
EVALUATION OF WAVELET AND NON-LOCAL MEAN DENOISING OF 
TERRESTRIAL LASER SCANNING DATA FOR SMALL-SCALE JOINT ROUGHNESS 

ESTIMATION 
 
 

M. Bitenc a,* , D. S. Kieffer a, K. Khoshelham b 

 
a Institute of Applied Geosciences, Graz University of Technology, Austria - (bitenc, kieffer)@tugraz.at 

b Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia – k.khoshelham@unimelb.edu.au 
 

Commission III, WG III/2 
 
 

KEY WORDS: terrestrial laser scanning, range noise, data resolution, joint roughness, wavelet transform, non-local mean, 
denoising performance 

 
 
ABSTRACT: 
 
Terrestrial Laser Scanning (TLS) is a well-known remote sensing tool that enables precise 3D acquisition of surface morphology 
from distances of a few meters to a few kilometres. The morphological representations obtained are important in engineering 
geology and rock mechanics, where surface morphology details are of particular interest in rock stability problems and engineering 
construction. The actual size of the discernible surface detail depends on the instrument range error (noise effect) and effective data 
resolution (smoothing effect). Range error can be (partly) removed by applying a denoising method. Based on the positive results 
from previous studies, two denoising methods, namely 2D wavelet transform (WT) and non-local mean (NLM), are tested here, with 
the goal of obtaining roughness estimations that are suitable in the context of rock engineering practice. Both methods are applied in 
two variants: conventional Discrete WT (DWT) and Stationary WT (SWT), classic NLM (NLM) and probabilistic NLM (PNLM). 
The noise effect and denoising performance are studied in relation to the TLS effective data resolution. Analyses are performed on 
the reference data acquired by a highly precise Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. Roughness 
ratio is computed by comparing the noisy and denoised surfaces to the original ATOS surface. The roughness ratio indicates the 
success of all denoising methods. Besides, it shows that SWT oversmoothes the surface and the performance of the DWT, NLM and 
PNLM vary with the noise level and data resolution. The noise effect becomes less prominent when data resolution decreases. 
 
 

1. INTRODUCTION  

Terrestrial Laser Scanning (TLS) for remotely acquiring precise 
and detailed surface morphology is of broad interest in 
engineering geology and rock mechanics. Some of the 
applications  include extracting 3D geological features, 
assessment of weathering and material classification using 
relative reflectance, and modelling bare earth under vegetation 
(Fowler et al., 2011). This research focuses on measuring the 
detailed surface morphology of rock joints (discontinuities), 
general referred to as “roughness”.  Rock joint roughness is a 
fundamental component of overall rock strength, which is key 
to evaluating rock mass stability. In order to properly introduce 
the morphology of rock joints into stability analyses, it is crucial 
to represent the roughness at engineering scale of interest, 
which depends on the areal extent, and in direction of expected 
movement. Traditional disc-and-compass or contour gauge 
measurements of joint morphology provide limited information 
on roughness due to scale restrictions (no scale-dependency) 
and reliance on 2D measurements (no direction-dependency). 
TLS offers an attractive alternative, since in a short time 
relatively precise and detailed 3D data of an in-situ large-scale 
discontinuity can be obtained. Sturzenegger and Stead (2009) 
showed that TLS technology and careful fieldwork allow the 
extraction of large-scale roughness profiles. However, the 
small-scale roughness estimation is limited by the TLS range 
error, which results in overestimated roughness (noise effect), 
and the effective data resolution, which limits the smallest 
observable roughness scale (smoothing effect).  
 
