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ABSTRACT 

 

Previous research has found autocorrelation domain as an appropriate domain for signal and noise 

separation. This paper discusses a simple and effective method for decreasing the effect of noise on the 

autocorrelation of the clean signal. This could later be used in extracting mel cepstral parameters for 

speech recognition. Two different methods are proposed to deal with the effect of error introduced by 

considering speech and noise completely uncorrelated. The basic approach deals with reducing the effect 

of noise via estimation and subtraction of its effect from the noisy speech signal autocorrelation. In order 

to improve this method, we consider inserting a speech/noise cross correlation term into the equations used 

for the estimation of clean speech autocorrelation, using an estimate of it, found through Kernel method. 

Alternatively, we used an estimate of the cross correlation term using an averaging approach. A further 

improvement was obtained through introduction of an overestimation parameter in the basic method. We 

tested our proposed methods on the Aurora 2 task. The Basic method has shown considerable improvement 

over the standard features and some other robust autocorrelation-based features. The proposed techniques 

have further increased the robustness of the basic autocorrelation-based method. 
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1. INTRODUCTION 

 
Mismatch between speech data collected in a laboratory environment, usually used in system 

training, with those collected in real environments is known to be among the major reasons for 

speech recognizer performance degradations. Various sources may cause such a mismatch 

including additive background noise, convolutional channel distortions, acoustic echo and 

different interfering signals. In this paper, additive background noise is our major concern. 

 

To improve the recognition performance in the presence of additive noise, several approaches 

have been proposed during the past few decades. While these methods can be very roughly 

classified into model-based and feature-based, we are more interested in feature-based robust 

speech recognition. 
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If one aims to appropriately handle mismatches in the features, he may either try to improve the 

signal quality before starting to extract recognition features or may try to develop features that are 

more robust to noise. The first approach is usually known as speech enhancement and is usually 

dealt with separately from the issue of speech recognition. There are many techniques proposed 

to solve the speech enhancement problem, most of which concentrate on the spectral domain. On 

the other hand, several approaches try to extract more noise-robust features for speech 

recognition. Such methods try to improve recognition performance in comparison to the rather 

standard features, Mel-Frequency Cepstral Coefficients (MFCC) that have shown good 

performance in clean-train/clean-test conditions, but deteriorated performance in the cases of 

mismatch. A very well-known and widely used enhancement method that deals with the signal 

spectrum is Spectral Subtraction (SS) [1]. Although spectral subtraction is simple in 

implementation, some levels of success have been observed from its use in combination with 

speech recognizers. However, this has been limited. Inherent errors in this approach, such as 

phase, magnitude and cross term errors [2], can lead to performance limitations in enhancement. 

However, when used in combination with speech recognition systems, some of these errors can 

be disregarded. Meanwhile some other enhancement methods have been able to achieve more 

improved performance when used in combination with speech recognizers. 

 

Plenty of research work has been dedicated to extraction of more robust features for speech 

recognition. One approach, that we are particularly interested in, and has shown some degrees of 

success in recent works, is the use of autocorrelation in the feature extraction process. 

Autocorrelation, among its different properties, is known to have a pole preserving property [3]. 

As an example, if the original signal is modeled by an all-pole sequence, the poles of the 

autocorrelation sequence will be the same as those of the original signal. Therefore, there exists a 

possibility of replacing features extracted from the original speech signal with those extracted 

from its autocorrelation sequence. Consequently, any effort resulting in an improved 

autocorrelation sequence in the presence of noise could also be helpful in finding more 

appropriate speech features. 

 

Autocorrelation domain is useful in the different parts related to speech. In Reference [4], 

different methods of separating voiced and unvoiced segments of a speech signals based on short 

time energy calculation, short time magnitude calculation, and zero crossing rate calculation on 

the basis of autocorrelation of different segments of speech signals is introduced. Pitch detection 

algorithms (PDA) for simple audio signals based on zero-cross rate (ZCR) and autocorrelation 

function (ACF) in Reference [5] is presented. 

 

Several methods have been reported in autocorrelation domain, leading to more robust sets of 

features. These methods may be divided into two groups: one dealing with the magnitude of the 

autocorrelation sequence whilst the other works on the phase of the autocorrelation sequence. 

