on execution time of the test suites using the 

Pearson’s and Kendall correlation. The Pearson’s correlation for the test execution time versus 

the complexity obtained was 0.0649 as seen in Figure 6. The Kendall tau value 0.0917 obtained 

was in a similar trend as of the Pearson’s co-efficient. This very low correlation is a likely 

consequence of our previous results (Number of tests vs complexity). When we compared 

number of tests and complexity, we inferred that complexity may not be an influential factor in 

the number of tests in an application. Hence, only a low correlation between the complexity of the 

source code and the execution time of the test suite was anticipated. This shows that the 

complexity of the application has not driven the execution time of the test suites in a significant 

way. 

 

Similarly, we expected a low correlation between the coverage score of an application versus the 

execution time of the test suite. The correlation coefficient obtained was 0.249. TheKendall tau 

obtained was 0.317. Although in the number of tests vs coverage comparison, we found a 

moderate correlation between the coverage and the number of tests in a subset of applications. 

We did a similar comparison between the execution time and the coverage of applications with 

atleast 500 tests. We found the correlation coefficient to be 0.588 as seen in Figure7.  Hence 

increasing the branch coverage in applications with more than   500 tests seem to increase the 

execution time of the test suites. 
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We infer that cyclomatic complexity has a very low correlation with the execution time. 

Complexity has not played a considerable role in increasing the test cost in terms of execution 

time. Whereas, coverage has a moderate correlation with the execution time. There was a 

significant increase in the execution time of the bigger test suites (more than 500 tests) with an 

increase in branch coverage. 
 
 

4.3. POTENTIAL TARGETS IN TEST SUITE DEVELOPMENT 
 

Here we aim to find the focus of the testers development by answering the following questions: 

 

• Is the highly complex code covered more? 

• Does the size of the test suite matter for its effectiveness? 

• Is high coverage targeted to achieve high effectiveness? 

 

 
Figure 8: Number of tests compared to                               Figure 9: Number of tests compared to mutation 

mutation score  for all the applications                                 score for applications with >500 tests 

 
 

 
Figure 10: Branch coverage compared to                           Figure 11: Statement coverage compared to 

mutation the mutation score  of the test suites                            the mutation scores of the test suites 
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One of our research goal here is to analyze if the effectiveness of a test suite is influenced by the 

size of the test suite. Graph 8 combines some of the data we collected to answer this question. In 

each sub figure, the horizontal axis indicates suite size while the vertical axis shows the range of 

the mutation scores determined. These mutation scores range from 16% to as high as 90%, 

yielding a correlation coefficient r of 0.182. The kendall tau value was 0.264. This indicates that 

there is a a low positive correlation between effectiveness and size for these applications. But 

when we have to consider that we have ignored the size of the application (LOC) during this 

comparison. We had case study applications ranging from 270 lines of code to 17KLOC. The low 

correlation obtained was of course due to the varied size range of the applications. 

 

As a secondary analysis, we segregated the applications according to the size. We combined 

applications ranging between 2KLOC-10KLOC and recalculated the correlation coefficient. The 

Pearson’s correlation co-efficient obtained was 0.798 as seen in the Table 9. In this analysis, we 

found a high correlation between the mutation scores and the number of tests for an application. 

Fittingly, the ratio of test line of code to source lines of code was as high as1.9 for the commonsio 

application which has the highest mutation score of 90% in this category. Similarly, we combined 

applications between 1KLOC to 1.5KLOC and obtained a high correlation co-efficient of 0.76. 

Similarly, the test-LOC/source- LOC ratio was 2.0 for xisemele. Xisemele application had the 

highest mutation score among the applications that ranged from 1k to 1.5KLOC in size. Also, 

netweaver which has a poor test-LOC/ souce-LOC ratio of 0.076 has a very low mutation score of 

16%. 

 
Figure 12: Branch coverage score compared to the complexity 

 

A very low positive correlation was found between the effectiveness and the number of tests 

when the size of the application and test suite were ignored. However, when we combined 

applications with a similar size range, our results suggested that, for Java programs, there is a 

high correlation between the effectiveness of a test suite and the number of test methods it 

contains. 
 

