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Abstract. Here we introduce a new method, termed “Nano Ranking Analysis,” for characterizing new particle 

formation (NPF) from atmospheric observations. Using daily variations of the particle number concentration at sizes 

immediately above the continuous mode of molecular clusters, here in practice 2.5-5 nm - Δ𝑁2.5−5, we can determine 20 

the occurrence and estimate the strength of atmospheric NPF events. After determining the value of Δ𝑁2.5−5 for all 

the days during a period under consideration, the next step of the analysis is to rank the days based on this simple 

metric. The analysis is completed by grouping the days either into a number of percentile intervals based on their 

ranking or into a few modes in the distribution of 𝑙𝑜𝑔(Δ𝑁2.5−5) values. Using five years (2018-2022) of data from the 

SMEAR II station in Hyytiälä, Finland, we found that the days with higher (lower) ranking values had, on average, 25 

both higher (lower) probability of NPF events and higher (lower) particle formation rates. The new method provides 

probabilistic information about the occurrence and intensity of NPF events and is expected to serve as a valuable tool 

to define the origin of newly formed particles at many types of environments that are affected by multiple sources of 

aerosol precursors. 

1 Introduction 30 

Atmospheric new particle formation (NPF) events take place relatively frequently in most of the continental 

environments (e.g Wang et al., 2017; Kerminen et al., 2018; Nieminen et al., 2018; Chu et al., 2019; Bousiotis et al., 

2021), and this phenomenon appears to be connected with both regional cloud  condensation nuclei production (e.g. 

Peng et al., 2014; Petäjä et al., 2022) and urban haze formation (Guo et al., 2014; Kulmala et al., 2021, 2022b). The 

various influences of atmospheric NPF events depend essentially on their frequency of occurrence and intensity, the 35 

latter determined by time-averaged particle formation and growth rates. Quantifying the main characteristics of NPF 
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in different environments, and connecting these characteristics to emissions and atmospheric processes, is therefore 

vital for our better understanding on the potential influences of atmospheric NPF on air quality, climate and weather. 

Field measurements have been, and will likely continue to be, the primary source of data on the frequency and intensity 

of atmospheric NPF (Kerminen et al., 2018; and references therein). Traditionally, the most common way to estimate 40 

the NPF event frequency from atmospheric observations is to classify individual measurement days into a small 

number of categories, from which one then calculates the fraction of days during which NPF events occurs (Dal Maso 

et al., 2005; Kulmala et al., 2012; Dada et al., 2018). Such NPF event classification methods, while widely applied in 

the scientific literature, tend to be subjective and time consuming, and often result in a large fraction of days for which 

it is difficult to estimate whether a NPF event took place or not. The subjectivity and time consumptions issues can be 45 

alleviated using automatic or semi-automatic methods applied to field measurement data (e.g. Joutsensaari et al., 2018; 

Zaidan et al., 2018; Su et al., 2022), but the problem of having a larger fraction of days difficult to classify tends to 

remain.  

An alternative way to approach the NPF event frequency is to define some indicator, based on quantities obtained 

from field measurements, that predicts NPF events in a more probabilistic way (Hyvönen et al., 2005; McMurry et al., 50 

2005; Kuang et al., 2010; Jayaratne et al., 2015; Cai et al., 2021; Olin et al., 2022). The benefits of such approaches 

compared to the traditional NPF event classification methods are that they are usually faster and more easily applicable 

to all measurement days. However, the indicators developed so far tend to be sensitive to the dominant NPF pathway 

and possibly other site-specific factors, casting doubts about their general applicability to different atmospheric 

environments. 55 

In the vast majority of studies, the intensity of NPF was estimated only for days showing clear signs of both particle 

formation and subsequent particle growth. This is an undesirable feature, since atmospheric NPF appears to proceed 

on other types of days as well, albeit typically with weaker intensities (Kulmala et al., 2022a). Currently available 

tools have a hard time in quantifying these weak-intensity, yet often non-negligible, periods of NPF because of 

instrumental limitations and heterogeneities in measured air masses, limiting determination of both particle formation 60 

and growth rates. 

In this manuscript, we present a novel approach, the Nano Ranking Analysis, for characterizing NPF from atmospheric 

observations. In the following sections, we begin by introducing and detailing the Nano Ranking Analysis. 

Subsequently, we offer an overview of the measurement site and the instruments employed in our study. Finally, we 

outline the procedure for calculating the formation rate, as well as the utilization of the traditional classification 65 

method. Both components will then be used to demonstrate the effectiveness of our novel approach. 

