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ABSTRACT 

This paper investigates the problem of double-diffusive convection in a horizontal layer filled with 
a reacting fluid with temperature-dependent internal heat source within the Darcy limit. The linear 
stability theory is applied for the onset of both stationary (monotonic) and oscillatory convection. 
The critical Rayleigh numbers for the onset of convection are determined in terms of the 
governing parameters. The results show that positive increments in the internal heat source 
parameter hasten the onset on both stationary and oscillatory convection. 

INTRODUCTION 

The study of the onset of thermosolutal or double – 
diffusive convection in fluid saturated porous layer 
has been an active area of research interest for many 
years. These phenomena of combined heat and 
mass transfers where both temperature and solute 
fields contribute to the buoyancy of the fluid have 
many applications in the behaviour of fluids in the 
crust of the earth, geophysics, metallurgy, material 
science and petroleum engineering.  For instance, in 
geological processes thermosolutal convection in 
porous media may be important in dolomitisation of 
carbonate platforms (Kaufman 1994), soil salinisation 
(Gilman and Bear 1994) and heat transfer in 
geothermal reservoirs (Oldenburg and Pruess 1988). 
Comprehensive reviews of the literature on double – 
diffusive natural convection in porous media and its 
applications can be found in Nield and Bejan (2006). 

The earliest investigations of the effects of chemical 
reactions on the stability of a fluid layer were carried 
out by Wollkind and Frisch (1971a, b), who 
considered the problem of the stability with the effect 
of dissociation. Bdzil and Frisch (1971) investigated 
the same problem but considered the effects of 
catalysis at the lower boundary of the layer.   
Steinberg and Brand (1984) investigated the effect of 
chemical reaction in a porous medium. In this study 
they considered the regime where the chemical 
reaction was sufficiently fast that the solutal diffusion 
could be neglected. More recently, D’Hernoncourt et. 
al. (2006, 2007) considered the effect of exothermic 
reaction on double – diffusive convection in a fluid 
saturated porous medium; while Hill (2005) 

considered the problem of linear and nonlinear 
convection in a fluid saturated porous medium with a 
concentration based internal heat source. Pritchard 
and Richardson (2007) investigated the problem of 
the onset of thermosolutal convection of a binary fluid 
in a horizontal porous layer with temperature – 
dependent solubility using linear stability analysis.  

The aim of this present paper is to investigate the 
effect of temperature-dependent internal heat source 
on the onset of thermosolutal convection in a 
horizontal layer filled with a reacting fluid in the Darcy 
limit. 

Mathematical Formulation: We consider a first 

order chemically reacting fluid layer of height , 

heated and salted from below and bounded between 
two impermeable horizontal surfaces located at 

 and . The lower and upper surfaces 

are maintained at temperatures  and  and 

solutal mass concentrations and , respectively. 

The fluid is assumed to be Newtonian with constant 

physical properties except for the density,  in the 

buoyancy term, which according to Boussinesq 

approximation depends on the temperature,  and 

specie concentration,  as follows 

 (1) 

where ,    are the thermal and solutal expansion 

coefficients, respectively,  is the reference  
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density. Also,  and 

. 

Further, the internal heat source is modelled linearly 
with respect to temperature. This is represented by 

the introduction of the term  in the 

energy equation, where  is some constant of 

proportionality. We take a horizontal coordinate  

and a vertical coordinate  which is increasing 

upwards. Making use of Darcy law and Boussinesq 
approximation, the appropriate governing equations 
are (Nield and Bejan (2006)) 

                        (2) 

    (3) 

 (4) 

 (5) 

where  is the acceleration due to gravity,  is a unit 

vector in the  direction,  is the Darcy velocity,  

is the pressure,  is the permeability of the porous 

medium,  is the porosity of the porous medium,  

is the thermal diffusivity of the porous medium and 

 is the solutal diffusivity of the medium. The 

subscripts m and f denotes the medium and the fluid 
respectively. 

The boundary conditions are 

on        (6a) 

       on             (6b) 

We non-dimensionalize Equations (2) – (6) by 
introducing the following dimensionless variables 

 ; ;  

  

   .             (7) 

The dimensionless equations are 

                                            (8) 

                   (9) 

     (10) 

          (11) 

subject to the boundary condition 

         (12) 

where    is the thermal Rayleigh 

number,  is the solutal Rayleigh 

number,  is the Lewis number, 

 is the internal heat source parameter 

and  is the reaction rate parameter. 

Stability Analysis 

Steady State Solutions: We seek an initial steady 

state solutions for which  and   . We 

then find   

             (13) 

                    (14) 

             (15) 

subject to  

             (16) 

Solving Equations (13) – (15) together with conditions 
(16) yield the steady state of the systems as 

                    (17) 

                 (18) 

                   (19) 

3.2 Linearized Equations and Perturbation 
Model 

To access the stability of the steady state 
solutions, we superimpose small perturbations on the 
basic state in the form [Chandrasekhar (1961); 
Drazin and Reid (2004); Nield and Bejan (2006)] 
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 (20) 

Substituting (20) into (8) – (12) and neglecting higher 
order terms of the perturbed quantities, we obtain the 
linearized perturbed equations 

                                         (21) 

                      (22)       

                         (23) 

               (24) 

where  and  are the temperature 

and species gradients in the fluid, and . 

