KASMEJ

Kastamonu Medical Journal regularly publishes internationally qualified issues in the field of Medicine in the light of up-to-date information.

EndNote Style
Index
Original Article
The effects of maternal zinc deficiency on myometrial contractility: an in vitro study
Aims: The aim of the study is to investigate the effects of zinc-supplemented or zinc-deficient diet on myometrial contractility during pregnancy.
Methods: The patients were divided in four groups as Group 1 (n=5) fed with zinc-deficient diet, Group 2 (n=5) fed with zinc-supplemented diet, Group 3 (n=5) fed with normal diet, and Group 4 (n=5) as the control group and in vitro contractility study was conducted in the myometrial samples taken from these four groups, and intergroup comparison was performed for the results. The p<0.05 was accepted as significant.
Results: In the evaluation of the contractility data, it was determined that the strength and period of contraction and also the frequencies increased in the zinc-supplemented group compared to the other groups. The difference was found to be significant only in frequency ( p<0.05). In the intergroup comparison, the frequency was found to be significantly higher in the zinc-supplemented group than all the other groups ( p<0.05).
Conclusion: This in vitro finding can indicate the importance of zinc supplementation during pregnancy for postpartum bleeding.


1. Baltaci AK, Mogulkoc R, Baltaci SB.<a href="https://pubmed.ncbi.nlm.nih.gov/30772815/">Review: The role ofzincin the endocrine system.</a>Pak J Pharm Sci 2019;32:231-239PMID: 30772815.
2. Arao Y, Korach KS.<a href="https://pubmed.ncbi.nlm.nih.gov/34028522/">Thephysiologicalroleof estrogen receptor functional domains.</a>Essays Biochem 2021;EBC20200167. doi: 10.1042/EBC20200167.
3. Ruz M, Carrasco F, Rojas P, Basfi-Fer K, Hern&aacute;ndez MC, P&eacute;rez A.<a href="https://pubmed.ncbi.nlm.nih.gov/30600497/">Nutritional effects ofzincon metabolic syndrome and Type 2 Diabetes: mechanisms and main findings in human studies.</a>Biol Trace Elem Res2019;188:177-188 doi: 10.1007/s12011-018-1611-8.
4. Rohmawati L, Keumala Sari D, Sitepu M, Rusmil K. <a href="https://pubmed.ncbi.nlm.nih.gov/33871218/">A randomized, placebo-controlled trial ofzincsupplementation during pregnancy for the prevention of stunting: analysis of maternal serumzinc, cord blood osteocalcin and neonatal birth length.</a>Med Glas (Zenica) 2021;18 doi: 10.17392/1267-21
5. <a href="https://pubmed.ncbi.nlm.nih.gov/33399973/">Kumar V, Kumar A, Singh K, Avasthi K, Kim JJ.Neurobiology ofzincand itsrolein neurogenesis.</a>Eur J Nutr2021;60:55-64 doi:10.1007/s00394-020-02454-3.
6. Al-Sakarneh NA, Mashal RH.<a href="https://pubmed.ncbi.nlm.nih.gov/33859956/">Evaluation ofZincand Homocysteine Status in Pregnant Women and Their Association withPre-eclampsiain Jordan.</a>Prev Nutr Food Sci2021: 26:21-29 doi: 10.3746/pnf.2021.26.1.21.
7. Abu-Saad K, Kaufman-Shriqui V, Freedman LS, Belmaker I, Fraser D.<a href="https://pubmed.ncbi.nlm.nih.gov/32185478/">Preconceptionaldietquality is associated with birth outcomes among low socioeconomic status minority women in a high-income country.</a>Eur J Nutr2021;60:65-77 doi:10.1007/s00394-020-02221-4.
8. Li M, Grewal J, Hinkle SN, et al. <a href="https://pubmed.ncbi.nlm.nih.gov/34075392/">Healthydietarypatterns and common pregnancy complications: a prospective and longitudinal study.</a>Am J Clin Nutr2021:2;nqab145 doi: 10.1093/ajcn/nqab145.