2 Methods 

2.1 Description of the Nano Ranking Analysis 

The Nano Ranking Analysis is designed to characterize NPF events in an objective, quantifiable and replicable 

manner. Our foundational supposition, which is in alignment with earlier observations of atmospheric ions (e.g. 70 
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Tammet et al., 2014; Leino et al., 2016), asserts that the daily fluctuation of the particle number concentrations within 

the 2.5‒5 nm diameter range (Δ𝑁2.5−5) is acutely sensitive to the presence of atmospheric NPF.  

Drawing from this premise, our method quantifies NPF events using their corresponding Δ𝑁2.5−5 value. This value 

practically represents the daily difference between the maximum and minimum concentrations of these particles, and 

conveniently serves as a unique and continuous metric. The approach yields a single representative value for each 75 

measurement day. 

Subsequently, we employ a two-fold approach: firstly, the derived Δ𝑁2.5−5 values are used to rank NPF events, and 

secondly, we scrutinize the logarithmic distribution of these values to discern any dominant modes. These modes can 

be further modelled using Gaussian curves, thereby serving as a useful tool to differentiate between varying intensity 

levels, or "modes", of NPF.   80 

2.1.1 Steps to calculate 𝚫𝑵𝟐.𝟓−𝟓 

The following steps outline our approach for analyzing the days based on the Δ𝑁2.5−5 spectrum: 

1. Extract the timeseries of the particle number concentration (𝑁𝑑1−𝑑2
) in the size interval immediately above 

the continuous mode of molecular clusters from the particle number size distribution (Fig. 1A-B). In our case 

we use the particles in the size range of 2.5‒5 nm. 85 

2. Smooth the 𝑁2.5−5 timeseries to mitigate the influence of potential spurious signals on the ranking value. In 

our case, we applied a rolling median over 2-hour intervals. This approach reduces the impact of noise or 

outliers, ensuring a more reliable and accurate ranking assessment. 

3. Identify diurnal background and active regions. Background regions are generally characterized by times of 

day that have minimal diurnal values, whereas active regions exhibit maximal diurnal values of 𝑁2.5−5. To 90 

identify these regions more accurately, we recommend dividing the dataset into seasons and examine the 

diurnal behavior in each season separately (Fig. 1C). This is particularly important in environments with high 

levels of particle emissions (particularly nanoparticle emissions), such as urban environments, in which 

poorly chosen time regions could result in values of Δ𝑁2.5−5 considerably affected by these emissions. 

4. Find the background number concentration for each event (𝑁𝐵;2.5−5). The background concentration 95 

corresponding to an event is determined based on the median value of 𝑁2.5−5 in the so-called background 

region. For Hyytiälä, this time window is between 21:00 and 06:00 (Fig 1.D). This median is obtained after 

the 2-hour rolling smoothing of the timeseries (step 2). 

5. Find the active peak daytime number concentration (𝑁𝐴;2.5−5) for each event. The active peak concentration 

corresponding to an event is determined based on the max value of 𝑁2.5−5 in the so-called active region. Note 100 

that the 𝑁2.5−5 timeseries has been previously smoothed to a 2-hour rolling median (step 2), and this will 

impact the maximum value. For Hyytiälä, the active time window is between 06:00 and 18:00 (Fig 1.D) 

6. Determine the change in number concentration (Δ𝑁2.5−5) for each event.  This value is defined as  

Δ𝑁2.5−5 = 𝑁𝐴;2.5−5 − 𝑁𝐵;2.5−5       (1) 

and it is the metric used to characterize the strength of potential NPF event occurrence for the corresponding 105 

day (Fig. 1D).  
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7. Rank the days in percentiles based on their corresponding value of Δ𝑁2.5−5 and group the days based on 5% 

intervals (Fig. 2) to assess the corresponding potential NPF pattern of each interval. 

2.1.2 NPF “mode” fitting 

The log(∆𝑁2.5−5) distribution can be used to identify NPF modes based on their intensity. The procedure is as follows: 110 

first, the log(∆𝑁2.5−5)  distribution is depicted (Fig. 3A), and a visual assessment is made to determine the number of 

Gaussian curves needed to describe the distribution— in our case, three curves. Next, the distribution is fitted using 

three Gaussian functions (g1, g2, g3). Initial guesses for the Gaussian’s center, width and amplitude and their allowed 

range in the fitting algorithm are provided based on visual inspection. The division between these groups is determined 

by finding the midpoint between the centers of two subsequent Gaussians (Fig. 3, dashed line). The intensity of NPF 115 

events is assessed within each group by plotting the diurnal median particle number size distribution (Fig. 4, third 

row), so that both visual (Fig. 4, first row) and statistical (Fig. 4, second row) inspections of the diurnal variation of 

𝑁2.5−5 can be performed for each event. 

