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ABSTRACT 
 

Dealing with imbalanced data is one of the main challenges in machine/deep learning 

algorithms for classification. This issue is more important with log message data as it is 

typically very imbalanced and negative logs are rare. In this paper, a model is proposed to 

generate text log messages using a SeqGAN network. Then features are extracted using an 

Autoencoder and anomaly detection is done using a GRU network. The proposed model is 

evaluated with two imbalanced log data sets, namely BGL and Openstack. Results are presented 

which show that oversampling and balancing data increases the accuracy of anomaly detection 

and classification.  
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1. INTRODUCTION 
 

Logs are commonly used in software systems such as cloud servers to record events. Generally, 
these unstructured text messages are imbalanced because most logs indicate that the system is 

working properly and only a small portion indicate a significant problem. Data distribution with a 

very unequal number of samples for each label is called imbalanced. The problem of imbalanced 

data has been considered in tasks such as text mining [1], face recognition [2] and software 
defect prediction [3]. 
 

The imbalanced nature of log messages is one of the challenges for classification using deep 

learning. In binary classification, there are only two labels, and with imbalanced data, most are 
normal (denoted major) logs. The small number of abnormal (denoted minor) logs makes 

classification difficult and can lead to poor accuracy with deep learning algorithms. This is 

because the normal logs dominate the abnormal logs. Oversampling and undersampling are two 
methods that can be used to address this problem. In undersampling, the major label samples are 

reduced so the number is similar to the minor label samples. A serious drawback of 
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undersampling is loss of information [4]. In oversampling, the number of minor label samples is 
increased so it is similar to the number of major label samples. Recently, a generative adversarial 

network (GAN) [5] was proposed for generating images and showed good results in generating 

data which is similar to actual data such as with image captions [6]. GANs are able to generate 

more abstract and varied data than other algorithms [7]. 
 
 

In this paper we propose a model to deal with imbalanced log data by oversampling text log 
messages using a Sequence Generative Adversarial Network (SeqGAN) [8]. The resulting data is 

then used for anomaly detection and classification with Autoencoder [9] and Gated Recurrent 

Unit (GRU) [10] networks. An Autoencoder is a feed-forward network that has been shown to be 
useful for extracting important information from data. Autoencoders have been applied to many 

tasks such as probabilistic and generative modeling [11] and representation learning [12]. A 

GRU is a Recurrent Neural Network (RNN) which has been employed in tasks such as sentiment 

analysis [13] and speech recognition [14]. The proposed model is evaluated using two labeled log 
message data sets, namely BlueGene/L (BGL) and Openstack. Results are presented which show 

that the proposed model with oversampling provides better results than the model without 

oversampling. 
 

The main contributions of this paper are as follows. 

 

1.  A model is proposed for log message oversampling for anomaly detection and 
classification.  

2.  The proposed model is evaluated using two well-known data sets and the results with and 

without oversampling are compared.  
 

The rest of the paper is organized as follows. In Section 2 the Autoencoder, GRU and SeqGAN 

architectures are presented and the proposed model is described. The experimental results and 
discussion are given in Section 3. Finally, Section 4 provides some concluding remarks. 

 

2. SYSTEM MODEL 
 

In this section, the Autoencoder, GRU and SeqGAN architectures employed are given along with 
the proposed network model. 

 

2.1. Autoencoder Architecture  
 

An Autoencoder is a feed-forward multi-layer neural network with the same number of input and 

output neurons. It is used to learn a more efficient representation of data while minimizing the 

corresponding error. An Autoencoder with more than one hidden layer is called a deep 
Autoencoder [15]. A reduced dimension data representation is produced using encoder and 

decoder hidden layers in the Autoencoder architecture. Backpropagation is used for training to 

reduce the loss based on a loss function. Figure 1 shows the Autoencoder architecture with an 
input layer, two hidden layers, and an output layer. 
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Figure 1. Autoencoder architecture with an input layer, two hidden layers, and an output layer. 