 

Dealing with the magnitude of the autocorrelation sequence, which is our concern in this paper, 

among the most successful methods, we can name Differentiated Relative Autocorrelation 

Sequence Spectrum (DRASS) [6], Short-time Modified Coherence (SMC) [7], One-Sided 

Autocorrelation LPC (OSALPC) [8], Relative Autocorrelation Sequence (RAS) [9], 

Autocorrelation Mel Frequency Cepstral Coefficients (AMFCC) [10] and Differentiation of 

Autocorrelation Sequence (DAS) [11]. Also, it has been shown that the use of spectral peaks 

obtained from a filtered autocorrelation sequence can lead to a good performance under noisy 

conditions [12, 13]. 
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In DRASS, autocorrelation will calculate by biased estimator after frame blocking and pre-

emphasis. Then after filtering, FFT will calculate and absolute amplitude of differentiated FFT 

square amplitude will use for Mel scale frequency bank. Finally log of coefficients and cepstrum 

of them will use as DRASS coefficients. 

 

In SMC, after calculation of autocorrelation with coherence estimation and hamming filtering, the 

FFT of autocorrelation amplitude is found. Then, applying IFFT, the LPC coefficients are 

calculated with Levinson-Durbin method and finally the cepstrum of LPC is found as SMC 

coefficients. In OSALPC, calculation of autocorrelation is carried out by biased estimator and 

Hamming filtering, the LPC coefficients are calculated using Levinson-Durbin method and the 

LPC cepstrals found as the final coefficients. Among methods that have made use of the phase of 

the autocorrelation sequence to obtain a more robust set of features we can name Phase 

AutoCorrelation (PAC) approach [14] and Autocorrelation Peaks and Phase features (APP) [13]. 

In this paper, we will consider a few developed autocorrelation-based methods and discuss their 

approach to achieving robustness. Then we will explain a simple method that can lead to better 

results in robust speech recognition in comparison to its predecessors in autocorrelation domain. 

Later, we will discuss the issue of the error terms introduced in this approach due to the 

estimation of noise autocorrelation sequence. We will show that taking into account the above 

parameters in the estimation of clean signal autocorrelation sequence can lead to even better 

system performance. 

 

The remainder of this paper is organized as follows. In Section 2 we will present the theory 

behind some autocorrelation-based approaches. Section 3 is dedicated to discussion on our 

Autocorrelation-based Noise Subtraction (ANS) approach and its derivatives. In Section 4, some 

implementation issues regarding the proposed methods will be addressed. Section 5 includes the 

experimental results on Aurora 2 task and compares our results with those of the traditional 

methods such as MFCC and other autocorrelation-based methods. Section 6 will conclude the 

paper. 

 

2. REVIEW OF THE AUTOCORRELATION-BASED METHODS 

 
In this section, we will describe a few methods in autocorrelation domain. This will give us an 

appropriate insight to the advantages and disadvantages of using autocorrelation in robust feature 

extraction. 

 

2.1. Formulation of Clean and Noisy Speech Signals and Noise in Autocorrelation Domain 

 
We start by explaining the relationship between the autocorrelation sequences of clean and noisy 

signals and noise. Assuming v(m,n) to be the additive noise and x(m,n) clean speech signal , the 

noisy speech signal, y(m,n), could be written as 

 

 
 

where N is the frame length, n is the discrete time index in a frame, m is the frame index and M is 

the number of frames. Note that in this paper, as our goal is suppression of the effect of additive 

noise fromnoisy speech signal, the channel effects not considered. If x(m,n) and v(m,n) are 

considered uncorrelated, then the autocorrelation of the noisy speech signal can be written as 
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where ryy (m,k), rxx(m,k) and rw(m,k) are the short-time one-sided autocorrelation sequences of the 

noisy speech, clean speech and noise respectively and k is the autocorrelation sequence index 

within each frame. The one-sided autocorrelation sequence of noisy speech signal may be 

calculated using an unbiased estimator, i.e. 