2.2 Description of the dataset  

2.2.1 Site description 120 

All the measurements were conducted at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR) II, 

in Hyytiälä, southern Finland (61°51´N, 24°17´E; 181 m A.S.L.; Hari and Kulmala, 2005; Hari et al., 2013). The 

SMEAR II station is located in a boreal pine forest, in a pristine rural environment. The nearest large city is Tampere, 

located approximately 60 km southwest of the station, with a population of around 200 000 residents. Additionally, 

comprehensive observations of trace gases, soil-atmosphere fluxes, as well as meteorological variables, have been 125 

concurrently conducted at the site. More details about the station can be found from Hari and Kulmala (2005). 

2.2.2 Neutral cluster and Air Ion Spectrometer (NAIS) 

We used data from the NAIS (Neutral cluster and Air Ion Spectrometer, Airel Ltd.; Mirme and Mirme, 2013). The 

NAIS measures the number size distributions of ions and total particles in the electrical mobility diameter ranges 0.8-

42 nm and 2.5-42 nm respectively. 130 

The NAIS has two measurement columns operating in parallel, one for each polarity. During ion measurements, the 

positive and negative ions are simultaneously measured in the two columns. During particle measurements, aerosol 

particles are charged to opposite polarities using corona chargers and simultaneously measured in both columns. The 

particle data below about 2 nm is contaminated by charger ions and is not included in the measured size range for 

particles. Air ions and charged particles are separated based on their electrical mobilities, and detected in a 135 

multichannel differential mobility analyzer (DMA). 

Particle number size distribution data from the negative polarity was used and the number concentrations of total 

particles between 2.5 and 5 nm were determined based on interpolation. The number concentrations of 2.5‒5 nm 

particles were used in the Nano Ranking Analysis presented in this study. A visual screening process was performed 

to identify and remove faulty or rain or snow contaminated measurements from the dataset (11 days). 140 
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2.2.3 Differential Mobility Particle Sizer 

The Differential Mobility Particle Sizer (DMPS) measures both the neutral and charged particle number size 

distributions (PNSD) (Aalto et al., 2001). A typical DMPS setup contains a bipolar charger to assess the equilibrium 

charge distribution, a DMA (Differential Mobility Analyzer) to sample particles at specific particle sizes, and a CPC 

(Condensation Particle Counter) to measure particle number concentrations. At the Hyytiälä site, the DMPS 145 

measurement system contains two setups, consisting of a cylindrical DMA and a CPC for each setup. The CPCs can 

detect particle number concentrations ranging from 3 nm to 10 nm, whereas the detection of particle size range for the 

DMPS is 3‒1000 nm. The DMPS system contains a dryer at the inlet, with a continuous sheath flow with a relative 

humidity below 30% to enable measuring the particle size under relatively dry conditions. The measurement height 

of DMPS is at ground level at the station (~2 m), and time resolution of the measurements is 10 minutes. The DMPS 150 

outputs were inverted using kernel inversion method. The inverted outputs were used for visualization of the Nano 

Ranking Analysis percentile bin separation (Fig. 2), as well as for the traditional NPF event classification and 

calculations of particle formation rates.  

2.2.4 Traditional event classification 

We compared the ranks from the Nano Ranking Analysis with the traditional NPF event classification (see section 3, 155 

Fig 7.) introduced by Dal Maso et al. (2005). The traditional event classification categorizes days into NPF event days, 

undefined days and non-event days by visually analyzing the particle number size distribution data from a DMPS on 

a day-to-day basis. This classification procedure characterized NPF events by the growth of a new mode of particles 

in sub-25 nm over a time span of hours. Additionally, the classified NPF events were divided into three sub-classes 

(event Ia, Ib and II) based on the level of confidence determined by particle growth and formation rates. A detailed 160 

description of the traditional NPF event classification can be found in Dal Maso et al. (2005).  