 

2.2. GRU Architecture 
 

A Gated Recurrent Unit (GRU) is a type of RNN network which is a modified version of an 

LSTM network [16]. It has a reset gate and an update gate. The reset gate determines how much 

information in a block should be forgotten and is given by  
 

1= ( ),t r t r t rr W x U h b    (1) 

 

where rb  is the bias vector,   is the sigmoid activation function and rW  and rU  are the 

weight matrices. The update gate decides how much information should be updated and can be 
expressed as  
 

1= ( ),t z t z t zz W x U h b    (2) 

 

where zW  and zU  are the weight matrices and zb  is the bias vector. The block output at time t  

is  

 

              (3) 

where hb  is the bias vector and hW  and hU  are the weight matrices. A GRU block is shown in 

Figure 2. 
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Figure 2. A GRU block with reset gate, update gate, and tangent hyperbolic  
and sigmoid activation functions. 

   

2.3. SeqGAN Architecture 
 

A SeqGAN consists of a Generator ( G ) and a Discriminator ( D ). The Discriminator is trained 

to discriminate between real data (sentences) and generated sentences. The Generator is trained 

using the Discriminator using the reward function with policy gradient [17]. In SeqGAN, the 

reward for a sentence is computed and the Generator is regulated using the reward with 

reinforcement learning. Generator G  is trained with a real data set to produce a sentence  

 

               1: 1= { , , , , }, ,T t T tY y y y y Y   

 

where Y  is the vocabulary of candidate words. This should produce a sentence that is close to 

real data. This is a reinforcement learning problem which considers G  to produce an action a  

(next word ty ) given the state s  (previously generated words 1: 1tY  ). SeqGAN trains the 

Discriminator D  as well as the Generator G . D  is trained to discriminate between real data 

and data generated from G . Words are generated by G  each time step but D  only computes 

rewards for full sentences. Hence, the rewards for intermediate states are estimated using Monte 

Carlo (MC) search and are given by  
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where 
G

DQ 


 is the action-value function which is the expected reward from the Discriminator, T  

is the sentence length and N  is the number of the sentences in the MC search, 1:

n

TY  is the n th 

sentence in the MC search, and 
1:( )n

TD Y  is the probability of the n th sentence being denoted 

real by the Discriminator. After the reward is computed, the Generator G  is updated via the 

policy gradient which is the gradient of the objective function and is given by  
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(5) 

 

( ),J       (6) 

 

where   is the learning rate. SeqGAN updates the Discriminator and Generator until the 

stopping criteria are satisfied. An LSTM, GRU or other RNN network for the Generator and a 

Convolutional Neural Network (CNN) network for the Discriminator have been shown to 
provide good results for classification tasks [8]. 
 

The SeqGAN architecture is shown in Figure 3. The orange circles denote words in real 

sentences and the blue circles denote words in generated sentences. First, the Generator is 
pretrained with real data using the cross-entropy loss function which minimizes the negative log-

likelihood. Then it is used to generate data and the Discriminator is pretrained with both 

generated and real data. The MC search parameters (  ) are set to be the same as the Generator 

parameters ( ). As shown on the right, an MC search is used to compute the reward for an 

intermediate state. This search generates N  complete sentences from the current state. A reward 

is computed for each sentence and averaged as the intermediate reward except in the last time 

step where the reward is obtained from the Discriminator. The input of each time step is the 

output of the previous time step and the next word is obtained via a multinomial distribution over 
the log softmax of the GRU output. Then the Generator is trained with the policy gradient. 

Finally, the updated Generator is used to generate data and the Discriminator is trained with both 

the generated and real data. 
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Figure 3. The SeqGAN architecture. The Discriminator on the left is trained with real data and data 

generated using the Generator. The Generator on the right is trained using the policy gradient. The reward 

is computed by the Discriminator and this is used to determine the intermediate action values for the MC 

search. 

2.4. Proposed Model 
 

The proposed model has three steps. The first is generating log messages using SeqGAN for 

oversampling. The log messages are divided into two data sets, positive labeled data (normal) 
and negative labeled data (abnormal). Additional negative labeled data is generated using the 

negative labeled data set. The initial negative data set is split into sets (the Openstack data set is 

split into two sets and the BGL data set is split into seven sets), and fed into the SeqGAN 
separately. This ensures better convergence and provides different negative log messages. 