 

 
 

Meanwhile, although reasonable in practice, considering the clean speech signal, x(m,n), and 

noise, v(m,n), completely uncorrelated may not always be an accurate assumption. We will 

discuss this issue later. In a more general case, equation (2) should be written as 

 

 
 

 
 

If the noise autocorrelation sequence is assumed relatively constant across frames, we can find an 

estimate of rw(m,k) using the non-speech sections of an utterance, specified for example, by a 

voice activity detector (VAD) or the initial normally non-speech periods and denote it as 

 Then we will have 

 

 
 

Obviously, an assumption of v(m,n) having zero mean and being uncorrelated with x(m,n) will 

reduce the terms rxv(m,k) and rvx(m,k) to zero [15] 

 

2.2. Autocorrelation-based Methods for Robust Feature Extraction 

 
Recently, several autocorrelation-based methods have been proposed, where usually, the speech 

signal and noise were considered uncorrelated. We will describe some of these methods here, in 

order to get some insight on how autocorrelation properties may be used to achieve robustness. 

 

2.2.1. Relative Autocorrelation Sequence (RAS) 

 

As explained in reference [9], this method assumed the noise as stationary and uncorrelated to the 

speech signal. Therefore, the relationship between the autocorrelations of noisy and clean signals 

and noise could be written as 

 

 
 

If the noise part could be considered stationary, differentiating both sides of equation (6) with 

reference to the frame index m would remove the effect of noise from the results, i.e. 
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The right side of equation (7) is equal to filtering on the one-sided autocorrelation sequence by a 

high-pass FIR filter, where L is the length of the filter. This high pass filter (differentiation), 

named RAS filter, was used to suppress the effect of noise in the autocorrelation sequence of the 

noisy signal. Therefore, this method is appropriate for noises which have slow variations in the 

autocorrelation domain, i.e. could be considered as relatively stationary. 

 

After calculating one-sided autocorrelation sequence and differentiating both sides of equation (6) 

with respect to m, the autocorrelation of noise was removed, i.e. differentiation of noisy speech 

signal is equal to the differentiation of clean speech signal with respect to the frame index, m, in 

autocorrelation domain. Obviously, this filtering will also have some slight negative effects on 

the lower modulation frequencies of speech. However, this has been found to be quite small (refer 

to Section 5 for RAS performance in clean speech conditions). 

 

2.2.2. Autocorrelation Mel-frequency Cepstral Coefficients (AMFCC) 

In this approach [10], the MFCC coefficients were extracted from the noisy signal autocorrelation 

sequence after removing some of its lower lag coefficients. These lower lag coefficients were 

shown to have the highest influence on the noisy signal for many noise types, including those 

with least correlations among frames. The lag threshold value used was 3 msec. and was set by 

finding the first valley in the absolute autocorrelation function found over TIMIT speech frames. 

 

As reported in reference [10], this method works well for car and subway noises in Aurora 2 task, 

but not for babble and exhibition noises. The reason was believed to be wider autocorrelation 

functions of the latter ones. However, for some other noise types, such as babble, they are spread 

out in different lags. Therefore, the main reason for limited success of AMFCC in noises such as 

babble and exhibition is that the noise autocorrelation properties are more similar to those of the 

speech signal, which makes their separation difficult. 

 

2.2.3. Differentiation of Autocorrelation Sequence (DAS) 
 

This algorithm combines the use of the enhanced autocorrelation sequence of the noisy speech 

and the spectral peaks found from the autocorrelation sequence, as they are known to convey the 

most important information of the speech signal [11]. 

 

In this method, in order to preserve speech spectral peaks, spectral differentiation has been used. 

With this differentiation, the flat parts of the spectrum were almost removed and each spectral 

peak was split into two, one positive and one negative. The differential power spectrum of the 

noisy signal was defined as 
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where P and Q are the orders of the difference equation, a1 are real-valued coefficients and K is 

the length of FFT (on the positive frequency side) [16]. The differentiation mentioned in equation 

(8) can be carried out in several ways, as discussed in reference [16]. The simple difference had 

shown the best results and therefore was used in reference [11], i.e. 

 

 
 

The procedure of feature extraction was carried out after high-pass filtering (as in equation (7)) 

and peak extraction (as in equation (9)). As explained earlier for RAS, this filtering can suppress 

the effect of slowly varying noises and also attenuate the effect of slow variation noise on the 

speech signal. The spectral peaks were then extracted through differentiation of the spectrum 

found using the filtered autocorrelation sequence, leading to better suppression of the noise effect. 