2.2.5 Particle formation rate (J) calculations 

The particle formation rates (J) at 3 nm were calculated following the scheme described in Kulmala et al. (2012), and 

the formula is shown below: 

𝐽𝐷𝑝 =
𝑑𝑁𝐷𝑝

𝑑𝑡
  +  𝐶𝑜𝑎𝑔𝑆𝐷𝑝 ⋅ 𝑁𝐷𝑝 +

𝐺𝑅𝐷𝑝

Δ𝐷𝑝
⋅ 𝑁𝐷𝑝        (2) 165 

where dNDp/dt stands for observed time derivative of particle number concentration in the size range of 3‒7 nm, 

calculated from particle number size distributions (PNSD) from DMPS measurements. The second term describes the 

particle losses due to coagulation to larger size particles with corresponds to their number concentrations (NDp). The 

calculations of coagulation sink considered the sum of coagulation sinks of particles from each size bin (Eq. 3).  

 𝐶𝑜𝑎𝑔𝑆𝐷𝑝 = ∑ 𝐾(𝐷𝑝1, 𝐷𝑝2)𝑁𝐷𝑝2

𝐷𝑝2
𝐷𝑝1

        (3)  170 

where Dp1(Dp) is 3 nm, Dp2 is 7 nm, and K is the coagulation coefficient between particles of size Dp1 and Dp2. The 

correction factor for particle hygroscopic growth is applied when calculating coagulation sinks. 

The last term in Eq. (2) accounts for particle losses due to growth into larger sizes. We used the maximum 

concentration method described in Kulmala et al. (2012) to calculate particle growth rates (GR3-7) from days that were 
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classified as having NPF events (event Ia, Ib and II) based on the guideline illustrated in Dal Maso et al. (2005) briefly 175 

discussed in the previous section. According to the recent discovery of ongoing, non-negligible atmospheric NPF on 

non-event days, termed quiet NPF (Kulmala et al., 2022a), GRs calculated on normalized non-event days were found 

to have similar values as on traditional NPF event days. This finding allows us to assume that the median value from 

all GR3-7 is applicable when calculating J3 from non-event days. 

3 Results and Discussion 180 

In this section, we present the findings of our research derived from the Nano Ranking Analysis. We focus on the 

comparison between the ΔN2.5-5 metric—either directly or via its ranks—and traditional parameters in the study of 

NPF. Specifically, we examine the comparison of ΔN2.5-5 and diurnal patterns (Fig. 5), new particle formation rates 

(Fig. 6), traditional classification of events (Fig. 7), and seasonality (Fig. 8). Finally, we apply the normalization 

proposed by Kulmala et al. (2022) to reveal quiet NPF patterns in the percentile interval bins (Fig. 9). These results 185 

provide valuable insights into the effectiveness and applicability of our proposed metric in capturing key aspects of 

NPF dynamics. 

Figure 5 shows the median particle number concentrations N2.5-5 for different hours of the day and for different 

intensity rank values. We can see that the concentration profile throughout the day is relatively similar for rank values 

approximately below 50 % with little variation in N2.5-5. However, for ranks above 50 % slight increases in N2.5-5 during 190 

daytime hours are observed. As the rank increases, values of N2.5-5 are correspondingly higher. In addition, increased 

daytime particle concentrations last longer for days with higher intensity ranks. For example, for rank values of 85‒

90 % the increased concentrations are mainly present between 12:00 and 18:00, while for rank values of 95‒100 % 

they last two to three hours longer, from approximately 11:00 until 19:00‒20:00. Fig. 5 shows how the analysis method 

presented can be used to study the particle concentrations as well as hours of the day during which NPF potentially 195 

takes place. 

Figures 6A and 6B plot the particle formation rate, J3, as a function of ΔN2.5-5 and of the percentile ranking, 

respectively. The value of J3 clearly increases with increasing ΔN2.5-5 and, as a result, with an increasing percentile 

ranking. J3 is the highest in group g3 and the lowest in group g1.  In group g1, corresponding to percentile rankings 

smaller than about 70 %, average values of J3 slowly increase with increased rank. In group g2, and especially in group 200 

g3, the increase of J3 with increasing rank is stronger. The majority of cases with J3 larger than 0.1 cm-3s-1 occur when 

the percentile ranking is larger than 80 %, with these values mostly belonging to groups g2 and g3. Therefore, Fig. 6 

illustrates the clear connection of ranking with intensity of atmospheric NPF. If the percentile rank of the day is high, 

the intensity of NPF can also be expected to be relatively high. In addition, Fig. 6 demonstrates that the novel Nano 

Ranking Analysis presented here can be compared with continuous variables, such as the particle formation rate, in 205 

investigating NPF. Previously, studies of continuous variables and their effect on NPF have been constrained by a 

binary division of days into NPF event and non-event days. It should be noted that in addition to NPF, the value of 

Δ𝑁2.5−5, and thus, the intensity rank, can be affected by factors such as coagulation sink, other sources of sub-5 nm 

particles, and ion or particle production associated with e.g., rain. In our case, the days included in our analysis were 

visually screened for precipitation to account for this. As a result, while the presented method characterizes NPF 210 
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intensity statistically, some individual days might have lower NPF intensity than their corresponding rank would 

suggest. 