Further, the network speed is faster which is important with data generation. A CNN is used in 

the SeqGAN for the discriminator and a GRU as the generator. The GRU has one hidden layer of 

size 30 with the ADAM optimizer and the batch size is 128. The generated negative log 
messages are concatenated with the original negative data and similar messages are removed. 

The resulting data set is balanced with similar numbers of positive and negative data. 

 
The second step is the Autoencoder which has two networks (positive and negative) with three 

hidden layers (two encoder layers and one decoder layer). The encoder layers have 400 (with L1 

regularizer) and 200 neurons and the decoder layer has 200 neurons. The output layer has 40 
neurons which is the same size as the input layer. The positive labeled data is fed into the 

positive Autoencoder. Note that this network is trained with just positive label data. The 

maximum number of epochs is 100 and the batch size is 128. Dropout with probability 0.8 and 

early stopping is used to prevent overfitting. Categorical cross-entropy loss with the ADAM 
optimizer is used for training. The network output is labeled as positive. The negative labeled 

data which has been oversampled is fed into the negative Autoencoder and the network output is 

labeled as negative. The two sets of labeled data are then concatenated, duplicates are removed 
and Gaussian noise with zero mean and variance 0.1 is added to avoid overfitting [18]. 

 

The final step is the GRU network for anomaly detection and classification. First, the 

concatenated data set is divided into training and testing sets with 5% for training and 95% for 
testing, and these sets are shuffled. The training set is then divided into two sets with 5% for 

training and 95% for validation. The data is fed into the GRU hidden layer of size 100 and is 

classified using softmax activation. 10-fold cross-validation is used in training with a maximum 
of 100 epochs and a batch size of 128. Dropout with probability 0.8 and early stopping is used to 
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prevent overfitting. Categorical cross-entropy loss with the ADAM optimizer is used for training. 
The proposed model is shown in Figure 4. 
 

 
 

Figure 4. The proposed model architecture with SeqGAN for oversampling log messages, two 

Autoencoder networks and a GRU network for anomaly detection and classification. 

 

3. RESULTS 
 

In this section, the proposed model is evaluated with and without SeqGAN oversampling using 

the BGL and Openstack data sets. Four criteria are used to evaluate the performance, namely 
accuracy, precision, recall, and F-measure. Accuracy is the fraction of the input data that is 

correctly predicted and is given by  
 

= ,
p n

p n p n

T T
A

T T F F



  
 

(7) 

 

where pT  is the number of positive instances predicted by the model to be positive, nT  is the 

number of negative instances predicted to be negative, pF  is the number of negative instances 

predicted to be positive, and nF  is the number of positive instances predicted to be negative. 

Precision is given by  

  

= ,
p

p p

T
P

T F
 

(8) 
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and recall is  
  

= .
p

p n

T
R

T F
 

(9) 

 

The F-measure is the harmonic mean of recall and precision which can be expressed as  

  

2
= .

P R
F

P R

 


 

(10) 

 

All experiments were conducted on the Compute Canada Cedar cluster with 24 CPU cores, 125 

GB memory and four P100 GPUs with Python in Keras and Tensorflow. We did not tune the 

hyperparameters of the proposed model so the default values were used for all data sets. For each 

data set, the average training accuracy, average validation accuracy, average training loss, testing 
accuracy, precision, recall, and F-measure were obtained. Tables 1 and 2 give the results for the 

BGL and Openstack data sets without and with SeqGAN oversampling, respectively. 

 

3.1. BGL 
 

The BlueGene/L (BGL) data set consists of 4,399,503 positive log messages and 348,460 
negative log messages (without oversampling). From this data set, 11,869 logs are used for 

training, 225,529 for validation and the remaining 4,510,565 for testing with approximately 95% 

positive and 5% negative messages in each group. Without oversampling, the average training 
accuracy is 97.8% and average validation accuracy is 98.6% with standard deviations of 0.02 and 

0.01, respectively, in 10-fold cross-validation. The average training loss is 0.07 with a standard 

deviation of 0.01. The testing accuracy is 99.3% with a precision of 98.9% for negative logs and 
99.3% for positive logs, and recall of 91.6% and 99.9% for negative and positive logs, 

respectively. The F-measure is 95.1% and 99.6% for negative and positive logs, respectively. 