We compared coverage scores to the mutation scores to see if the tester’s have focused on 

coverage to achieve high effectiveness. Comparing the coverage with the mutation scores for our 

set of application is a reality-check to reports that support coverage scores as an effectiveness 

indicator. We implemented the Pearson correlation analysis between the mutation scores and 

branch coverage for our case study applications 10 11. The Pearson’s correlation computed to 

analyze this comparison was 0.574 for branch coverage and 0.474 for statement coverage. The 

Kendall correlation achieved was on the similar range (0.543), complimenting the results from 

the Pearson’s correlation. Hence we see that for our set of case study applications there is a 

moderate correlation between coverage and mutation scores when number of tests in the suite is 
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ignored. Although an overall positive correlation was achieved, we realized that applications that 

had a test suite with a greater branch coverage killed fewer mutants than test suites which had less 

coverage than that. For example, commonslang had a branch coverage of 98% and a mutation 

score of 75%. 

 

Jdom had a branch coverage of 86% and a mutation score of 77%, slightly greater than 

commonslang’s. The current positive correlation achieved may be due to the higher coverage 

scores of larger size test suites. It will be safe to assume coverage scores as effectiveness 

indicators after exploring the same correlation with test suite’s size being held constant. 

 

Our results suggest that, for many Java programs, varied in size, there is a moderate correlation 

between the effectiveness and the coverage of a test suite when the influence of test suite size is 

ignored. 

 

A comparison between coverage and complexity was done to see if it was the inherent nature of 

the testers to target coverage when the complexity is high. Figure6 illustrates the relationship 

between the coverage scores and the cyclomatic complexity of our case study applications. The 

horizontal axis represents complexity while the vertical axis holds the coverage values. The 

Pearson’s correlation coefficient determined for this comparison was 0.01 for branch coverage 

and 0.02 for the statement coverage. The Kendall tau value obtained was -0.04. Considering the 

Pearson’s, there is a very low correlation between the coverage and the complexity of the 

applications. This can be due to the range of complexities in the applications considered. The 

complexities were not wide spread, but ranged between 1.29 and 3.78. Analyzing this at the 

method level in the future can help us understand if testers have concentrated on covering code 

that were highly complex. 

 

A very low correlation was obtained when we compared the branch and statement scores and the 

complexity of our applications. A negative correlation was obtained from Kendall analysis. 

 

5. THREATS TO VALIDITY 
 
We have several threats to validity in our work. First, we have no contact with the testers of the 

applications used in the study. Thus, we are not aware of any domain specific goals with which 

the test suites might be written. We have characterized the test suites by studying applications of 

varied size and domain to find the relationship between thesource code and test suite attributes. 

The results can be different for the test suites developed for the closed source test suites where the 

tester’s motivation can be different. 

 

There may be equivalent mutants that may not actually introduce faults, but rather create an 

equivalent program given the feasible paths in the program. In this work, we assume that mutants 

may or may not be equivalent to the original program, given the tools we use and complexity 

involved in identifying the equivalent mutants. Thus, a mutation score of 100% may not be 

possible for all programs. 

 

The determination of the quality of software tests can be considered a subjective measurement. 

Although mutation score and coverage are two ways to measure test suite quality, both the 

metrics have been supported as well as disapproved as quality indicators by different studies [7] 

[18] [21] [24] [29]. However, we have considered mutation scores as our effectiveness indicator 

due to the nature of our study. 
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The tools used for coverage and mutation analysis also lead to a potential internal threat to 

validity. JaCoCo was used for all coverage analysis, and Major was used for mutation analysis. 

JaCoCo, a well-established coverage monitor for Java programs, is based on Emma, another 

standard tool for analyzing Java programs. Major is an experimentally verified and well tested 

tool. However, other tools can be used in future work to check the uniformity of the results 

obtained. 

 

In case of mutation analysis, we have modified the source code in two of our applications which 

faced a memory issue while running Major. There is a 64k byte-code size limit on Java methods 

and we got “code too large” error due to which we split the methods that faced this issue. The 

functionality of the method was not affected in any way. 
 

6. RELATED WORK 
 

In this section, we first discuss two closely related papers that have approached program and test 

suite metrics with similar research questions like ours. Following that, we discuss that have 

studied coverage scores and mutation scores of a test suite. Finally, we discuss related works that 

have analyzed test case writing attributes in general like annotations in Java. 