Figure 7 shows the distribution of different NPF event classes, as per the traditional classification scheme, for the 

different percentile rankings. The number of days classified as non-events is the highest when the rank is close to zero, 

and most of the days with ranks below 50 % are classified as non-event days. The number of non-event days decreases 215 

with an increasing rank value, such that only a couple of days above the percentile rank of 90 % are classified as non-

event days, representing a marginal fraction of all the days. The fraction of days classified as NPF event days starts to 

clearly grow after the percentile ranking is over 65 %. However, in Hyytiälä most days are classified as NPF event 

days only for percentile rankings larger than 85 %. In conclusion, while Fig. 6 illustrates the connection of the 

proposed ranking method with the intensity of particle formation, Fig. 7 illustrates its connection with the probability 220 

of the occurrence of atmospheric NPF events. 

Figure 8 demonstrates the advantage of having a continuous variable that characterizes the formation of new particles. 

In the figure, each red point corresponds to a day, and the blue curve is the product of applying a 30-day rolling 

median. In this way, the seasonality of the NPF events can be clearly identified, which in this case shows a higher 

intensity and/or frequency in the spring. This analysis would be significantly more complex if a categorical 225 

classification of NPF events were used. 

Lastly, as illustrated in Figure 9, the integration of the normalization method proposed by Kulmala et al. (2022a) and 

the percentile bin intervals (as shown in Fig. 2), significantly enhances the visibility of NPF event patterns, even in 

ranges that precede those depicted in Figure 2. A well-defined NPF event pattern becomes observable starting from 

the rank of about 55 %, with a less obvious pattern discernible starting from the ranks of about 25 %. Moreover, the 230 

observation that each successively higher interval reveals an increasingly distinct NPF event pattern strongly suggests 

that the Nano Ranking Analysis effectively orders these events, even when they initially seem indistinct. 

Now we address potential limitations of the proposed NPF metric (Δ𝑁2.5−5). It is important to acknowledge that the 

high values in this metric could be influenced by factors such as pollution, or by ions or particles produced by either 

rain (Wimmer et al., 2018) or blowing snow (Chen et al., 2017). On the other hand, a similar formation rate of new 235 

particles will result in a lower concentration of 2.5-5 nm particles when the coagulation sink is higher, as a larger 

fraction of the formed particles are scavenged by the pre-existing particles (e.g. Kerminen and Kulmala, 2002; 

Lehtinen et al., 2007). Consequently, an event with a high NPF ranking may not necessarily correspond to an 

atmospheric NPF event (in case of rain or other particle sources) and, likewise, both intensity and rank of any NPF 

event may be influenced by varying background aerosol conditions. However, no NPF event classification scheme or 240 

metric method is entirely exempt from errors, and the observation of NPF events is always dependent on measurement 

instruments (their size range and noise level) and whether the formation rate is high enough to produce an observable 

increase in particle concentrations over the influence of coagulation sink and other sub-5 nm particle sources. 

Depending on the dataset, one may want to filter out such influencing factors before applying the Nano Ranking 

Analysis. 245 

The application of our new method to different scenarios requires understanding of the specific dynamics unique to 

each site. Variations in the time windows of active and background regions are expected, and these might even vary 
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within the same site depending, e.g., on the time of the year. Additionally, the metric utilized in this study (Eq. 1) may 

not be optimally suited for other sites. For example, in environments with high pollution, the background concentration 

of 𝑁2.5−5 may consistently remain elevated. In such cases, it may be more appropriate to calculate the ratio between 250 

the active and background time windows rather than simply subtracting them. 

Finally, the mode derived from the distribution of log(Δ𝑁2.5−5) may indicate distinct sources, including regional, 

meteorological, or emissions-related factors. It is crucial to contrast these findings with available precursor gases, 

transport patterns, and meteorological variables. Further studies applying this methodology in various scenarios will 

provide valuable insights into, and guidance for, effectively implementing this new metric. 255 

4 Conclusions 

Formation of fresh atmospheric aerosol particles is a worldwide phenomenon. Here we present a new method to 

analyze NPF events. Instead of traditional binary NPF event day vs non-event day analysis, we have developed the 

Nano Ranking Analysis, which ranks the days based on the concentration of 2.5‒5 nm particles seamlessly from very 

low values to high ones. At the same time, the frequency, or mode, of high-ranking values – earlier referred as clear 260 

NPF event days – and low-ranking values (clear non-event days) can be obtained. 