Finally, an MFCC-like feature set was extracted and used in recognition experiments. 

 

2.2.4. Spectral Peaks of Filtered Higher-lag Autocorrelation Sequence (SPFH) 

 

This method was proposed to overcome the main drawback of AMFCC, i.e. its inability to deal 

with noises that have autocorrelation components spread out over different lags [17]. 

 

In SPFH, after frame blocking and pre-emphasis of the noisy signal, the autocorrelation sequence 

of the frame signal was obtained as in equation (3) and its lower lags were removed. A FIR high-

pass filter, similar to RAS filter, was then applied to the signal autocorrelation sequence to further 

suppress the effect of noise, as in equation (7). Then, Hamming windowing and short-time 

Fourier transform were carried out and the differential power spectrum of the filtered signal was 

found using equation (9). Since the noise spectrum may, in many occasions, be considered flat, in 

comparison to the speech spectrum, the differentiation either reduces or omits these relatively flat 

parts of the spectrum, leading to even further suppression of the effect of noise. The final stages 

included applying the resultant magnitude of the differentiated autocorrelation-derived power 

spectrum to a conventional mel-frequency filter-bank and passing the logarithm of the outputs to 

a DCT block to extract a set of cepstral coefficients per frame. 

 

In fact, the SPFH method tried to attenuate the effect of noise after preserving higher lags of 

noisy autocorrelation sequence by high-pass filtering, as in equation (7), and preserving spectral 

peaks, as in equation (9), i.e. similar to DAS. 

 

3. NOISE SUBTRACTION IN AUTOCORRELATION DOMAIN 
 

3.1. Autocorrelation-based Noise Subtraction (ANS) 
 

As an ideal assumption, we can consider the autocorrelation of noise as a unit sample at the origin 

and zero at other lags. Therefore that portion of noisy speech autocorrelation sequence which is 

far enough from the origin will have the same autocorrelation as clean speech signal. This ideal 

assumption is of course only true for white noise and for real environmental noises, components 

in lags other than zero are also available. 

 

Investigations showed that there exist some major autocorrelation components for these noises 

concentrated around the origin. This was the reason for introducing AMFCC and SPFH methods 

mentioned earlier. However, as these methods drop the lower lags of the autocorrelation sequence 
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of the noisy speech signal to suppress the effect of noise, they are not useful for the cases where 

important components are seen in higher autocorrelation lags of the noise, i.e. above 20 to 25 

samples. In such cases, AMFCC approach not only does not completely suppress the effect of 

noise, but also removes some probably useful lower lag portions of the autocorrelation sequence 

of the speech signal. As an alternative to such methods, we follow a newer approach. Here, in 

place of removing the lower lag autocorrelation components of the noisy signal, we try to 

estimate the noise autocorrelation sequence and deduct it from the noisy signal autocorrelation 

sequence. This is conceptually similar to the well-known spectral subtraction with the exception 

that it is not magnitude spectrum, but to the autocorrelation sequence [17]. An instant advantage 

is that there is no need to deal with phase issue. 

 

In reference [17], the average autocorrelation of a number of non-speech frames of the utterance 

is used as an estimate of the noise autocorrelation sequence. We write this as 

 

 

where P is the number of non-speech frames of the utterance used and  is the noise 

autocorrelation estimate. 

 

Therefore, we may write the estimate of the autocorrelation sequence of the clean speech signal 

as 

 

 
 

In order to estimate the noise autocorrelation in ANS method, a voice activity detector (VAD), or 

the initial silence of the speech utterances can be used. Note that procedures similar to many other 

widely-used noise estimation methods could also be used here. 

 

3.2. The Cross Correlation Term 
 

Figure 1 displays the autocorrelation sequences for two examples of clean speech, noise and 

noisy speech signals with the noises being babble and factory, extracted from the NATO RSG-10 

corpus [18], as well as the sum of autocorrelation sequences of speech and noise. One should 

expect the speech signal and noise, in most circumstances, to be completely uncorrelated 

However, in this case, according to figure 1, the autocorrelation sequence of the noisy speech is 

not equal to the sum of those of clean speech and noise. In order to be able to have a more 

accurate estimate of the speech signal autocorrelation, one needs to consider some correlation 

among speech and noise signals to compensate for this difference. It should be noted that this 

difference is in fact due to the short-time nature of our analysis, as the simple form of additive 

autocorrelation mentioned in equation (2) is only possible when an infinitely long signal is 

considered in the analysis [19]. We have used the two following approaches in order to consider 

the cross correlation term in autocorrelation calculations: 
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(a) 

 
(b) 

 

Figure 1. Sample autocorrelation sequences of the clean speech, noisy speech and noise as well as sum of 

the autocorrelations of clean speech signal and noise with (a) babble noise and (b) factory noise, with an 

SNR of 10dB. 