Next, we eliminate the pressure perturbations by 
operating on (22) twice with the curl operator and 
using the continuity equation (21). Taking only the z – 
component, the resulting equation becomes 

           (25) 

where  is the Laplace operator with 

respect to the horizontal plane. The boundary 
conditions are now 

           (26) 

Normal Mode Analysis: To proceed with our 
analysis, we consider the expansions of the form 

     (27) 

where  is complex, and  are real 

numbers. Substituting (27) into (23) – (25) and letting 

, we obtain the following system of equations 

              (28) 

  (29) 

               (30) 

where  is a wave number arising from the 

separation of variables and  is a horizontal 

plane form tiling the plane  periodically and 

satisfies  (Christopherson (1940), 

Hill (2005)).  The boundary conditions are 

 

          

    on a free surface.              (31) 

Next, system (28) – (30) is further reduced to a single 

scalar equation in  by eliminating  and . The 

result is 

 

     (32) 

 now subject to 

                   (33) 

For an idealized fluid layer with free boundaries in 
which the boundary conditions (33) hold, the solution 
of (33) is possible if  

                                       (34) 

where  is a constant. Substituting (34) into (32), 

we obtain the dispersion relation 

                      (35) 

where 

 

RESULTS AND DISCUSSION 

At marginal stability , and so . With this 

(35) reduces to  

                      (36) 

For stationary convection, we put 

 in (36) and obtain 

after simplification yields 
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      (37) 

Equation (37) represents the boundary for monotonic 
or stationary instability. In particular, to  

find the lowest threshold of instability as a function of 

the wave number,  we compute . This 

yields the following 8
th
 order polynomial 

 

(38) 

where  

,   ,   

. 

In order to compare our results with those in 

literature, we set , 

 (this value corresponds that of salt 

water) and solve the characteristic polynomial (38) 
with the help of “mathematica version 7”. This yields 

 and we conclude that the critical 

Rayleigh number for the onset of stationary instability 
is 

        (39) 

If , that is, in the absence of internal 

heat source and chemical reaction,  we obtain the 
critical Rayleigh number as 

                            (40) 

This is the exact result previously reported by 
Lambardo et. al. (2003). 

To analyse the onset of oscillatory convection for 

which , we set ,  and 

keeping only the imaginary part of (36), we have 

         (41) 

where  

             ; 

             ; 

              

By minimizing (40) we obtain the critical Rayleigh 
number for the onset of overstability (oscillatory 
instability) as 

 (42) 

We remark here that for 

 in (42), the 

threshold of oscillatory convection reduces to  

                     (43) 

which is exactly the results of Lambardo et. al.(2003).  

Figure 1and 2 depict the graphs of thermal Rayleigh 

numbers,   for the onset of both stationary and 

oscillatory convections plotted against the wave 
number, a, respectively for and varying values of 
internal heat source parameter, Q. The result shows 
that positive increment in Q cause a reduction in the 
critical Rayleigh numbers for both stationary and 
oscillatory convections. This implies that increases in 
Q hasten the onset of instabilities in the  

system. 

 

 

 

 
Fig 2. Variation of Rayleigh number, Ra as a 

function of wave number, a             

Fig 1. Variation of Rayleigh number, Ra as a 
function of wave number, a for Kr = 0.1, Rc = 

1000, b = 0.2, Le = 0.01 and different values of Q 



Am. J. Sci. Ind. Res., 2011, 2(6): 860-864 

 

 
 

864 

In Figures 3 and 4 we depict the graphs of thermal 

Rayleigh number,   for the onset of stationary and 

oscillatory convections plotted against the solutal 

Rayleigh number, , respectively for varying values 

of internal heat source parameter, Q. The diagrams 
show that the effect of increasing the internal heat 
source parameter allows the onset of instabilities to 
occur early.  

 

 

 

 

 

 

 

CONCLUSION 

In this study we used the linear stability analysis to 
investigate the effect of temperature dependent 
internal heat source on the onset of stationary 
(monotonic) and oscillatory instabilities of a first order 
chemically reacting horizontal fluid layer in a porous 
medium within the Darcy limit. The results show that 
positive increments in the internal heat source 
parameter hasten the onset of both stationary and 
oscillatory instabilities in the system. That is, 
increasing values of the internal heat source have a 
destabilizing effect on the system. Also, in the limiting 
case when both internal heat source parameter and 
the reaction parameter are set equal to zero, the 
results is reduced to known results previous reported 
in literature on double – diffusive convections. 
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Fig 3. Variation of stationary Rayleigh number, Ra 
as a function of the solutal Rayleigh number, Rc 
for Kr = 0.01, Rc = 1000, b = 0.2, Le = 0.01, a = 3 and 

different values of Q 

Fig 4. Variation of oscillatory Rayleigh 
number, Ra as a function of wave number, 
a for Kr = 0.1, Rc = 1000, b = 0.2, Le = 0.01 

and different values of Q 