 

Oversampling of the negative log messages with SeqGAN increased the number in the BGL data 
set to 4,137,516 so the numbers of positive and negative log messages are similar. From this data 

set, 21,342 logs are used for training, 405,508 for validation and the remaining 8,110,169 for 

testing with similar numbers of positive and negative log messages in each group. The average 
training accuracy is 98.3% and average validation accuracy is 99.3% with a standard deviation of 

0.01 in 10-fold cross-validation. The average training loss is 0.05 with a standard deviation of 

0.01. The testing accuracy is 99.6% with a precision of 99.8% for negative logs and 99.4% for 
positive logs, and recall of 99.3% and 99.8% for negative and positive logs, respectively. The F-

measure is 99.6% for both negative and positive logs. The accuracy levels are better than the 

98% obtained with the LogSig algorithm and the BGL data set [19]. The average precision, recall 

and F-measure with oversampling are 99.6%, 99.5%, and 99.6%, respectively, which are better 
than the values of 99%, 75%, and 85%, respectively, with SVM supervised learning and 83%, 

99% and 91%, respectively, with unsupervised learning [20]. 
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3.2. Openstack 
 

The Openstack data set without oversampling consists of 137,074 positive log messages and 

18,434 negative log messages. From this data set, 6,608 logs are used for training, 1,167 for 
validation and the remaining 147,733 for testing with approximately 95% positive and 5% 

negative messages in each group. Without oversampling, the average training accuracy is 98.4% 

and average validation accuracy is 97.2% with a standard deviation of 0.01 in 10-fold cross-
validation. The average training loss is 0.05 with a standard deviation of 0.01. The testing 

accuracy is 98.3% with a precision of 97.9% for negative logs and 98.3% for positive logs, and 

recall of 87.1% and 99.8% for negative and positive logs, respectively. The F-measure is 92.2% 

and 99.0% for negative and positive logs, respectively. 
 

Oversampling of the negative log messages with SeqGAN increased the number in the 

Openstack data set to 154,202. From this data set, 12,378 logs are used for training, 2,185 for 
validation and the remaining 276,713 for testing with similar numbers of positive and negative 

log messages in each group. With oversampling, the average training accuracy is 98.0% and 

average validation accuracy is 98.7% with a standard deviation of 0.01 in 10-fold cross-

validation. The average training loss is 0.06 with a standard deviation of 0.01. The testing 
accuracy is 98.9% with a precision of 99.6% for negative logs and 98.2% for positive logs, and 

recall of 98.4% and 99.5% for the negative and positive logs, respectively. The F-measure is 

99.0% and 98.8% for negative and positive logs, respectively. The accuracy levels are better than 
the 87.1% obtained with the IPLoM algorithm and the Openstack data set [21]. The average 

precision, recall and F-measure with oversampling are 98.9%, 99.0%, and 98.9%, respectively, 

which are better than the 94%, 99% and 97% obtained with the Deeplog network [22]. 
 

Table 1. Results without oversampling for the BGL and Openstack data sets (numbers in parenthesis are 
standard deviation). Positive labels are denoted by 1 and negative labels by 0. 
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Table 2. Results with oversampling using SeqGAN for the BGL and Openstack data sets (numbers in 

parenthesis are standard deviation). Positive labels are denoted by 1 and negative labels by 0. 
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0 99.8% 99.3% 99.6% 
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99.6% 
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 (0.01) (0.01) (0.01)  1 98.2% 99.5% 98.8% 

 

3.3. Discussion 
  
The proposed oversampling with SeqGAN provided good results for both the BGL and 

Openstack data sets. It is evident that oversampling significantly improved the model accuracy 

for negative log messages. For the BGL data set, the precision, recall and F-measure after 
oversampling increased from 98.9% to 99.8%, 91.6% to 99.3% and 95.1% to 99.6% which are 

0.9%, 7.7% and 4.5% higher, respectively. For the Openstack data set, the precision, recall and 

F-measure after oversampling increased from 97.9% to 99.6%, 87.1% to 98.4% and 92.2% to 
99.0% which are 1.7%, 11.3% and 6.8% higher, respectively. These results show that data 

balancing should be considered with deep learning algorithms to improve the accuracy, 

especially for small numbers of minor label samples. The proposed model was evaluated with 

two data sets for anomaly detection and classification with only a small portion (less than 1%) 
used for training. This is an important result because deep learning algorithms typically require 

significant amounts of data for training. Note that good results were obtained even though the 

hyperparameters were not tuned. 
 