As proved in some recent studies (Bitenc et al., 2015a; 
Khoshelham et al., 2011; Smigiel et al., 2013, 2011, 2008) 

range error can be successfully reduced by image denoising 
methods. The TLS denoised surfaces show details, which may 
otherwise be lost in noise. In our previous study (Bitenc et al., 
2015a) denoising results of Discrete Wavelet Transform (DWT) 
were analysed, where different DWT methods as well as 
thresholding procedures were tested. Smigiel et al. (2011) 
compared the DWT and Non-Local Mean (NLM) denoising 
methods for a surface reconstruction of a medium (around one 
cubic meter) and small (around one cubic decimetre) 
archaeological objects. They advocated the use of NLM. The 
goal here is to compare the performance of DWT and NLM in 
terms of providing reliable joint surface roughness estimation. 
Besides, results of the best denoising method are analysed with 
respect to the TLS effective data resolution. 
 
The paper is organized as follows: the main object of this 
research, the rock joint roughness, is defined and described in 
Section 2. Limitations of the chosen roughness measurement 
method TLS are explained in Section 3 and suggestions for 
improvement of noisy TLS data are given in Section 4. Section 
5 shows results of the methodology applied on a rock joint 
sample, which lead to conclusions as written in Section 6. 
 

2. JOINT ROUGHNESS 

2.1 Definition 

Rock joint roughness refers to local departures of the joint 
surface from planarity. For large-scale discontinuities, the joint 
roughness consists of large-scale (waviness or primary 
roughness) and small-scale (unevenness or secondary 
roughness) components (ISRM, 1978). Waviness can be 
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described as a large-amplitude and low-frequency signal. Priest 
(1993) defined it as “surface irregularities with a wavelength 
greater than about 10 cm”. Unevenness represents a small-
amplitude and high-frequency signal. It covers finer scales of 5 
to 10 cm and is superimposed on the waviness. Roughness 
changes with the direction (anisotropy) and should be 
parameterized in a direction of the most probable shear failure. 
When the shear direction is not known a-priori, roughness 
should be measured in all possible directions. 
 
2.2 Parameterization 

The angular threshold method, hereafter referred to as the 
Grasselli parameter (GP) after Grasselli (2001), was chosen to 
parameterize the roughness. The reasons are that it considers 3D 
surface and describes roughness anisotropy, and appears to be 
less sensitive to TLS measurement random errors as disc-
clinometer method (Bitenc et al., 2015b) and fractals 
(Khoshelham et al., 2011). 
 
The Grasselli parameter is based on experimental data that can 
identify potential rock contact areas during direct shear testing 
of artificial rock joints. Highly accurate and detailed ATOS 
(Advanced TOpometric Sensor) measurements were used to 
reconstruct (triangulate) the surface of the rock joint before and 
after the shearing. Based on joint surface damage patterns, it 
was found that only those areas of the joint surface that face the 
shear direction and are steeper than a threshold inclination θ∗, 
which depends on the normal load, provide shear resistance. 
Regression analysis of the sum of those areas results in an 
empirical equation for the roughness, which is defined as: 
 

R = θ���
∗ (C + 1)⁄  (1) 

 
Where θ���

∗  is the maximum apparent dip angle of the surface 
in the shear (analysis) direction and C is an empirical fitting 
parameter calculated via a non-linear least-squares regression. 
More details on the roughness parameter development and 
calculation can be found in (Bitenc et al., 2015a; Grasselli, 
2006). 
 

3. TLS LIMITATIONS  

When estimating surface details that are close to limits of the 
TLS instrument capabilities, the laser scanner range error and 
the effective data resolution need to be considered. In the 
following, range error and resolution are discussed in the 
context of the Rigel VZ-400 laser scanner used in our research. 
 
3.1 Range error 

In general, TLS data accuracy depends on several factors: (i) 
imprecision of laser scanner mechanism, (ii) geometric 
properties of scanned surface (scanning geometry), (iii) physical 
properties of scanned surface material, and (iv) environmental 
(atmospheric) conditions (Soudarissanane et al., 2011). 
Resulting measurement errors are composed of systematic and 
random errors. Systematic errors are usually removed by a 
proper calibration procedure (Lichti, 2007). The remaining 
random errors are attributed mainly to range error and are 
therefore referred to as range noise. In the official specifications 
the VZ400 range error (positioning precision) is 3 mm (Riegl, 
2015). As commonly holds and as shown in (Vezočnik, 2011) 
the actual noise is smaller. His experiment showed that for 
scanning distances up to 65 m and incidence angles up to 60ᵒ 
the noise reaches 2.2 mm. 
 

