
David C. Wyld et al. (Eds): ITCSE, NLCA, ICAIT, CAIML, ICDIPV, CRYPIS, WiMo - 2020

pp. 163-175, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.100515

OVERSAMPLING LOG MESSAGES USING A

SEQUENCE GENERATIVE ADVERSARIAL

NETWORK FOR ANOMALY DETECTION
AND CLASSIFICATION

Amir Farzad and T. Aaron Gulliver

Department of Electrical and Computer Engineering, University of Victoria, PO

Box 1700, STN CSC, Victoria, BC Canada V8W 2Y2

ABSTRACT

Dealing with imbalanced data is one of the main challenges in machine/deep learning

algorithms for classification. This issue is more important with log message data as it is

typically very imbalanced and negative logs are rare. In this paper, a model is proposed to

generate text log messages using a SeqGAN network. Then features are extracted using an

Autoencoder and anomaly detection is done using a GRU network. The proposed model is

evaluated with two imbalanced log data sets, namely BGL and Openstack. Results are presented

which show that oversampling and balancing data increases the accuracy of anomaly detection

and classification.

KEYWORDS

Deep Learning, Oversampling, Log messages, Anomaly detection, Classification

1. INTRODUCTION

Logs are commonly used in software systems such as cloud servers to record events. Generally,
these unstructured text messages are imbalanced because most logs indicate that the system is

working properly and only a small portion indicate a significant problem. Data distribution with a

very unequal number of samples for each label is called imbalanced. The problem of imbalanced

data has been considered in tasks such as text mining [1], face recognition [2] and software
defect prediction [3].

The imbalanced nature of log messages is one of the challenges for classification using deep

learning. In binary classification, there are only two labels, and with imbalanced data, most are
normal (denoted major) logs. The small number of abnormal (denoted minor) logs makes

classification difficult and can lead to poor accuracy with deep learning algorithms. This is

because the normal logs dominate the abnormal logs. Oversampling and undersampling are two
methods that can be used to address this problem. In undersampling, the major label samples are

reduced so the number is similar to the minor label samples. A serious drawback of

http://airccse.org/cscp.html
http://airccse.org/csit/V10N05.html
https://doi.org/10.5121/csit.2020.100515

164 Computer Science & Information Technology (CS & IT)

undersampling is loss of information [4]. In oversampling, the number of minor label samples is
increased so it is similar to the number of major label samples. Recently, a generative adversarial

network (GAN) [5] was proposed for generating images and showed good results in generating

data which is similar to actual data such as with image captions [6]. GANs are able to generate

more abstract and varied data than other algorithms [7].

In this paper we propose a model to deal with imbalanced log data by oversampling text log
messages using a Sequence Generative Adversarial Network (SeqGAN) [8]. The resulting data is

then used for anomaly detection and classification with Autoencoder [9] and Gated Recurrent

Unit (GRU) [10] networks. An Autoencoder is a feed-forward network that has been shown to be
useful for extracting important information from data. Autoencoders have been applied to many

tasks such as probabilistic and generative modeling [11] and representation learning [12]. A

GRU is a Recurrent Neural Network (RNN) which has been employed in tasks such as sentiment

analysis [13] and speech recognition [14]. The proposed model is evaluated using two labeled log
message data sets, namely BlueGene/L (BGL) and Openstack. Results are presented which show

that the proposed model with oversampling provides better results than the model without

oversampling.

The main contributions of this paper are as follows.

1. A model is proposed for log message oversampling for anomaly detection and
classification.

2. The proposed model is evaluated using two well-known data sets and the results with and

without oversampling are compared.

The rest of the paper is organized as follows. In Section 2 the Autoencoder, GRU and SeqGAN

architectures are presented and the proposed model is described. The experimental results and
discussion are given in Section 3. Finally, Section 4 provides some concluding remarks.

2. SYSTEM MODEL

In this section, the Autoencoder, GRU and SeqGAN architectures employed are given along with
the proposed network model.

2.1. Autoencoder Architecture

An Autoencoder is a feed-forward multi-layer neural network with the same number of input and

output neurons. It is used to learn a more efficient representation of data while minimizing the

corresponding error. An Autoencoder with more than one hidden layer is called a deep
Autoencoder [15]. A reduced dimension data representation is produced using encoder and

decoder hidden layers in the Autoencoder architecture. Backpropagation is used for training to

reduce the loss based on a loss function. Figure 1 shows the Autoencoder architecture with an
input layer, two hidden layers, and an output layer.