 

6.1   CHARACTERIZATION STYLE STUDIES 
 
Our study’s goals were partially influenced by a characterization type of work by Inozemtseva 

and Holmes (2014) [21]. Their study generated about 31,000 test suites for five systems of very 

different domains studied the correlation between the coverage and the effectiveness of test suites 

to be low or moderate when suite size is controlled. The study concludes that is not safe to 

consider coverage as a fault-finding indicator because the mutant effectiveness was not strongly 

related to coverage.  The study mainly explored the relationship of code coverage metric and the 

efficiency of the test suite when its size was ignored or held constant. Our work will neither agree 

nor disagree the coverage as a faultness indicator. Instead, we set out to find if predominantly 

practiced quality indicators like coverage have influenced testers while writing test cases. 

 

Another study by Namin and Andrews (2009) analyzed research questions that are similar to our 

work [29]. Their study focused on the relationship between test suite size, coverage and 

effectiveness. The study analysis primarily analyzed a relatively small set of C programs with a 

maximum NLOC of 513. The study did not find any linear relationship between the test suite 

size, coverage and effectiveness. However, size and coverage can independently influence the 

effectiveness of the suite.  Though our study accounts all the metrics used in this study, we do not 

intend to study if bigger test suites increase its effectiveness. One of our aims is to find if 

industrial test suites grow large with code size. We also use case study applications that are 

comparatively huge than this study from a variety of repositories. The work [The influence of size 

and coverage on test suite effectiveness] intended to study the relationship between test suite size, 

coverage and effectiveness. Whenever a test case gets added to the test suite, it makes the test 

suite bigger and it can increase the coverage too. The study sets out to find if the increased 

coverage on the bigger test suites or if size of suite directly increases the effectiveness of the 

suite. The analysis is primarily with relatively small C programs with a maximum NLOC of 513. 

The study did not find any linear relationship between the test suite size, coverage and 

effectiveness. However, size and coverage can independently influence the effectiveness of the 

suite.  Though our study accounts all the metrics used in this study, we do not intend to study if 

bigger test suites increase its effectiveness. One of our aim is to find if industrial test suites grow 
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large with code size. We also use case study applications that are comparatively huge than this 

study from a variety of repositories. 
 

6.2     DEBATES ON COVERAGE AND MUTATION SCORE AS QUALITY INDICATORS 
 

Measuring test suite quality is a major research area in software testing and it is a required study 

for automated testing to produce high quality suites. Most of the other related works to our 

characterization study investigated the link between attributes like coverage or mutation score and 

test suite effectiveness. First, we survey the works that have analyzed coverage score in various 

dimensions to explore it as a yardstick for test suite efficiency. 

 

Empirical studies conducted on a call center reporting system with 40+ million LOC revealed that 

there is a direct effect of code coverage and the post-release defects. Code with higher coverage 

tends to have fewer field defects making it a practical technique to measure test suite quality [27]. 

Industrial validation of test coverage quality was a straightforward study that compared coverage 

driven test suites with random test suites. Each coverage metric has varied criteria and therefore 

has specific requirements that a test suite should meet. When a test suite meets the requirements 

of coverage metric, testers assume it is able to find more faults than a random test suite that does 

not meet the requirement. Based on this assumption, coverage metrics are used to quantify the 

quality of a test suite. Coverage based test suites have detected more faults than random test 

suites. Studies have proved that attempting to achieve a coverage level close to 100 percent can 

benefit in additional fault detection [8]. Another study by Rothermel et provided empirical 

evidences for coverage as an efficiency metric in an indirect way. The study found that test suites 

reduced in size without compensating coverage were more effective than those that were reduced 

to the same size by randomly eliminating test cases [33]. While all these studies have investigated 

the positive relationship between the coverage score and the effectiveness, none of these studies 

have analyzed the coverage scores in a bottom-up way from the testers point of view. For 

example, one of our research question is to find if there is high coverage for more complex codes. 

We hope to find if coverage score has been a possible motivation for the testers and if so, how 

have they affected other characteristics like the execution time of the test suite. 

