DOI QR코드

DOI QR Code

Preparation and Characterization of Organic Thin-Film Transparent Electrode using Conducting Polyaniline

전도성 폴리아닐린을 이용한 유기박막 투명전극의 제조 및 특성

  • Oh, Sun-Joo (ELPANI CO., Ltd.) ;
  • Lee, Ue-Jin (Fusion Technology R&D Division, Korea Institute of Industrial Technology) ;
  • Yoon, Jong-Jin (ELPANI CO., Ltd.) ;
  • Jung, Myung-Jo (ELPANI CO., Ltd.) ;
  • Lee, Suck-Hyun (Applied Chemistry and Biological Engineering, Ajou University) ;
  • Lee, Sang-Ho (Fusion Technology R&D Division, Korea Institute of Industrial Technology) ;
  • Cha, E.H. (Research Center for Convergence Technology, Hoseo University) ;
  • Lee, Jae-Kwan (Research Center for Convergence Technology, Hoseo University)
  • Received : 2010.07.14
  • Accepted : 2010.07.29
  • Published : 2010.08.28

Abstract

The highly conductive polyaniline was synthesized and investigated on the properties of its thin film electrode fabricated by solution process. The transmittance and sheet resistance of the polyaniline thin film of 200 nm thickness were observed in 85% in absorption range above 450 nm and $380P{\Omega}/{\Box}$, respectively. The sheet resistance of the polyaniline was largely varied above $130^{\circ}C$ annealing temperature.

전도성 폴리아닐린을 합성하여 용액 공정을 적용한 유기박막 투명전극을 제조, 그 특성을 조사하였다. 용액에 분산된 폴리아닐린을 스핀코팅하여 얻어진 박막 전극은 200 nm의 두께에서 $380{\Omega}/m^2$ 의 면저항을 보였고, 450 nm 이상의 파장에서 85% 이상의 균일한 광투과성을 나타내었다. 전극의 $130^{\circ}C$이상의 온도변화에서는 비교적 높은 저항변화율이 관찰되었다.

Keywords

References

  1. T. Markvart and L. Castaner, “Solar Cell: materials, manufacture and operation”, Elsevier (2005).
  2. M. Gratzel, ‘Dye-sensitized solar cell’ J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  3. S. Gunes, H. Neugebauer, and N. S. Sariciftci, ‘Conjugated polymer-based organic solar cells’ Chem. Rev., 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  4. B. O'Regan and M. Grael, 'A low-cost, high efficiency solar cell based on dye-sensitized colloidal $TiO_2$ film' Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, ‘Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction’ Science, 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.1789
  6. P. K. Song, H. Akao, M. Kamei, Y. Shigesato, and I. Yasui, ‘Preparation and Crystallization of Tin-doped and Undoped Amorphous Indium Oxide Films Deposited by Sputtering’ Jpn. J. Appl. Phys., 38, 5224 (1999). https://doi.org/10.1143/JJAP.38.5224
  7. S. K. Hau, H. L. Yip, J. Zou, and A. K. Y. Jen, ‘Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes’ Org. Electron., 10, 1401 (2009). https://doi.org/10.1016/j.orgel.2009.06.019
  8. Z. B. Zhou, R. Q. Cui, Q. J. Pang, Y. D. Wang, F. Y. Meng, T. T. Sun, Z. M. Ding, and X. B. Yu, ‘Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process’ Appl. Surf. Sci., 172, 245 (2001). https://doi.org/10.1016/S0169-4332(00)00862-X
  9. T. H. Fanga and W. J. Chang, ‘Effect of freon flow rate on tin oxide thin films deposited by chemical vapor deposition’ Appl. Surf. Sci., 220, 175 (2003). https://doi.org/10.1016/S0169-4332(03)00817-1
  10. Y. F. Lim, S. Lee, D. J. Herman, M. T. Lloyd, J. E. Anthony, and G.G. Malliaras, ‘Spray-deposited poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) top electrode for organic solar cells’ Appl. Phys. Lett., 93, 193301 (2008). https://doi.org/10.1063/1.3021022
  11. K. Lee, S. Cho, S. H. Park, A. J. Heeger, C. W. Lee, and S. H. Lee, ‘Metallic transport in polyaniline’ Nature, 441, 65 (2006). https://doi.org/10.1038/nature04705
  12. J. C. Chianga and A. G. MacDiarmid, ‘Polyaniline: protonic acid doping of the emeraldine form to the metallic regime’ Syn. Metals 13, 193 (1986). https://doi.org/10.1016/0379-6779(86)90070-6
  13. S. -H. Lee, D. -H. Lee, K. Lee, and C. W. Lee, ‘High-Performance Polyaniline Prepared via Polymerization in a Self-Stabilized Dispersion’ Adv. Funct. Mater., 15, 1495 (2004). https://doi.org/10.1002/adfm.200400467
  14. M. Higuchi, D. Imoda, and T. Hirao, ‘Redox behavior of polyanilinetransition metal complexes in solution’ Macromolecules, 29, 8277 (1996). https://doi.org/10.1021/ma960761f
  15. J. E. de Albuquerque, L. H. C. Mattoso, R. M. Faria, J. G. Masters, and A. G. MacDiarmid, ‘Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy’ Syn. Metals, 146, 1 (2004). https://doi.org/10.1016/j.synthmet.2004.05.019
  16. J. Tang, X. Jing, B. Wang, and F. Wang, ‘Infrared spectra of soluble polyaniline’ Syn. Metals 24, 232 (1988).

Cited by

  1. Electrochemical performance of all-solid lithium ion batteries with a polyaniline film cathode vol.25, pp.1, 2016, https://doi.org/10.1016/j.jechem.2015.08.008
  2. Analysis on ESD Properties of the PANI added PU/MWNT Films vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.37
  3. Synthesis and Electrochemical Characterization of Polyaniline/Poly[1,2]bis-thio[1,8]-naphthylidine Composite as Polymer Cathode Material vol.15, pp.4, 2012, https://doi.org/10.5229/JKES.2012.15.4.222