Computer Science & Information Technology (CS & IT) 165

Figure 1. Autoencoder architecture with an input layer, two hidden layers, and an output layer.

2.2. GRU Architecture

A Gated Recurrent Unit (GRU) is a type of RNN network which is a modified version of an

LSTM network [16]. It has a reset gate and an update gate. The reset gate determines how much

information in a block should be forgotten and is given by

1= (),t r t r t rr W x U h b   (1)

where rb is the bias vector,  is the sigmoid activation function and rW and rU are the

weight matrices. The update gate decides how much information should be updated and can be
expressed as

1= (),t z t z t zz W x U h b   (2)

where zW and zU are the weight matrices and zb is the bias vector. The block output at time t

is

 (3)

where hb is the bias vector and hW and hU are the weight matrices. A GRU block is shown in

Figure 2.

166 Computer Science & Information Technology (CS & IT)

Figure 2. A GRU block with reset gate, update gate, and tangent hyperbolic
and sigmoid activation functions.

2.3. SeqGAN Architecture

A SeqGAN consists of a Generator (G) and a Discriminator (D). The Discriminator is trained

to discriminate between real data (sentences) and generated sentences. The Generator is trained

using the Discriminator using the reward function with policy gradient [17]. In SeqGAN, the

reward for a sentence is computed and the Generator is regulated using the reward with

reinforcement learning. Generator G is trained with a real data set to produce a sentence

 1: 1= { , , , , }, ,T t T tY y y y y Y

where Y is the vocabulary of candidate words. This should produce a sentence that is close to

real data. This is a reinforcement learning problem which considers G to produce an action a

(next word ty) given the state s (previously generated words 1: 1tY ). SeqGAN trains the

Discriminator D as well as the Generator G . D is trained to discriminate between real data

and data generated from G . Words are generated by G each time step but D only computes

rewards for full sentences. Hence, the rewards for intermediate states are estimated using Monte

Carlo (MC) search and are given by

1: 1= (= , =) =
G

D t tQ s Y a y

 

1: 1: 1:

=1

1:

1
(), (;) : < ,

() : = ,

N
n n

T T t

n

t

D Y Y MC Y N if t T
N

D Y if t T














(4)

Computer Science & Information Technology (CS & IT) 167

where
G

DQ 


 is the action-value function which is the expected reward from the Discriminator, T

is the sentence length and N is the number of the sentences in the MC search, 1:

n

TY is the n th

sentence in the MC search, and
1:()n

TD Y is the probability of the n th sentence being denoted

real by the Discriminator. After the reward is computed, the Generator G is updated via the

policy gradient which is the gradient of the objective function and is given by

1: 1 1: 1

=1

1
() (|) (,)

T
G

t t D t t

t y
t

J G y Y Q Y y
T


   

  



 
Y

;

(|) 1: 1 1: 1
1: 1

=1

1
= [log (|) (,)],

T
G

y G y Y t t D t t
t t t

t

G y Y Q Y y
T


   


E :

(5)

(),J      (6)

where  is the learning rate. SeqGAN updates the Discriminator and Generator until the

stopping criteria are satisfied. An LSTM, GRU or other RNN network for the Generator and a

Convolutional Neural Network (CNN) network for the Discriminator have been shown to
provide good results for classification tasks [8].

The SeqGAN architecture is shown in Figure 3. The orange circles denote words in real

sentences and the blue circles denote words in generated sentences. First, the Generator is
pretrained with real data using the cross-entropy loss function which minimizes the negative log-

likelihood. Then it is used to generate data and the Discriminator is pretrained with both

generated and real data. The MC search parameters () are set to be the same as the Generator

parameters (). As shown on the right, an MC search is used to compute the reward for an

intermediate state. This search generates N complete sentences from the current state. A reward

is computed for each sentence and averaged as the intermediate reward except in the last time

step where the reward is obtained from the Discriminator. The input of each time step is the

output of the previous time step and the next word is obtained via a multinomial distribution over
the log softmax of the GRU output. Then the Generator is trained with the policy gradient.

Finally, the updated Generator is used to generate data and the Discriminator is trained with both

the generated and real data.