 

As coverage is considered as a technique to measure quality and also taking inputs from previous 

works, researchers have also studied on the type of coverage that can best predict the quality of 

the test suite. A study by Gopinath et al. reports the correlation between lightweight coverage 

criteria (statement, block, branch, and path coverage) and mutation kills for hundreds of Java 

programs, for the manually as well as automatically generated test suites [17]. For both original 

and generated suites, the study revealed that statement coverage is the best indicator for mutation 

kills and also a predictor of the test suite quality. A study’s results by Gligoric et al. suggested 

that branch coverage can be the best criteria to be considered while comparing test suites for their 

quality [15]. However non-branch coverage criteria can be simpler to measure and implement as 

all the criteria studied predicted mutation kills in a decent way. While we measure statement, 

branch and modified decision coverage for our test suites, our study focuses on analyzing if the 

coverage was a decisive factor to the testers in the test suite development rather than exploring 

the efficiency of different types of coverage. 

 

Contrasting to the studies discussed above which classified coverage score as an efficiency 

metric, a study criticized the use of coverage metric by the testers.  Marick, author of 4 coverage 

tools articulates that testers often give into the urge of satisfying the coverage required rather than 

actually analyzing what kind of testing design flaws they point to. While low coverage numbers 

are definitely not a good sign for the project, coverage numbers should only be used as a measure 
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to enhance the effort of the tester [26]. This study is aneye opener on how code coverage can be 

misused in the industry.  Our study provides a reverse engineered view of code coverage. We 

hope to discover how testers have weighed coverage while writing test cases. One of our research 

question is to find if complex code had high coverage score. With the increased fame of code 

coverage in project assessments, reviews and informal discussions, a survey of 17 coverage tools 

was studied and reported on various levels like language-support, platform-support provided by 

the tool, the tools reporting format, the overhead it can provide,etc.…[37].  Each tool has its pros 

and cons depending on its application domain.  Our study takesadvantage of the tools that provide 

coverage measurements (statement, branch and modified decision coverage) for the test suites 

studied. 

 

The second widely studied metric to gauge test suite effectiveness is Mutation score. In this 

section, we discuss previous works that have debated mutation score as an appropriate tool to 

produce faults in testing and also the link between mutation score and the test   suites 

effectiveness. First,we see how researches have proved mutation score as a valid substitute for 

real faults in software testing. The straightforward measure of test suite effectiveness (ability to 

detect faults) is fault detection.  Conversely testers may not have time to find projects big enough 

with real faults in it to detect the test suites quality. Researchers and testers have manually orhave 

automatically inserted faults to the program to produce a faulty version of the application for 

experiment sake. Generated mutants provide the researchers the opportunity to repeat the 

experiments and also the mutant volume can help enhancing the statistical proof of thel results 

[8]. A study proved that automatically generated mutants using standard mutation operators 

yields results that were similar to the real faults whereas hand seeded faults were harder to detect 

than the real faults [7]. The study also revealed that,  to use mutant score as a trust-  able 

replacement for the real faults, mutants must be generated using the commonly uses mutant 

operators. Another study that was conducted on five large open source projects with 375 real 

faults revealed that coupling effect exists between the real faults and the mutants. Though the 

number of faults coupled to a single fault were small when coverage was controlled. There were 

faults that were not coupled to the real faults which needed modifications to become equivalent to 

a real fault [24]. Fault-detecting ability is also considered one ofthe most direct measures of the 

effectiveness of test adequacy criteria. In our study, we use mutation score as an efficiency 

metric. We plan to analyze how factors like coverage might have motivated testers for an 

effective test suite development. 

 

Researchers have studied the role of mutation in test suites evaluation. The ability of test suite to 

kill the generated mutants has been used to gauge the effectiveness of the test suite.  A study the 

correlation between the coverage and the mutation score is studied with an open-source 

application (spojo) [9]. The study showed that there is a strong positive correlation between 

coverage and mutation score. The study’s case study applications ranged in size from 89 to 261 

non-commented lines of codes. Our study analyzed 24 open source applications which are used in 

practice and with LOC greater than that considered for this study. In another study [8], mutants’ 

validity as a predictor of the detection effectiveness of real faults was used as the primer to 

investigate questions regarding the relationships between fault detection, test suite size, and 

control/data flow coverage. The paper also proposes an initial strategy for organizations to 

determine the coverage level that will be required to attain acceptable detection rates.  Majority of 

the previous experimental results have not directly covered reports on determining the correlation 

between coverage score and mutation scores. However, results have proven the point that, fault 

detection of a software system is related with high coverage. In our study, weanalyze the direct 

correlation between the coverage and mutation score. 
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Overall much research in software code coverage and mutation score has been realized and also 

used in the industry. Through our research questions, we analyze the current test suites in practice 

to see what has motivated testers in reality and also how coverage and mutation score as decisive 

metrics have influenced other metrics. 
 