 

3.2.1. Kernel Method 
 

Generally, assuming the speech signal and noise to be completely uncorrelated, we write the 

autocorrelation of the noisy speech signal as the sum of the autocorrelations of clean speech 

signal and noise. If we also consider the above mentioned correlation between the clean speech 

signal and noise, the relationship between the autocorrelations mentioned in equation (6) should 

change to: 
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3.2.2 Autocorrelation Averaging 
 

We used autocorrelation averaging as an alternative way for reducing the observed correlation 

effect between noise and clean speech signal. We remind the reader that, as already mentioned, 

this correlation might even solely be the result of autocorrelation analysis on finite-duration 

signals. In reference [21], it was shown that a smoothing approach can help in spectral subtraction 

to overcome the speech/noise correlation problems. The reason is that the probability density 

function (pdf) of the cosine of the angle between speech and noise vectors has been shown to 

have a minimum at zero, while smoothing leads to a pdf with a maximum at zero and smaller 

variances with larger numbers of frames taking part in smoothing 1. As a result, as will be further 

explained later, ignoring the term including ,i.e assuming = 0, would be less 

harmful after smoothing. We define the average of the noisy autocorrelation sequence as 

 

i.e. weighted averaging of the noisy speech autocorrelation on T frames where bi  is a weighting 

parameter larger than 0 and less than or equal to 1. 

------------------------------ 
1
A more detailed discussion on this issue can be found in [20]. 
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By replacing ryy (m–i,k) in equation (21) with the value found in equation (4) we have : 

 

 
 

If the variations in noise and speech could be assumed negligible during a period T, we can write 

 

 
 

 
 

 
We will call this approach autocorrelation-based noise subtraction with smoothing (ANSS). 

Details of setting of the length of averaging window in this approach will be discussed in the 

parameter setting Section 4.3. 
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3.3 ANS versus Spectral Subtraction 
 

Due to the similarity of ANS and spectral subtraction (SS) in concept, in this section, we would 

like to make a comparison between the two methods. The first, and by far the most important, 

difference between these two methods is that the subtraction in SS takes place in spectral domain 

whereas for ANS, the subtraction is carried out in the autocorrelation domain (time domain). Note 

that in the implementation of spectral subtraction, reported in this section, the overestimation 

factor is set equal to that used for ANS and the flooring parameter was set to 0.002. 

 

Although traditional spectral subtraction suffers from a few problems that affect the quality of 

enhanced speech, the important source of distortion in this method is known to be the negative 

values encountered during subtraction that should be mapped to a spectral floor [22]. This 

nonlinear mapping causes an effect that is usually known as musical noise and is always 

associated with the basic spectral subtraction method. 

 

In ANS, as the subtraction is carried out in autocorrelation domain, negative and positive values 

are not treated differently, and therefore, there is no need for flooring or other non-linear 

mappings. In fact, problems associated with non-linearity are not encountered anymore and 

inaccuracies in speech spectral estimates are only due to errors in noise autocorrelation estimation 

and its associated problems. 

 

Figure 4 displays the power spectra of a frame of an utterance of the word "one", uttered by a 

female speaker and contaminated with train station noise at 0dB and 10dB SNRs. This utterance 

is extracted from test set A of the Aurora 2 task. In this figure, the power spectra of signal after 

the application of ANS and spectral subtraction are shown. As it is clear, the power spectrum 

extracted after the application of ANS to the noisy speech closely follows the peaks and valleys 

of the clean spectrum while the SS-treated one has a more different appearance. 

 

The normalized average spectral errors of both methods have also been shown in Table 1. 