168 Computer Science & Information Technology (CS & IT)

Figure 3. The SeqGAN architecture. The Discriminator on the left is trained with real data and data

generated using the Generator. The Generator on the right is trained using the policy gradient. The reward

is computed by the Discriminator and this is used to determine the intermediate action values for the MC

search.

2.4. Proposed Model

The proposed model has three steps. The first is generating log messages using SeqGAN for

oversampling. The log messages are divided into two data sets, positive labeled data (normal)
and negative labeled data (abnormal). Additional negative labeled data is generated using the

negative labeled data set. The initial negative data set is split into sets (the Openstack data set is

split into two sets and the BGL data set is split into seven sets), and fed into the SeqGAN
separately. This ensures better convergence and provides different negative log messages.

Further, the network speed is faster which is important with data generation. A CNN is used in

the SeqGAN for the discriminator and a GRU as the generator. The GRU has one hidden layer of

size 30 with the ADAM optimizer and the batch size is 128. The generated negative log
messages are concatenated with the original negative data and similar messages are removed.

The resulting data set is balanced with similar numbers of positive and negative data.

The second step is the Autoencoder which has two networks (positive and negative) with three

hidden layers (two encoder layers and one decoder layer). The encoder layers have 400 (with L1

regularizer) and 200 neurons and the decoder layer has 200 neurons. The output layer has 40
neurons which is the same size as the input layer. The positive labeled data is fed into the

positive Autoencoder. Note that this network is trained with just positive label data. The

maximum number of epochs is 100 and the batch size is 128. Dropout with probability 0.8 and

early stopping is used to prevent overfitting. Categorical cross-entropy loss with the ADAM
optimizer is used for training. The network output is labeled as positive. The negative labeled

data which has been oversampled is fed into the negative Autoencoder and the network output is

labeled as negative. The two sets of labeled data are then concatenated, duplicates are removed
and Gaussian noise with zero mean and variance 0.1 is added to avoid overfitting [18].

The final step is the GRU network for anomaly detection and classification. First, the

concatenated data set is divided into training and testing sets with 5% for training and 95% for
testing, and these sets are shuffled. The training set is then divided into two sets with 5% for

training and 95% for validation. The data is fed into the GRU hidden layer of size 100 and is

classified using softmax activation. 10-fold cross-validation is used in training with a maximum
of 100 epochs and a batch size of 128. Dropout with probability 0.8 and early stopping is used to

Computer Science & Information Technology (CS & IT) 169

prevent overfitting. Categorical cross-entropy loss with the ADAM optimizer is used for training.
The proposed model is shown in Figure 4.

Figure 4. The proposed model architecture with SeqGAN for oversampling log messages, two

Autoencoder networks and a GRU network for anomaly detection and classification.

3. RESULTS

In this section, the proposed model is evaluated with and without SeqGAN oversampling using

the BGL and Openstack data sets. Four criteria are used to evaluate the performance, namely
accuracy, precision, recall, and F-measure. Accuracy is the fraction of the input data that is

correctly predicted and is given by

= ,
p n

p n p n

T T
A

T T F F



  

(7)

where pT is the number of positive instances predicted by the model to be positive, nT is the

number of negative instances predicted to be negative, pF is the number of negative instances

predicted to be positive, and nF is the number of positive instances predicted to be negative.

Precision is given by

= ,
p

p p

T
P

T F

(8)

170 Computer Science & Information Technology (CS & IT)

and recall is

= .
p

p n

T
R

T F

(9)

The F-measure is the harmonic mean of recall and precision which can be expressed as

2
= .

P R
F

P R

 



(10)

All experiments were conducted on the Compute Canada Cedar cluster with 24 CPU cores, 125

GB memory and four P100 GPUs with Python in Keras and Tensorflow. We did not tune the

hyperparameters of the proposed model so the default values were used for all data sets. For each

data set, the average training accuracy, average validation accuracy, average training loss, testing
accuracy, precision, recall, and F-measure were obtained. Tables 1 and 2 give the results for the

BGL and Openstack data sets without and with SeqGAN oversampling, respectively.

3.1. BGL

The BlueGene/L (BGL) data set consists of 4,399,503 positive log messages and 348,460
negative log messages (without oversampling). From this data set, 11,869 logs are used for

training, 225,529 for validation and the remaining 4,510,565 for testing with approximately 95%

positive and 5% negative messages in each group. Without oversampling, the average training
accuracy is 97.8% and average validation accuracy is 98.6% with standard deviations of 0.02 and

0.01, respectively, in 10-fold cross-validation. The average training loss is 0.07 with a standard

deviation of 0.01. The testing accuracy is 99.3% with a precision of 98.9% for negative logs and
99.3% for positive logs, and recall of 91.6% and 99.9% for negative and positive logs,

respectively. The F-measure is 95.1% and 99.6% for negative and positive logs, respectively.