3.2 Effective data resolution 

TLS data resolution refers to the ability to resolve two objects 
on adjacent sight lines and depends on sampling interval 
(nominal point spacing) and laser beamwidth (footprint size) 
(Lichti and Jamtsho, 2006). In theory a very high data resolution 
can be achieved by repeating the scans. But the actual resolution 
would be lower, since the laser light diverges with the distance 
travelled and illuminates certain area on the surface. The range 
measured is the average distance to this illuminated area. As a 
result, at longer distances and thus larger beam-widths the 
surface details are averaged (smoothed) out.  
 
The resulting (effective) TLS data resolution was studied in 
(Lichti and Jamtsho, 2006; Pesci et al., 2011). Based on the 
concept of Average Modulation Transfer Function (AMTF), 
which combines the sampling interval and the size of the beam 
footprint, Lichti and Jamtsho (2006) defined a new resolution 
measure called Effective Instantaneous Field Of View (EIFOV). 
Mills (2015) calculated the EIFOV for the VZ400. 
 

4. DENOISING METHODS  

Denoising methods are a promising tool to minimize the effect 
of TLS range error on surface roughness estimation. Once the 
complexity of a 3D randomly scattered point cloud is reduced 
by gridding to a regular 2.5D surface, a wide range of existing 
image processing algorithms can be used. An overview of 
image denoising methods and further references can be found in 
(Buades et al., 2005; Smigiel et al., 2011; Zhang et al. 2014). In 
this research the two methods (DWT and NLM), together with 
their two variants, are tested for a reliable roughness estimation. 
In the following, the relevant details of the methods are shortly 
described.  
 
4.1 Discrete wavelet transform  

Denoising by discrete wavelet transform (DWT) has its origin 
in research of Donoho (1995). Wavelet Transforms belong to 
transforming domain filtering methods. DWTs decompose the 
surface into different scales (levels) with different space and 
frequency resolution by translating and dilating a single 
function, the mother wavelet. Since noise is characterized by 
high frequency fluctuations, it is likely that thresholding high 
frequency components (details) of DWT reduces noise and 
preserves low frequency components that present general trend.  
 
4.1.1 Mother wavelet and level: For a multi-level DWT, the 
decision has to be made about mother wavelet and number of 
levels. In our research the most general Daubechies wavelet 
(db) was chosen as the best match with the surface shape, and 
the decomposition level was determined by the surface size. 
Considering those criteria, our experience indicates that the 
choice of wavelet (e.g. db3 or db4) and number of levels (e.g. 3 
or 4) influence on the shape of components, but have negligible 
effects on denoising results. Therefore, the effects of wavelets 
and number of levels are not further studied here. 
 
4.1.2 Thresholding: Proper threshold selection is a key to 
eliminate the noise while preserving surface details. Different 
threshold methods have been proposed; e.g. fixed form 
thresholding by Donoho and Johnstone (1994), and penalized 
thresholding by Birgé and Massart (1997). The threshold can be 
applied globally (one value for all levels) or locally (one value 
for each level) and in a soft or hard thresholding mode. In the 
hard mode, coefficients that are smaller than a threshold are set 
to zero. In the soft mode, additional coefficients that are above 
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the threshold are reduced for the threshold value. Therefore, soft 
thresholding results in a smoother profile and hard thresholding 
introduces steps. Based on our previous study (Bitenc et al., 
2015a) the penalised low global hard threshold is applied.  
 