Apparently, the Root Mean Square Error (RMSE) of ANS is much less than that of spectral 

subtraction. 
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Figure 4. Log power spectrum of a speech frame of 'FAK_1B.08' utterance from test set A of Aurora 2 task 

contaminated with subway noise at 0dB and 10dB SNRs in logarithmic scale. 

 

Table 1. Normalized Average of Spectral Subtraction and ANS Spectrum Errors (RMSE Criteria) on Test 

Set A of Aurora 2 Task 

 

 
 

4. IMPLEMENTATION ISSUES IN PROPOSED ALGORITHMS 
 

In this section we will discuss a number of implementation issues regarding our proposed 

methods. Also in this section, we will consider the overestimation parameter to enable us better 

estimate the noise autocorrelation sequence. 

 

4.1. Considering Cross Correlation 

 
To consider the cross correlation term, we have implemented two different methods, as discussed 

in Subsections 3.2.1 and 3.2.2. The procedure for feature extraction in our proposed methods is as 

follows. 

 

a) Frame Blocking and pre-emphasis. 

b) Hamming windowing. 

c) Calculation of unbiased autocorrelation sequence of noisy speech signal. 

d) Estimation of noise autocorrelation sequence in each utterance and subtracting it from the 

speech signal autocorrelation sequence in each frame of the utterance (More details of 

parameter settings will be found in Section 3). 

e) Kernel function computation (see Subsection 3.2.1) or autocorrelation averaging (see 

Subsection 3.2.2). 

f) Inserting cross correlation term in the estimation of the autocorrelation of the clean 

speech. 

g) Fast Fourier Transform (FFT) calculation. 

h) Calculation of the logarithms of Mel-frequency filter bank outputs. 



Signal & Image Processing : An International Journal (SIPIJ) Vol.8, No.1, February 2017 

36 

i) Application of DCT to the sequence resulting from pervious step. 

j) Calculation of the feature vectors including 12 cepstral and a log-energy parameter and 

their first and second order dynamic parameters. 

 

In these algorithms, almost all the steps are rather straightforward. Only steps e) and f) are added 

to our implementation of ANS, which are related to inclusion of the cross correlation term. The 

accuracy of the cross correlation term estimation would be crucial at this stage. The results of our 

implementations will be given in Section 5. 

 

4.2. Considering Overestimation Parameter 
 

Since our algorithm is applied to the autocorrelation of the noisy signal, the flooring parameter 

used in spectral subtraction will not be needed in the application of our algorithm. The reason is 

that flooring in spectral subtraction is usually needed to remove the negative spectral values, 

while this would not be a problem in autocorrelation domain. As shown in Figure 5, in the 

autocorrelation sequence of noise, valleys and peaks may be observed whose lag locations and 

magnitudes might vary from one frame to another. 

 

Although smoothed to some extent, such perhaps unrealistic peaks and valleys might still show 

up in our estimate of the noise autocorrelation sequence. By subtracting the noise autocorrelation 

sequence from that of the noisy speech, some peaks and valleys will be added to the estimated 

clean speech autocorrelation sequence, resulted from valleys and peaks in the estimated noise 

autocorrelation sequence. In order to decrease the effects of these peaks and valleys, we have 

used an overestimation parameter by modifying the ANS equation to 

 

 
 

where α ≥ 1 is the overestimation parameter. Note that when α = 1, equation (29) is identical to 

the equation used for ANS. Apparently, having α > 1 leads to some attenuation in the peaks of the 

estimated clean speech signal autocorrelation, due to increase in the last term of equation (29). 

Various values of α were tested to get the best result on the Aurora 2 task. 

 

 
  

 Figure 5. Autocorrelation sequences for 5 consecutive frames of factory noise. 

 

In order to reduce the speech distortions caused by large values of α, we have changed this 

parameter with SNR [23]. The SNR was calculated frame by frame as explained in the parameter 
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setting Section 4.3. Figure 6 shows the trend of change we used for parameter α with SNR. 

Clearly, with increasing SNR, the values of α should decrease and vice versa. The trend of this 

change was set to linear, as shown in the figure, according to changes observed in system 

recognition performance in practice [17]. We tested the proposed method with/without taking into 

account the signal/noise cross correlation. If we consider the issue of cross correlation, as 

explained in Section 3.2.1, together with the overestimation parameter, the following relationship 

for clean speech signal estimation will result 

 

 
 

Meanwhile, considering the cross correlation term as in Section 3.2.2, together with the 

overestimation parameter, we will have the following equation, which gives an approximate value 

of the speech signal. 