The new Nano Ranking Analysis is an automatic and objective way to find out the two important characteristic of new 

particle formation, namely its intensity and frequency. This continues and deepens the recent finding by Kulmala et 

al. (2022a) that – in practice – new aerosol particles are formed in the atmosphere during all the days. The days with 

high (low) ranking values show typically higher (lower) particle formation rates. 265 

Our finding enables new ways to investigate connections between different days. This includes studying how factors 

such as vapor concentrations, precursor gases, condensation sink, and meteorology impact the intensity and frequency 

of NPF events. In the future it will be important to investigate connections of the ΔN2.5-5 metric—or its ranks—with 

atmospheric conditions in different environments. We hypothesize that the new method is applicable to many other 

types of environments and, besides providing probabilistic information about the occurrence and intensity of NPF, it 270 

has potential to provide valuable insight into the origin of newly formed particles at sites affected by multiple sources 

of aerosol precursors. 
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Figures 

 

Figure 1: Diagram illustrating the process used to calculate the 𝜟𝑵𝟐.𝟓−𝟓 metric. The methodology involves extracting 

particle concentrations in the 2.5 to 5nm range (B) from the particle number size distribution timeseries (A), followed by 

grouping the timeseries by season and plotting daily patterns identifying the background and active zones (C). The final 415 
step calculates the daily difference for each day—here exemplified by the 4th of September 2021— between the maximum 

concentration in the active region and the median concentration in the background region (D).
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Figure 2: Daily median number particle size distribution grouped into 5% intervals based on the ∆𝑵𝟐.𝟓−𝟓 ranks. The 

diameter limits (y-axis) in the surface plots are 2.5 and 1000 nm and are used to illustrate the shape of the potential NPF 420 
events in each interval. For illustration purposes, the particle number concentrations obtained from NAIS (2.5-20nm) and 

DMPS (20-1000nm) are combined.   
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Figure 3: (A) Density histogram (gray) based on the daily 𝒍𝒐𝒈(𝜟𝑵𝟐.𝟓−𝟓) values. Additionally, three Gaussian curves (g1, 425 
g2, g3) are fitted (sky blue) to the distribution. (B) Number of days belonging to each of the identified Gaussian curves in 

(A). The regions corresponding to each group are determined by calculating the middle distance (dashed lines) between 

adjacent Gaussian curve centers. 

 

Figure 4: The first row displays the daily curve of particle concentrations in the range of 2.5 to 5nm, grouped into three 430 
columns: g1, g2, and g3. The second row shows the median and interquartile range of the daily curves shown in the first 

row. The third row presents the median particle number distribution for the days belonging to each group g.  
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Figure 5: Median 2.5-5 nm particle number concentrations (N2.5-5 nm) for different times of the day and for different 

percentile ranking values, which were based on ΔN2.5-5 nm. The percentile rankings have been divided into 5% intervals, 435 
while hourly time resolution was used.  

 

Figure 6: (A) Daily ∆𝑵𝟐.𝟓−𝟓 (x) vs J (y) color-coded by group g. The blue line represents the median, and the shaded region 

indicates the interquartile range. At the top of the panel, a histogram of ∆𝑵𝟐.𝟓−𝟓 values is presented, while on the right side, 

a histogram of J values is shown, both color-coded by group g. (B) Similar to panel A but using percentile ranking instead 440 

of ∆𝑵𝟐.𝟓−𝟓.  
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Figure 7: Comparison between percentile ranking and traditional classification. This histogram displays the percentile 

rankings divided into 5% bins and color-coded based on the classification: Blue (non-event), light blue (undefined), yellow 

(event II), orange (event Ib), and red (event Ia). 445 

 

Figure 8: Daily time series of ∆𝑵𝟐.𝟓−𝟓. The red dots represent the daily values, while the blue line shows the 30-day rolling 

median. The shaded areas indicate the regions corresponding to the modes g1, g2, and g3. 
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 450 

Figure 9: Similar to Fig. 2 but using the normalization proposed by (Kulmala et al., 2022a). In short, for every 5%-interval, 

each size bin is linearly scaled based on its median maximum and minimum so that values span from 0 to 1. 
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