The first step in the proposed model where logs are oversampled with a SeqGAN network is the 

most important. These networks have been shown to provide promising results in generating text 

such as poems [23]. The concept of generating data is similar to that for oversampling. It was 
surprising that duplication in the oversampled log data was not high (less than 5%). As a 

consequence, after removing duplicates there was a significant amount of data available for 

anomaly detection and classification using deep learning. The second step which extracts features 
from the data using an Autoencoder is also important. The Autoencoder output is very suitable 

for use with an RNN based algorithm such as a GRU for anomaly detection and classification. 

The results obtained show that the proposed model can provide excellent results even when the 
data is imbalanced. 
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4. CONCLUSIONS 
 
In this paper, a model was proposed to address the problem of imbalanced log messages. In the 

first step, the negative logs were oversampled with a SeqGAN network so that the numbers of 

positive and negative logs are similar. The resulting labeled logs were then fed into an 

Autoencoder to extract features and information from the text data. Finally, a GRU network was 
used for anomaly detection and classification. The proposed model was evaluated using two log 

message data sets, namely BGL and Openstack. Results were presented which show that 

oversampling can improve detection and classification accuracy. In the future, other text-based 
GAN networks such as TextGAN and MaliGAN can be used for oversampling. 

 

REFERENCES 
 
[1] T. Munkhdalai, O.-E. Namsrai and K. H. Ryu, “Self-training in Significance Space of Support 

Vectors for Imbalanced Biomedical Event Data”, BMC Bioinformatics, vol. 16, no. S7, pp. 1-8, 

2015.  

 

[2] Y.-H. Liu and Y.-T. Chen, “Total Margin Based Adaptive Fuzzy Support Vector Machines for 

Multiview Face Recognition”, in IEEE International Conference on Systems, Man and Cybernetics, 

pp. 1704–1711, 2005.  

 

[3] M. J. Siers and M. Z. Islam, “Software Defect Prediction using A Cost Sensitive Decision Forest and 
Voting, and A Potential Solution to the Class Imbalance Problem”, Information Systems, vol. 51, pp. 

62-71, 2015.  

 

[4] N. V. Chawla, “Data Mining for Imbalanced Datasets: An Overview”, in Data Mining and 

Knowledge Discovery Handbook, pp. 853–867, Springer, 2005. 

 

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. 

Bengio, “Generative Adversarial Nets”, in International Conference on Neural Information 

Processing Systems, pp. 2672–2680, MIT Press, 2014. 

 

[6] D. Li, Q. Huang, X. He, L. Zhang and M.-T. Sun, “Generating Diverse and Accurate Visual Captions 
by Comparative Adversarial Learning”, arXiv e-prints, arXiv:1804.00861, 2018.  

 

[7] L. Liu, Y. Lu, M. Yang, Q. Qu, J. Zhu and H. Li, “Generative Adversarial Network for Abstractive 

Text Summarization”, arXiv e-prints, p. arXiv:1711.09357, 2017.  

 

[8] L. Yu, W. Zhang, J. Wang and Y. Yu, “SeqGAN: Sequence Generative Adversarial Nets with Policy 

Gradient”, in AAAI Conference on Artificial Intelligence, pp. 2852–2858, 2017.  

 

[9] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Parallel Distributed Processing: Explorations in 

the Microstructure of Cognition”, in Parallel Distributed Processing: Explorations in the 

Microstructure of Cognition, Vol. 1, D. E. Rumelhart, J. L. McClelland and C. PDP Research Group, 

Eds., pp. 318–362, MIT Press, 1986. 
 

[10] K. Cho, B. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio, 

“Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine 

Translation”, in Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734, 

2014.  