Oversampling of the negative log messages with SeqGAN increased the number in the BGL data
set to 4,137,516 so the numbers of positive and negative log messages are similar. From this data

set, 21,342 logs are used for training, 405,508 for validation and the remaining 8,110,169 for

testing with similar numbers of positive and negative log messages in each group. The average
training accuracy is 98.3% and average validation accuracy is 99.3% with a standard deviation of

0.01 in 10-fold cross-validation. The average training loss is 0.05 with a standard deviation of

0.01. The testing accuracy is 99.6% with a precision of 99.8% for negative logs and 99.4% for
positive logs, and recall of 99.3% and 99.8% for negative and positive logs, respectively. The F-

measure is 99.6% for both negative and positive logs. The accuracy levels are better than the

98% obtained with the LogSig algorithm and the BGL data set [19]. The average precision, recall

and F-measure with oversampling are 99.6%, 99.5%, and 99.6%, respectively, which are better
than the values of 99%, 75%, and 85%, respectively, with SVM supervised learning and 83%,

99% and 91%, respectively, with unsupervised learning [20].

Computer Science & Information Technology (CS & IT) 171

3.2. Openstack

The Openstack data set without oversampling consists of 137,074 positive log messages and

18,434 negative log messages. From this data set, 6,608 logs are used for training, 1,167 for
validation and the remaining 147,733 for testing with approximately 95% positive and 5%

negative messages in each group. Without oversampling, the average training accuracy is 98.4%

and average validation accuracy is 97.2% with a standard deviation of 0.01 in 10-fold cross-
validation. The average training loss is 0.05 with a standard deviation of 0.01. The testing

accuracy is 98.3% with a precision of 97.9% for negative logs and 98.3% for positive logs, and

recall of 87.1% and 99.8% for negative and positive logs, respectively. The F-measure is 92.2%

and 99.0% for negative and positive logs, respectively.

Oversampling of the negative log messages with SeqGAN increased the number in the

Openstack data set to 154,202. From this data set, 12,378 logs are used for training, 2,185 for
validation and the remaining 276,713 for testing with similar numbers of positive and negative

log messages in each group. With oversampling, the average training accuracy is 98.0% and

average validation accuracy is 98.7% with a standard deviation of 0.01 in 10-fold cross-

validation. The average training loss is 0.06 with a standard deviation of 0.01. The testing
accuracy is 98.9% with a precision of 99.6% for negative logs and 98.2% for positive logs, and

recall of 98.4% and 99.5% for the negative and positive logs, respectively. The F-measure is

99.0% and 98.8% for negative and positive logs, respectively. The accuracy levels are better than
the 87.1% obtained with the IPLoM algorithm and the Openstack data set [21]. The average

precision, recall and F-measure with oversampling are 98.9%, 99.0%, and 98.9%, respectively,

which are better than the 94%, 99% and 97% obtained with the Deeplog network [22].

Table 1. Results without oversampling for the BGL and Openstack data sets (numbers in parenthesis are
standard deviation). Positive labels are denoted by 1 and negative labels by 0.

Data set

Average

Training

Accuracy

Average

Validation

Accuracy

 Average

Training

Loss

Testing

Accuracy

Label

Precision

Recall

F-measure

BGL

97.8% 98.6% 0.07

99.3%

0 98.9% 91.6% 95.1%

 (0.02) (0.01) (0.01) 1 99.3% 99.9% 99.6%

Openstack

98.4%

97.2%

 0.05%

98.3%

0

 97.9%

 87.1%

92.2%

 (0.01) (0.01) (0.01) 1 98.3% 99.8% 99.0%

172 Computer Science & Information Technology (CS & IT)

Table 2. Results with oversampling using SeqGAN for the BGL and Openstack data sets (numbers in

parenthesis are standard deviation). Positive labels are denoted by 1 and negative labels by 0.