4.1.3 DWT versus SWT: A disadvantage of conventional 
decimated DWT is that it is not shift invariant (because of 
downsampling). This means that the DWT of the translated and 
original surfaces are not the same. Since shift-invariance is 
important for many applications such as change detection, 
denoising and pattern recognition, a new type of DWT was 
developed, namely non-decimated or Undecimated Wavelet 
Transform (UDWT). The principles of DWT and UDWT are 
compared in Figure 1 for the 1D case and three levels. DWT 
downsamples the signal by two, in contrast to UDWT, where 
the signal is left unchanged but filters are upsampled by two on 
each consecutive level (Fugal, 2009).  
 

 
Figure 1. Downsampling the signal in case of  DWT (left) and 
upsampling the wavelet in case of UDWT (right) (Fugal, 2009). 
 
In our research the UDWT algorithm developed by Coifman 
and Donoho (1995) is used, for which a Matlab implementation 
is available. It averages some slightly different DWTs to define 
Stationary Wavelet Transform (SWT).  
 
4.2 Non-Local Mean 

Non-local Mean is a widely used data-adaptive image denoising 
method introduced by Buades et al. (2005). Algorithms belong 
to pixel domain methods, where a non-local spatial filter is used 
to correct a noisy image. NLM is based on similarities of pixel 
neighbourhoods, assuming there is some redundancy i.e. self-
similarity within an image. NLM algorithm corrects the noisy 
image rather than separates the noise (oscillatory) from true 
image (smooth), as is the case of DWT. In recent years many 
variants of NLM have been developed as for example 
Probabilistic NLM (PNLM) (Wu et al., 2013). 
 
4.2.1 NLM parameters: NLM algorithm includes three 
parameters, namely similarity (N) and search (S) window, and 
filtering parameter (h). The similarity window or central patch 
is a square neighbourhood from which the weight is defined as a 
function of Euclidian distance, i.e. locations close to query pixel 
to be denoised get higher value. The search window limits the 
area of an image within which the similar neighbourhoods are 
searched for. The smaller the S the shorter is the computational 
time, but more local the filtering. The filtering parameter 
controls the decay of the weights as a function of the Euclidean 
distance. Success of NLM denoising depends mostly on the 
weights assigned to the noisy pixels neighbouring the pixel to 
be denoised. Parameter values are data dependent and difficult 
to tune. For example, Ville and Kocher (2009) suggest SURE-
based optimization of parameters selection. In our research we 
took general values for the parameters as given in (Wu et al., 
2013) 
 
4.2.2 NLM versus PNLM: The weight function of the 
classic NLM has a disadvantage of assigning non-zero weights 
to dissimilar patches. The problem is pointed out in (Duval et 
al., 2011), but no clear reasoning exist for this inadequacy. Wu 

et al. (2013) developed a new probabilistic weight function and 
showed that PNLM denoised results outperform the NLM. 
Besides, the PNLM works for any types of noise and the NLM 
assumes the Gaussian noise with zero mean and unknown 
variance. For those reasons and because the authors provide the 
Matlab code, the PNLM is tested in this research for TLS data 
denoising. 
 

5. EXPERIMENTS AND RESULTS 

5.1 Data 

To study the sensitivity of Grasselli roughness parameter (GP) 
to the noisy TLS data having certain resolution, higher precision 
and much denser ATOS data were used as a reference. A rock 
joint formed in fossiliferous limestone having dimensions of 
20×30 cm (Figure 2, top) was imaged in the laboratory at 
approximately 0.5 m distance by ATOS I measurement system 
(Capture3D, 2013). On average, point density was 15 points per 
square millimetre (Figure 2, bottom).  

 

 
Figure 2. The sample of 20×30 cm rock joint formed in 
fossiliferous limestone with indicted analysis direction (top) and 
sample’s ATOS point cloud; coordinates are given in meters 
(bottom). 
 