9. Staub E, Evers K, Askie LM.<a href="https://pubmed.ncbi.nlm.nih.gov/33710626/">Enteralzincsupplementation for prevention of morbidity and mortality inpretermneonates.</a>Cochrane Database Syst Rev2021;3:CD012797 doi:10.1002/14651858.CD012797.pub2.
10. <a href="https://pubmed.ncbi.nlm.nih.gov/32184147/">Georgieff MK.Iron deficiency in pregnancy.</a>Am J Obstet Gynecol2020;223:516-524 doi: 10.1016/j.ajog.2020.03.006.
11. Brion LP, Heyne R, Lair CS.<a href="https://pubmed.ncbi.nlm.nih.gov/33010794/">Role ofzincin neonatal growth and brain growth: review and scoping review.</a>Pediatr Res2020; doi: 10.1038/s41390-020-01181-z.
12. Zahiri Sorouri Z, Sadeghi H, Pourmarzi D.<a href="https://pubmed.ncbi.nlm.nih.gov/26365330/">The effect ofzincsupplementationon pregnancy outcome: a randomized controlled trial.</a>J Matern Fetal Neonatal Med 2016;29:2194-2198 doi:10.3109/14767058.2015.1079615.
13. Sanusi KO, Ibrahim KG, Abubakar B et al.. <a href="https://pubmed.ncbi.nlm.nih.gov/33610057/">Effect of maternalzincdeficiency on offspring health: The epigenetic impact.</a>J Trace Elem Med Biol2021;65:126731 doi: 10.1016/j.jtemb.2021.126731.
14. Carducci B, Keats EC, Bhutta ZA. <a href="https://pubmed.ncbi.nlm.nih.gov/33724446/">Zinc supplementation for improving pregnancy and infant outcome.</a>Cochrane Database Syst Rev2021;16:3CD000230 doi:10.1002/14651858.CD000230.pub6.
15. Dumrongwongsiri O, WinichagoonP, Chongviriyaphan N, Suthutvoravut U, Grote V, Koletzko B.<a href="https://pubmed.ncbi.nlm.nih.gov/33808021/"> Effect of maternal nutritional status and mode of delivery on zinc and ironstores at birth. </a>Nutrients2021;13:860 doi:10.3390/nu13030860.
16. Garner TB, Hester JM, Carothers A, Diaz FJ. <a href="https://pubmed.ncbi.nlm.nih.gov/33598687/">Role ofzincin femalereproduction.</a>Biol Reprod2021;104:976-994 doi:10.1093/biolre/ioab023.
17. Pessina F, SolitoR, Maestrini D,Gerli R, Sgaragli G. Effect of anoxia-glucopenia and re-superfusion on intrinsic nerves of mammalian detrusor smooth muscle: importance of glucose metabolism. Neurourol Urodyn2005;24:389-396 doi:10.1002/nau.20094.
18. Alotaibi FM.Effects of intermittent and continuous oxytocin exposure on myometrial contractile activity in term-pregnant rats in vitro. Reprod Sci2020;27:1024-1029 doi:10.1007/s43032-019-00104-6.
19. Orieke D,Ohaeri OC, Ijeh II, Ijioma SN. Gastrointestinal and uterine smooth muscles relaxant and anti-inflammatory effects of corchorusolitorius leaf extract in laboratory animal models. J Ethnopharmacol2020;247:112224 doi: 10.1016/j.jep.2019.112224.
20. Alotaibi MF.<a href="https://pubmed.ncbi.nlm.nih.gov/32046404/">Effects of intermittent and continuous oxytocin exposure on myometrial contractile activity in term-pregnantratsin vitro.</a>Reprod Sci2020; 27:1024-1029 doi:10.1007/s43032-019-00104-6.
21. Malik M, Roh M, England SK.Uterine contractions in rodent models and humans<strong>.</strong><em>Acta Physiol (Oxf)</em>2021;231:e13607 doi:10.1111/apha.13607.
22. Urquhart C, Currell R, Harlow F, Callow L.Home uterine monitoring for detecting preterm labour. Cochrane Database Syst Rev2017; 2:CD006172 doi:10.1002/14651858.CD006172.pub4.
23. <a href="https://pubmed.ncbi.nlm.nih.gov/33671517/">Yasuda K, Yoshida A, Okada H.Conflicting Nongenomic Effects of Progesterone in the Myometriumof Pregnant Rats.</a>Int J Mol Sci2021;22:2154 doi:10.3390/ijms22042154.
Volume 1, Issue 3, 2021
Page : 71-74
_Footer