Data set

Average

Training

Accuracy

Average

Validation

Accuracy

Average

Training

Loss

Testing

Accuracy

Label

Precision

Recall

F-measure

BGL

98.3% 99.3% 0.05

99.6%

0 99.8% 99.3% 99.6%

(0.01) (0.01) (0.01) 1 99.4% 99.8% 99.6%

Openstack

98.0%

98.7%

0.06%

98.9%

0

99.6%

98.4%

99.0%

 (0.01) (0.01) (0.01) 1 98.2% 99.5% 98.8%

3.3. Discussion

The proposed oversampling with SeqGAN provided good results for both the BGL and

Openstack data sets. It is evident that oversampling significantly improved the model accuracy

for negative log messages. For the BGL data set, the precision, recall and F-measure after
oversampling increased from 98.9% to 99.8%, 91.6% to 99.3% and 95.1% to 99.6% which are

0.9%, 7.7% and 4.5% higher, respectively. For the Openstack data set, the precision, recall and

F-measure after oversampling increased from 97.9% to 99.6%, 87.1% to 98.4% and 92.2% to
99.0% which are 1.7%, 11.3% and 6.8% higher, respectively. These results show that data

balancing should be considered with deep learning algorithms to improve the accuracy,

especially for small numbers of minor label samples. The proposed model was evaluated with

two data sets for anomaly detection and classification with only a small portion (less than 1%)
used for training. This is an important result because deep learning algorithms typically require

significant amounts of data for training. Note that good results were obtained even though the

hyperparameters were not tuned.

The first step in the proposed model where logs are oversampled with a SeqGAN network is the

most important. These networks have been shown to provide promising results in generating text

such as poems [23]. The concept of generating data is similar to that for oversampling. It was
surprising that duplication in the oversampled log data was not high (less than 5%). As a

consequence, after removing duplicates there was a significant amount of data available for

anomaly detection and classification using deep learning. The second step which extracts features
from the data using an Autoencoder is also important. The Autoencoder output is very suitable

for use with an RNN based algorithm such as a GRU for anomaly detection and classification.

The results obtained show that the proposed model can provide excellent results even when the
data is imbalanced.

Computer Science & Information Technology (CS & IT) 173

4. CONCLUSIONS

In this paper, a model was proposed to address the problem of imbalanced log messages. In the

first step, the negative logs were oversampled with a SeqGAN network so that the numbers of

positive and negative logs are similar. The resulting labeled logs were then fed into an

Autoencoder to extract features and information from the text data. Finally, a GRU network was
used for anomaly detection and classification. The proposed model was evaluated using two log

message data sets, namely BGL and Openstack. Results were presented which show that

oversampling can improve detection and classification accuracy. In the future, other text-based
GAN networks such as TextGAN and MaliGAN can be used for oversampling.

REFERENCES

[1] T. Munkhdalai, O.-E. Namsrai and K. H. Ryu, “Self-training in Significance Space of Support

Vectors for Imbalanced Biomedical Event Data”, BMC Bioinformatics, vol. 16, no. S7, pp. 1-8,

2015.

[2] Y.-H. Liu and Y.-T. Chen, “Total Margin Based Adaptive Fuzzy Support Vector Machines for

Multiview Face Recognition”, in IEEE International Conference on Systems, Man and Cybernetics,

pp. 1704–1711, 2005.

[3] M. J. Siers and M. Z. Islam, “Software Defect Prediction using A Cost Sensitive Decision Forest and
Voting, and A Potential Solution to the Class Imbalance Problem”, Information Systems, vol. 51, pp.

62-71, 2015.

[4] N. V. Chawla, “Data Mining for Imbalanced Datasets: An Overview”, in Data Mining and

Knowledge Discovery Handbook, pp. 853–867, Springer, 2005.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y.

Bengio, “Generative Adversarial Nets”, in International Conference on Neural Information

Processing Systems, pp. 2672–2680, MIT Press, 2014.

[6] D. Li, Q. Huang, X. He, L. Zhang and M.-T. Sun, “Generating Diverse and Accurate Visual Captions
by Comparative Adversarial Learning”, arXiv e-prints, arXiv:1804.00861, 2018.

[7] L. Liu, Y. Lu, M. Yang, Q. Qu, J. Zhu and H. Li, “Generative Adversarial Network for Abstractive

Text Summarization”, arXiv e-prints, p. arXiv:1711.09357, 2017.

[8] L. Yu, W. Zhang, J. Wang and Y. Yu, “SeqGAN: Sequence Generative Adversarial Nets with Policy

Gradient”, in AAAI Conference on Artificial Intelligence, pp. 2852–2858, 2017.