 



174   Computer Science & Information Technology (CS & IT) 

[11] D. J. Rezende, S. Mohamed and D. Wierstra, “Stochastic Backpropagation and Approximate 

Inference in Deep Generative Models”, in International Conference on Machine Learning, vol. 32, 

pp. II–1278–II–1286, 2014.  

 

[12] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed and A. Lerchner, 
“Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”, in 

International Conference on Learning Representations, 2017.  

 

[13] M. Kuta, M. Morawiec and J. Kitowski, “Sentiment Analysis with Tree-Structured Gated Recurrent 

Units”, in Text, Speech, and Dialogue, Lecture Notes in Computer Science, pp. 74–82, Springer, 

2017.  

 

[14] K. Irie, Z. Tüske, T. Alkhouli, R. Schlüter and H. Ney, “LSTM, GRU, Highway and a Bit of 

Attention: An Empirical Overview for Language Modeling in Speech Recognition”, in Interspeech, 

pp. 3519–3523, 2016.  

 

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning”, Nature, vol. 521, no. 7553, pp. 436–444, 
2015. 

 

[16] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Comput., vol. 9, no. 8, pp. 

1735-1780, 1997.  

 

[17] R. S. Sutton, D. McAllester, S. Singh and Y. Mansour, “Policy Gradient Methods for Reinforcement 

Learning with Function Approximation”, in International Conference on Neural Information 

Processing Systems, pp. 1057–1063, MIT Press, 1999.  

 

[18] H. Noh, T. You, J. Mun and B. Han, “Regularizing Deep Neural Networks by Noise: Its 

Interpretation and Optimization”, in Advances in Neural Information Processing Systems, (I. Guyon, 
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, 

pp. 5109–5118, Curran Associates, 2017. 

 

[19] P. He, J. Zhu, S. He, J. Li and M. R. Lyu, “An Evaluation Study on Log Parsing and Its Use in Log 

Mining”, in IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 654–

661, 2016.  

 

[20] S. He, J. Zhu, P. He and M. R. Lyu, “Experience Report: System Log Analysis for Anomaly 

Detection”, in IEEE International Symposium on Software Reliability Engineering, pp. 207–218, 

2016.  

 

[21] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng and M. R. Lyu, “Tools and Benchmarks for Automated 
Log Parsing”, in International Conference on Software Engineering: Software Engineering in 

Practice, International Conference on Software Engineering: Software Engineering in Practice, pp. 

121–130, 2019.  

 

[22] M. Du, F. Li, G. Zheng and V. Srikumar, “DeepLog: Anomaly Detection and Diagnosis from System 

Logs through Deep Learning”, in ACM Conference on Computer and Communications Security, pp. 

1285–1298, 2017.  

 

[23] X. Wu, M. Klyen, K. Ito and Z. Chen, “Haiku Generation using Deep Neural Networks”, The 

Association for Natural Language Processing, pp. 1–4, 2017. 

 
 

 



Computer Science & Information Technology (CS & IT)                              175 

 

AUTHORS 
 

Amir Farzad received the Masters degree in computer engineering (minor: 

artificial intelligence) from Shahrood University of Technology, Shahrood, Iran, 

in 2016. He is currently a Ph.D. student in the Department of Electrical and 

Computer Engineering, University of Victoria, Victoria, BC, Canada. His 

research interests include machine learning, deep learning and natural language 

processing. 

 

 

 
Thomas Aaron Gulliver received the Ph.D. degree in electrical engineering 

from the University of Victoria,  Victoria, BC, Canada, in 1989. From 1989 to 

1991, he was a Defence Scientist with the Defence Research Establishment 

Ottawa, Ottawa, ON, Canada. He has held academic positions at Carleton 

University, Ottawa, and the University of Canterbury, Christchurch, New 

Zealand. He joined the University of Victoria, in 1999, and is currently a 

Professor with the Department of Electrical and Computer Engineering. His 

research interests include information theory and communication theory, 

algebraic coding theory, cryptography, multicarrier systems, smart grid, intelligent networks, 

cryptography, and security. He became a Fellow of the Engineering Institute of Canada in 2002 and a 

Fellow of the Canadian Academy of Engineering in 2012. 
 

 

 

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 

 