6.3    TEST CASE WRITING ATTRIBUTES 
 

Work has also been completed in analyzing the at- tributes and style in which test cases are 

written. This work includes how annotations are used to identify and describe test cases and how 

mocks and stubs are used to create independent test cases. 
 

One study, conducted by Rocha and Valente (2011) [32], studied 106 open source Java programs 

to investigate how annotations are used by the developers in the writing of test cases. They 

examined the most used annotations, the most annotated elements, and the “annotation hell” 

phenomenon. Annotation hell is a phenomenon where the source code becomes overloaded with 

annotations.  The study revealed that at least 10 of their case study applications had very high 

annotation density and thus suffered from annotation   hell. Compiler generated annotations were 

the most popular annotations observed, while @Test annotations were second most common. 

@Test annotations were used by the programmers to mark methods that will be dynamically 

tested through reflection. 
 

Another study in understanding the content of test cases focused on the use of mock objects and 

methods in industry [28]. The study directed a large empirical study that collected 6,000 Java 

software projects from Github and analyzed the source code of the projects to answer a number of 

questions about the popularity of mocking frameworks, the usage of mocking frameworks, and 

the mocked classes. The study discovered that mocking frameworks are used in a large portion, 

about 23%, of software projects that have test code, and they learned that testers use mocking 

primarily for simulating source code classes rather than simulating the library classes. 
 

Automatically created test suites versus manually generated suites are also a concern. 

Development environments also can make a difference. Kracht et al. [25] andAlkaoud and 

Walcott [6] discuss the differences observed in test suites in these scenarios. 
 

While the style of writing test cases is important, in this research, we examine potential factors 

that may have driven the testers to focus on particular areas of code, leading to the success and 

quality of the test suite given analytical methods. This allows us to determine where open-source 

test writers concentrate their testing efforts and, potentially, why. 
 

7. CONCLUSION AND FUTURE WORK 
 
In this paper, we measured and analyzed different attributes of open source applications and test 

suites. With the correlations achieved between the attributes, we have characterized traditional 

test suite development fashion in the open source world. We have also examined possible aspects 

that can influence the testers while developing the test suite. 

 

For this we have measured lines of code and complexity for all our programs and lines    of code, 

complexity, execution time, mutation score and coverage score of the test suites. Our research 

demonstrated that in applications that have greater than 500 tests, the test suite size can grow 

when the coverage is higher.  However, the test suite   size was not much influenced by the 

complexity of the program. We found only a slight correlation of 0.116.  Acceptably, the test 
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suite execution time was not influenced much   by the complexity of the program studied.  We do 

note that the test suite execution time can increase slightly when the coverage is increased in 

bigger test suites. 
 

When we researched about the potential focus of the testers while developing the test suites, we 

found that coverage can influence the effectiveness (mutation score) and vice versa. This 

relationship has been much debated and there are results that supports as well as contradicting 

this. However, for the set of applications we considered, there is a positive correlation indicating 

coverage can be indicator for the effectiveness, when we ignore the size of the test suite. 

However, test suites developed for the applications did not achieve coverage corresponding to the 

complexity of the program. The number of tests for an application can increase the effectiveness 

of the test suite, when the size of the application is taken into consideration. 
 

Our next step is to perform analysis on the programs and the corresponding test suites at the 

method level. Analyzing some of the relationships considered in this study at the method level 

can provide results in a different perspective. For example, we anticipated the test suite size 

coverage to be higher when the complexity is high.  However, only a low correlation coefficient 

was observed when we analyzed the coverage scores and the complexity of the code. Also, 

exploring all the possible relationships at the method level granularity can reveal the motivation 

behind the test suite developed (e.g, unit testing, integration testing etc). We will also need more 

empirical evidences for the results to be presented as a predictable trend in test suite development. 
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