[9] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Parallel Distributed Processing: Explorations in

the Microstructure of Cognition”, in Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Vol. 1, D. E. Rumelhart, J. L. McClelland and C. PDP Research Group,

Eds., pp. 318–362, MIT Press, 1986.

[10] K. Cho, B. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio,

“Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine

Translation”, in Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734,

2014.

174 Computer Science & Information Technology (CS & IT)

[11] D. J. Rezende, S. Mohamed and D. Wierstra, “Stochastic Backpropagation and Approximate

Inference in Deep Generative Models”, in International Conference on Machine Learning, vol. 32,

pp. II–1278–II–1286, 2014.

[12] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed and A. Lerchner,
“Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”, in

International Conference on Learning Representations, 2017.

[13] M. Kuta, M. Morawiec and J. Kitowski, “Sentiment Analysis with Tree-Structured Gated Recurrent

Units”, in Text, Speech, and Dialogue, Lecture Notes in Computer Science, pp. 74–82, Springer,

2017.

[14] K. Irie, Z. Tüske, T. Alkhouli, R. Schlüter and H. Ney, “LSTM, GRU, Highway and a Bit of

Attention: An Empirical Overview for Language Modeling in Speech Recognition”, in Interspeech,

pp. 3519–3523, 2016.

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning”, Nature, vol. 521, no. 7553, pp. 436–444,
2015.

[16] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Comput., vol. 9, no. 8, pp.

1735-1780, 1997.

[17] R. S. Sutton, D. McAllester, S. Singh and Y. Mansour, “Policy Gradient Methods for Reinforcement

Learning with Function Approximation”, in International Conference on Neural Information

Processing Systems, pp. 1057–1063, MIT Press, 1999.

[18] H. Noh, T. You, J. Mun and B. Han, “Regularizing Deep Neural Networks by Noise: Its

Interpretation and Optimization”, in Advances in Neural Information Processing Systems, (I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30,

pp. 5109–5118, Curran Associates, 2017.

[19] P. He, J. Zhu, S. He, J. Li and M. R. Lyu, “An Evaluation Study on Log Parsing and Its Use in Log

Mining”, in IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 654–

661, 2016.

[20] S. He, J. Zhu, P. He and M. R. Lyu, “Experience Report: System Log Analysis for Anomaly

Detection”, in IEEE International Symposium on Software Reliability Engineering, pp. 207–218,

2016.

[21] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng and M. R. Lyu, “Tools and Benchmarks for Automated
Log Parsing”, in International Conference on Software Engineering: Software Engineering in

Practice, International Conference on Software Engineering: Software Engineering in Practice, pp.

121–130, 2019.

[22] M. Du, F. Li, G. Zheng and V. Srikumar, “DeepLog: Anomaly Detection and Diagnosis from System

Logs through Deep Learning”, in ACM Conference on Computer and Communications Security, pp.

1285–1298, 2017.

[23] X. Wu, M. Klyen, K. Ito and Z. Chen, “Haiku Generation using Deep Neural Networks”, The

Association for Natural Language Processing, pp. 1–4, 2017.

Computer Science & Information Technology (CS & IT) 175

AUTHORS

Amir Farzad received the Masters degree in computer engineering (minor:

artificial intelligence) from Shahrood University of Technology, Shahrood, Iran,

in 2016. He is currently a Ph.D. student in the Department of Electrical and

Computer Engineering, University of Victoria, Victoria, BC, Canada. His

research interests include machine learning, deep learning and natural language

processing.

Thomas Aaron Gulliver received the Ph.D. degree in electrical engineering

from the University of Victoria, Victoria, BC, Canada, in 1989. From 1989 to

1991, he was a Defence Scientist with the Defence Research Establishment

Ottawa, Ottawa, ON, Canada. He has held academic positions at Carleton

University, Ottawa, and the University of Canterbury, Christchurch, New

Zealand. He joined the University of Victoria, in 1999, and is currently a

Professor with the Department of Electrical and Computer Engineering. His

research interests include information theory and communication theory,

algebraic coding theory, cryptography, multicarrier systems, smart grid, intelligent networks,

cryptography, and security. He became a Fellow of the Engineering Institute of Canada in 2002 and a

Fellow of the Canadian Academy of Engineering in 2012.

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