 

 
 

 
 

Figure 6. Change in the parameter α with SNR on Aurora 2 task. 

 

4.3. Parameter Settings 
 

In our implementation of RAS, the length of the filter was set to L=2 according to reference [9]. 

Also the duration for lower lag elimination in the AMFCC method was set to 2.5 ms (20 samples 

in 8 kHz sampling rate for Aurora 2 task) similar to reference [10]. The same duration was also 

used for SPFH implementation [16]. In order to estimate the noise autocorrelation sequence, in all 

our experiments, we have used 20 initial frames of each utterance, considering them as non-

speech sections. As shown in reference [24], this number of frames resulted in best recognition 

rates on Aurora 2 task. 

 

In the implementation of ANSS, in order to get the best results, we have tried different numbers 

of frames (T in equations (21) to (26)) for averaging. Figure 7 shows the results. As depicted, the 

grand average recognition rates on the three sets of Aurora 2 task have shown the best 

performance with 3 frames used in autocorrelation averaging. Therefore, in our experiments, we 

have used this number for noisy speech autocorrelation averaging. Regarding bi, in our 

experiments, simple averaging was carried out. In the implementations using overestimation 

parameter, this parameter was changed as a function of SNR in each frame. An estimate of SNR 

in each frame was found as 
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Figure 7. Normalized recognition rates for test sets of Aurora 2 task versus the number of frames used in 

noise autocorrelation sequence averaging and their grand average. 

 

5. EXPERIMENTS 
 

In this section, we will describe the data used and procedures followed in our experiments. Our 

implementations include some of the previous methods for comparison purposes as well as our 

proposed approaches. 

 

5.1. Data  
 

The experiments were carried out on Aurora 2 task [25]. The features in this case were computed 

using 25 msec. frames with 10 msec. of frame shifts. The pre-emphasis coefficient was set to 

0.97. For each speech frame, a 23-channel mel-scale filter-bank was used. The feature vectors for 

proposed methods were composed of 12 cepstral and a log-energy parameter, together with their 

first and second order derivatives. All model creation, training and tests in all our experiments 

have been carried out using the standard Hidden Markov model toolkit [26] with 16 states and 3 

mixture components per state. The HMMs were trained in clean condition, i.e. with clean training 

data. 

 

5.2. Implementation Results using Cross Correlation Terms 
 

The setting of our parameters is as described in 4.3. Figure 8 includes ANS, Kernel and ANSS 

recognition results on the Aurora 2 data. Also, for comparison purposes, the results of baseline 

MFCC, together with RAS, AMFCC and MFCC-SS are included. RAS and AMFCC were chosen 

as two of the most successful autocorrelation-based methods. Also note that the parameters used 

in MFCC-SS are the same used in the implementation of spectral subtraction explained in Section 

2.3. While the results of ANS, Kernel and ANSS show considerable improvement over the 
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baseline MFCC in noisy conditions, ANSS has shown superior performance in comparison to 

ANS and Kernel methods. In fact, ANSS has performed quite well, outperforming the standard 

MFCC with a very large margin, especially in lower SNRs, reaching a value of up to 35% 

absolute reduction in word error rate. In comparison to ANS, which itself performs satisfactorily 

in noisy conditions, the higher performance of ANSS is noticeable. A prompt conclusion could be 

that including the effect of noise-signal cross correlation in autocorrelation-based noise 

subtraction method can further improve the performance boundaries of this method. This is 

indicative of the effectiveness of inserting the cross correlation parameter into the autocorrelation 

calculation of noisy speech signal. 

 

5.3. Implementation Results of Applying Overestimation Parameter 

 
The results of including the overestimation parameter α into clean speech autocorrelation 

estimation procedure will be reported here. Figure 9 depicts our recognition results on Aurora 2 

Task. The naming conventions for our methods are as before with OEP being added to indicate 

the inclusion of the overestimation parameter in the implementation. As it is clear, the application 

of overestimation has led to improvements in the system recognition performance in almost all 

cases. This indicates the potential of the overestimation parameter in improving autocorrelation-

based noise subtraction. 