5.2 Experimental workflow 

The ATOS point cloud (APC) was first interpolated into a grid 
of 0.5 mm. This grid represents noiseless and very detailed 
reference surface of the sample. The original APC was too 
detailed to enter the Grasselli roughness computation. Further, 
TLS data were simulated by gridding APC into grid sizes from 
3 mm to 25 mm corresponding to the Riegl VZ400 effective 
data resolution (EIFOV) at distances from approximately 7 m to 
65 m, considering the results in (Mills, 2015). Additionally, grid 
sizes of 30, 40 and 50 mm were added to cover also larger 
distances. Each of those 11 grids (original grids) was corrupted 
with five levels of noise (σ) ranging from 0.5 to 2.5 mm (noisy 
grids). 
 
The noisy grids were denoised by DWT, SWT, NLM and 
PNLM. DWT and SWT transforms were executed on three 
levels using a general purpose Daubechies wavelet db3 (i.e. db3 
has three vanishing moments). Penalised low threshold is 
computed for alpha of 2. Parameters for NLM and PNLM are 
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taken from (Wu et al., 2013), where the patch size is 7 and 
search window 21 pixels. The weights are computed using the 
known noise level σ. (P)NLMs were not computed for grids 
larger than 10 mm, since too few image pixels were included in 
the “image”. For DWT and SWT the surfaces of coarser 
resolution were extended to match the size of the 3 mm grid. 
The extension does not influence results of reconstructed image 
(Strang and Nguyen, 1997). 
 
For the reference and each original, noisy and denoised grid the 
Grasselli roughness parameter (GP) was computed. The analysis 
direction changes clockwise from 0ᵒ (+Y-axis direction) to 355ᵒ 
in 5ᵒ steps (see Figure 2, top). Comparing GPs of the original 
grids (GPo) to the noisy (GPn) and denoised grids (GPd) the 
Grasselli roughness Parameter ratio (GP ratio) is computed as: 
 

�� ����� =  
���/�

���
�  

(2) 

5.3 Noise effect  

Noise effect, which is defined as the surface roughness increase 
with the noise, is shown in Figure 3 for the reference grid, and 
original and noisy grids of 5 mm. 
 

  
Figure 3. Changes of the noise effect with analysis direction for 
the noisy 5 mm grids. Reference surface and original grid of 5 
mm are added for comparison. 
 
GP parameter is sensitive to noise. For the data resolution of 5 
mm and the data noise of 1.5 mm (yellow curve), the GP is on 
average overestimated for around 73 % (GP ratio). Noise effect 
varies with analysis direction and has distinct maximums at 
around 45° and 225° and minimums at 135° and 315° 
(sinusoidal pattern”). This pattern is connected to the ratio of 
grid size and noise level. It diminishes with the larger grid sizes 
and smaller noise. Comparing the GP of reference ATOS 
surface (dark red curve) with the GPo (light blue curve), the 
smoothing effect can be observed.  
 
5.4 Denoising performance 

Performance of the four denoising methods applied on the noisy 
grids of 5 mm is shown as error plot in Figure 4. Lines show the 
mean and the error bars the standard deviation of GPs of all 
analysis directions. 
 
The error plots show that SWT results in oversmoothed surface, 
DWT performs best for noise levels below 2 mm and the NLM 
takes over in case TLS data are noisier. Same pattern of 
denoising performance is observed when the four methods are 
applied on grid sizes up to 10 mm. 
 

 
Figure 4. Comparing performance of the four denoising 
methods on the noisy grids of 5 mm. 
 
In Figure 5 the GP ratio of DWT denoised grids of 5 mm is 
shown with respect to analysis direction. As observed already in 
Figure 4, the DWT performs less successfully in case of 2.5 mm 
noise. Denoised surfaces do not show the “sinusoidal” pattern 
anymore (compare to Figure 3). 
 

 
Figure 5. GP ratio for the denoised grids of 5 mm. 

 
5.5 Smoothing effect 

The smoothing effect, which is defined as the roughness 
decrease with decreasing TLS data resolution (increasing grid 
size or EIFOV), is presented in Figure 6. 
 

 

Figure 6. Smoothing effect with analysis direction. 
 