 

5.4. Comparison of the Discussed Methods 
 

In order to reach to an overall conclusion on different methods discussed, we wish to compare the 

performances of all the mentioned methods on the specified task. Furthermore, as mentioned in 

reference [27], using the normalized energy instead of the logarithm energy, together with mean 

and variance normalization of the cepstral parameters, could lead to improvement in the speech 

recognition performance in noisy conditions. Therefore, we have also applied this technique 

which has further improved the recognition rate of our best method discussed, ANSS+OEP. Table 

2 shows the average recognition rates of all these methods on the Aurora 2 task. As usual in 

Aurora 2 result calculations, the -5dB and clean results are not included in the averaging. 

Furthermore, the percentage of relative improvement of each method in comparison to the 

baseline MFCC is also mentioned. We have also included two other test results in this table; 

MFCC enhanced with spectral subtraction (MFCC-SS) and mean subtraction, variance 

normalization and ARMA filtering (MVA) [28]. The former is meant to show the performance 

improvement obtained by spectral subtraction, as a basic enhancement approach on this task 

while the latter is just added as a rather simple method known to perform among the best in 

robust speech recognition. The implementation procedure was exactly similar to our other tests. 

Also, in this table, for comparison purposes, the results obtained from the application of ETSI 

Extended Advanced Front-End [29] on the Aurora2 corpus are reported. This is a standard front-

end which uses sophisticated enhancement approaches to improve the quality of the extracted 

features. 

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.8, No.1, February 2017 

40 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Average recognition rates of MFCC, RAS, AMFCC, ANS, Kernel, ANSS and MFCC-SS on 

Aurora 2 task. (a) Test set A, (b) Test set B and (c) Test set C. 

  

 
 

(a) 
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(b) 

 
(c) 

Figure 9. Average recognition rates of ANSS+OEP, Kernel+OEP, ANS+OEP and ANS approaches on 

Aurora 2. (a) Test set A, (b) Test set B, and (c) Test set C. 

 

As expected, by improving more advanced methods in the autocorrelation domain, i.e. DAS, 

SPFH and ANS using our proposed methods, better results were obtained in comparison to 

somewhat more basic autocorrelation-based methods, i.e. RAS and AMFCC. As it is clear, the 

combination of ANSS and overestimation with energy and cepstral mean and variance 

normalization (EMVN), overcame all other proposed methods in average overall performance on 

all the three test sets of AURORA 2. It is also worth mentioning that this performance is obtained 

with simple and low complexity computations, while ETSI-XAFE is a complicated algorithm 

with large computational overhead. Also, it is worth mentioning that, as will be shown in the 

appendix, the strongest advantage of the proposed methods over the ETSI-XAFE is at very low 

SNRs (-5dB in this case), which is not included in the figures reported in Table 2. 

 

6. CONCLUSIONS 
 

In this paper, we have raised the issue of using autocorrelation-based noise estimation and 

subtraction, taking into account the cross correlation term error. Two different methods were 

introduced for the insertion of the cross correlation term into the estimation of clean speech 

autocorrelation sequence, namely Kernel and ANSS. The Kernel method inserts the cross 

correlation term using a kernel function whereas ANSS considers the cross correlation term by 

averaging on a few frames. Both approaches were tested on Aurora 2 task and proved to be useful 
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in further improving the ANS results. Also, the overestimation parameter, as an important 

parameter where autocorrelation sequence estimation is concerned, was taken into account. 

 

Practical experiments indicated that even better recognition performance could be expected when 

the overestimation parameter was introduced to ANS, Kernel, and ANSS methods. According to 

these results, although all the methods performed better when implemented in conjunction with 

the overestimation parameter, ANSS with overestimation parameter (ANSS+OEP) performed the 

best among them and its combination with energy and cepstral mean and variance normalization 

performed even better than the ETSI-XAFE. Altogether, a major result is that the features 

extracted from the autocorrelation sequence of the speech signal perform rather well in the 

presence of noise and the so-called mismatch conditions. 

 
Table 2. Comparison of Average Recognition Rates and Percentage of Improvement in Comparison to 

MFCC for Various Feature Types on Three Test Sets of Aurora 2 Task 
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