With increasing the EIFOV from 0.5 mm to 50 mm the surface 
is gradually smoothed out. The smoothing effect is larger in 
directions of small-scale roughness; in case of our sample in 
directions clockwise from approximately 270° to 10°. Higher 
roughness for larger EIFOV shows in which direction a larger-
scale features exist; compare the GP peaks for different EIFOV 
in Figure 6 with analysis directions indicated on the sample in 
Figure 2, top. 
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5.6 Synthesis 

The noise and smoothing effects are presented together in 
Figure 7 and Figure 8. As shown already in Figure 3, the noise 
has a significant influence on GP; e.g. if the EIFOV is 5 mm the 
GP increases with the five noise levels (from 0.5 mm to 2.5 
mm) for 11%, 37%, 73% 101% and 135%, respectively. But the 
noise effect drops very fast when the EIFOV increase; e.g. if the 
EIFOV is 10 mm the roughness increases with the five noise 
levels for 5%, 23%, 45%, 64% and 85% This means, that at 
longer ranges, when the EIFOV increases, the noise effect gets 
less important. 
 
The error bars in Figure 7 show the standard deviation of GP 
computed for all analysis directions. The standard deviation 
increases with the noise level, which means that the GP varies 
more with the analysis direction for higher noise levels. The 
standard deviation mostly increases also with the EIFOV, which 
indicates higher anisotropy of the sample’s surface at larger-
scales. 
 

 
Figure 7. GP of noisy surfaces (GPn) versus EIFOV. 

 

 
Figure 8. GP ratio of noisy surfaces versus EIFOV.  

 
The denoising performance of the DWT with the EIFOV is 
shown in Figure 9. Comparing the curves with the ones in 
Figure 8, a great improvement of GP values can be observed, 
especially for smaller EIFOVs and noise levels; e.g. if the 
EIFOV is 5 mm the GP ratio for the five noise levels (from 0.5 
mm to 2.5 mm) is -3%, -3%, 1%, -2% and 28%. The graphs do 
not show a clear trend, which means that DWT denoising does 
not depend on the data resolution. However, the results for large 
grid sizes might not be reliable, since these contain too few grid 
cells (pixels). 
 

 
Figure 9. GP ratio of DWT denoised surfaces versus EIFOV. 

 
6. CONCLUSIONS 

In this research the usability of noisy TLS data with limited data 
resolution for joint surface roughness estimation is investigated. 
The TLS data as acquired with Riegl VZ400 are simulated by 
gridding reference ATOS data and by adding noise to the grid 
points. In order to reduce the noise effect, the performance of 
wavelet transform and Non-Local Mean denoising methods is 
analysed. The following conclusions are obtained:  
 
 Grasselli roughness parameter is very sensitive to surface 

topography representation, which makes it a good tool to 
analyse limitations of TLS data. 
 

 All denoising methods improve noisy surfaces (GP ratio 
approaches to one) and thus the capabilities of TLS for 
modelling smaller scale roughness. Roughness of DWT 
denoised surfaces is mostly underestimated. 
 

 Further testing of DWT, NLM and other denoising methods 
could be beneficial, but the noise effect decreases rapidly 
with the resolution. Thus an improvement of denoised 
surface would not have much impact on the roughness. 
 

 EIFOV controls the discernible roughness scale. Therefore 
it is important to know the EIFOV for the scanning distance 
and to adjust the resolution of raw TLS data (e.g. by 
gridding or wavelet transform), so it corresponds to EIFOV. 

 
 TLS effective data resolution cannot be improved by data 

processing. The footprint size of a scanner depends on the 
scanning geometry (range and incidence angle). Therefore it 
is advised to scan a surface as close as possible, optimally in 
perpendicular direction. 

 
Future work will involve an investigation of correlation between 
effective data resolution and roughness scale. Further, the 
EIFOV increase with distances more than 100 m should be 
determined, in order to be able to estimate in-situ roughness of 
remote rock joints.  
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